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Abstract

How does breaking the symmetry of an equation alter the symmetry of its solutions? Here, 

we systematically examine how reducing underlying symmetries from spherical to axisymmetric 

influences the dynamics of an archetypal model of cell polarization, a key process of biological 

spatial self-organization. Cell polarization is characterized by nonlinear and non-local dynamics, 

but we overcome the theory challenges these traits pose by introducing a broadly applicable 

numerical scheme allowing us to efficiently study continuum models in a wide range of 

geometries. Guided by numerical results, we discover a dynamical hierarchy of timescales that 

allows us to reduce relaxation to a purely geometric problem of area-preserving geodesic curvature 

flow. Through application of variational results, we analytically construct steady states on a 

number of biologically relevant shapes. In doing so, we reveal non-trivial solutions for symmetry 

breaking.
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The very first action undertaken in all of geometry is, per Euclid, ‘to draw a straight line 

from any point to any point’1. We would be hard pressed to achieve the precise spatial 

organization observed in cellular biology without an established directional axis. Cells may 

assign direction through the process of polarization, in which they break internal symmetry 

by sequestering signaling proteins from the cytosol to a specific region (the polar cap) 

of the cell membrane. The importance of understanding this mechanism is underscored 

by its ubiquity: cell polarity establishes directions of locomotion and growth, mechanical 

anisotropies and planes of division2–6. A wide range of molecular factors are known to 

influence spontaneous polarization, including complex intracellular regulatory networks, 

mechanical cues and external chemical gradients7,8. In this Article, we demonstrate how a 

cell’s own shape can directly determine cell polarization outcomes.

The biological role played by cell shape has drawn substantial attention from theorists, 

but firm quantitative results have proved elusive because of the mathematical difficulties 

of coupling non-linear chemical dynamics to non-trivial surface geometry. Several studies 

have explored the reduced scenario of a two-dimensional cell bounded by a one-dimensional 

membrane5,7,9, or simplified network representations10. Previous numerical studies with 

fully three-dimensional embedded cell membranes have been restricted to simpler shapes 

such as spheres or spheroids11–13. Nonetheless, recent papers have reported numerical 

results hinting at general rules for polarization on more general cell shapes, such as 

a tendency of polar cap drift towards regions of high curvature, or, alternatively, for 

polarization to occur along the longest axis of a given cell14–17.

Our goal in this paper is to propose a computational method to assess such intuitive 

claims via the following question: given a cell membrane of axisymmetric (rather than 

spherical) shape, what are the possible stable, symmetry-broken distributions of membrane-

bound proteins? This is a matter of forced, rather than spontaneous, symmetry breaking, 

which limits deployment of traditional methods such as the equivariant branching lemma18. 

Instead, we approach this problem through exhaustive simulation, exploring geometric 

effects robustly over a range of realistic cell shapes. To this end, we introduce a variant of 

the double Fourier sphere (DFS) method19–21 for fast and accurate simulation of nonlinear, 

non-local partial differential equations on surfaces of revolution. Our initial numerical 

results suggest that steady states are close to solutions to the isoperimetric problem on 

the surface of the cell. Further numerical experiments clarify previously suggested rules for 

geometry-guided cell polarization and construct counterexamples highlighting where these 

break down.

Results

Model derivation.

A prototypical cell polarity model consists of a three-dimensional domain Ω enclosed by 

a surface ∂Ω with normal vector n and a single chemical species that is located either 

on the boundary or within the bulk (Fig. 1a). The simplest model with spontaneous 

symmetry breaking has three important characteristics: conservation of total mass, bulk 

diffusion substantially faster than lateral membrane diffusion, and cooperative reaction 
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kinetics governing binding and unbinding from the cell membrane. A substantial library 

of polarization models exhibit these features22,23, but for the purposes of this paper we focus 

on a simple wave-pinning system, so called because its dynamics feature the arrested motion 

of a traveling wavefront24. It captures the essence of several real systems, such as ezrin 

polarization in embryonic mouse cells5, and can be written as

∂tB = DB ∇∂Ω
2 B + kb β + Bν

Gν + Bν C − kdB, (1)

∂tC = DC ∇Ω
2 C, (2)

DC(∇C ⋅ n) ∂Ω = − kb β + Bν

Gν + Bν C + kdB . (3)

Here, (1) describes a reaction–diffusion process on ∂Ω of the surface-bound concentration 

B, while (2) gives bulk diffusion of C in the bounded volume Ω and (3) the boundary 

condition between the two. The operator ∇∂Ω2 is the Laplace–Beltrami operator on the 

surface, while ∇Ω2 refers to the standard three-dimensional Laplacian. DB and DC are the 

diffusion constants on the membrane and in the cytosol, respectively. The parameter kd 

represents a constant rate of unbinding from the membrane, while kb is the corresponding 

rate of binding. The term inside the parentheses represents a small basal binding β and 

a cooperative binding given by a Hill function, which is characterized by a characteristic 

concentration G and Hill coefficient ν. The wave-pinning dynamics we describe below does 

not strongly depend on ν, so throughout our simulations will use ν = 2. These equations 

leave considerable room for simplification under our assumptions. As mass is conserved 

globally, we define the quantity Ctot as the total mass divided by bulk volume |Ω|. Under 

the assumption that DB ≪ DC, we can treat the bulk concentration as spatially uniform and 

study a reduced system determined entirely by surface dynamics25. Thanks to conservation 

of mass, we can write

C = Ctot − 1
|Ω|∫∂Ω

B dS .

Substituting this back into (1) yields the reduced equation for surface-bound species,

∂B
∂t = DB ∇∂Ω

2 B − kdB + kb (β + Bν

Gν + Bν ) Ctot − 1
|Ω|∫∂Ω

B dS .

This result can be rendered dimensionless by rescaling as τ = kdt, u = kdB/(kbCtot) and 

ds = dS / | ∂Ω|, where |∂Ω| is the surface area of ∂Ω, to non-dimensionalize the equation as

∂u
∂τ = δ2∇∂Ω

2 u − u + β + uν

γν + uν 1 − α∫
∂Ω

u ds , (4)
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with dimensionless parameters δ2 = DB/(kd | ∂Ω|), α = kb | ∂Ω | /(kd |Ω|) and γ = kdG/(kbCtot). The 

spontaneous symmetry breaking of this equation on a sphere has been carefully studied, 

providing a strong starting point for discussions of less-symmetric surfaces11. A brief 

discussion of results on alternative polarization models can be found in Supplementary 

Information as well as in Supplementary Fig. 4 and Supplementary Table 1.

Modified DFS for axisymmetric surfaces.

To numerically represent functions on ∂Ω, we modify the classical DFS method for use on 

any closed surface of revolution. The DFS method maps a function on ∂Ω to a rectangular 

longitude–latitude coordinate system (ξ,η) that is ‘doubled up’ in such a way as to preserve 

the natural periodicity of the function both azimuthally and across the poles (Fig. 1b). Such 

a biperiodic representation permits the use of bivariate Fourier series to approximate the 

membrane-bound concentration u on ∂Ω. To stably evolve equation (4), we discretize in time 

with an implicit–explicit scheme that treats the surface diffusion term implicitly in Fourier 

space and the nonlinear, non-local reaction term explicitly in grid space. Hence, at each time 

step we must invert a modified Laplace–Beltrami operator of the form ℐ − c∇∂Ω
2 , where ℐ 

is the identity operator and c > 0. Fortunately, upon discretizing ℐ − c∇∂Ω
2  with bivariate 

Fourier series, the azimuthal modes decouple; this holds true for any surface of revolution. 

Moreover, as both differentiation and band-limited multiplication are sparse operations on 

Fourier coefficients, the modified Laplace–Beltrami problem can be discretized into a set 

of decoupled, banded linear systems—one for each azimuthal Fourier mode—which may 

be solved in parallel. The DFS method gives us a fast (mn) algorithm for inverting the 

modified Laplace–Beltrami operator on surfaces of revolution, yielding an overall cost per 

time step of (mn log mn) operations for m × n Fourier coefficients. For m = n = 128, the 

solver takes approximately 0.02 s when run on a single core; using eight cores reduces the 

solve time to 0.006 s. For the simulations presented throughout this work, using m = n = 

64 or 128 was sufficient to achieve a maximum relative error of 10−8 when compared with 

an over-resolved solution. The code for our scheme is open source and available online26,27. 

For a detailed description of the numerical method, see Methods and Supplementary Figs. 

1–3. Simulations of the cell polarization model in equation (4) on several sample surfaces 

are presented in Supplementary Video 1.

The initial results shown in Fig. 1c highlight the scope of our problem. For ease of 

comparison, we note the symmetry group of the surfaces (black) and solutions (blue). 

Surfaces with the same underlying symmetries are found to admit radically different 

solutions: the prolate and oblate spheroids are symmetric to rotation about their axes and 

reflection about the equator (in group theory parlance, they share the symmetry group 

denoted O(2) ⊕ Z2; see ref. 28 for definitions). However, the solutions of the former are 

symmetric under axial rotations (symmetry group O(2)) while the latter’s solutions remain 

invariant under horizontal and vertical reflection (D2). Indeed, the bottom row demonstrates 

that the same surface can admit multiple, qualitatively different classes of solutions. The 

hourglass-shaped surface admits both one- and two-cap steady states, while the conical 

surface allows both axisymmetric (O(2)) and off-center (Z2) solutions. To make sense of 

these disparate examples, we take a closer look at the dynamics of the polarization process.
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Asymptotic hierarchy of timescales.

Extensive simulation reveals three distinct dynamical timescales, similar to the cascade 

of timescales reported in ref. 29, in the biologically relevant slow-diffusion regime where 

dimensionless diffusion δ ≪ 1 (Fig. 2a) for a surface area |∂Ω|. With lateral diffusion slowed, 

initial dynamics are dominated entirely by the bulk-membrane binding kinetics, leading to 

rapid local relaxation at each point on the surface. We observe that the total mass of the 

membrane-bound protein converges to a fixed value, causing the solution to grow or shrink 

from initial conditions to a fixed area fraction of the total membrane surface. Tracking the 

time needed for area to converge, we find it scales as δ−1 (Fig. 2b, red). While this target 

area depends on the surface area to volume ratio of the cell, it is independent of local 

geometry. On long timescales, it has been hypothesized that dynamics on the scale of δ−2 are 

driven by minimization of the length of the interface between high- and low-concentration 

regions bounding the cap30–32. Conceptually, this interface minimization emerges from the 

high dissipative cost of maintaining the interface in the face of the inherently high protein 

fluxes in this region. This cost should scale linearly with the length of the interface, and 

ergo the boundary can be thought of as possessing an effective line tension in the long-time 

limit15.

Given a fixed enclosed area, area-preserving geodesic curvature flow naturally arises out of 

interface minimization33. In particular, if we define Γ(t) = {u(·, t) = γ}, the γ level-set of 

u(x, t) at time t, then under a sharp-interface approximation (Fig. 3a) we expect that the 

normal velocity vn of Γ can be written as

vn = kg − kg , (5)

in which kg and 〈kg〉 are the local and mean geodesic curvatures of Γ, respectively. We 

tracked the length of said interface over our simulations and found that the time needed for 

it to steady does indeed scale as δ−2, establishing a third and final timescale (Fig. 2b, blue). 

This scaling behavior is entirely consistent with geodesic curvature flow in other non-local, 

conservative systems34. Crucially, equation (5) reflects the well known fact that minimal 

curves exhibit constant geodesic curvature.

Thus, to find stable steady-state solutions, we must find caps of fixed area but locally 

minimal interfaces. Before proceeding to specific cases, it is important to note a general 

existence result: for an arbitrary compact surface, there exists an area-constrained minimizer 

of perimeter for any given area, whose boundary takes the form of a union of smooth 

closed curves sharing a common, uniform kg. Proof of this follows from standard arguments 

in the calculus of variations35. In the context of cell polarization, we interpret this result 

as implying that no plausible cell geometry will inherently restrict symmetry breaking. 

Polarization can always occur, and the question simply becomes where, as we now discuss.

Calculations of steady-state solutions.

As noted above, the general qualitative notion is that the polar cap partitions the cell along 

its long axis, or alternatively stabilizes at the peak of Gaussian curvature. We examine 

these claims for surfaces of revolution, making use of the fact that stable solutions of 

the isoperimetric problem have been fully classified for surfaces that are symmetric to 
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reflections over the plane of their equator36–38. When Gaussian curvature K is everywhere 

positive, matters are relatively simple. If K is increasing with distance from the poles, as 

in the oblate spheroid, stable solutions can only exist centered on the equatorial points 

(Fig. 3b). Conversely, shapes such as the prolate spheroid where curvature increases 

monotonically away from the equator always exhibit an axisymmetric symmetry at the poles 

(Fig. 3c). For these cases, then, the popular rule of thumb holds. Similar results are discussed 

for other polarization models in Supplementary Information (Supplementary Fig. 4).

Expanding our range to surfaces with negative Gaussian curvature, however, reveals 

previously unacknowledged complexity. Adding dimples of negative K at the poles of 

the oblate spheroid changes nothing: only equator-centered solutions are allowed for these 

shapes37. However, consider the transition from the prolate spheroid to the hourglass-shaped 

surface presented in Fig. 3e, reminiscent of a cell undergoing division. The analog of 

the solution on the prolate spheroid, an axisymmetric cap centered at the pole, remains 

intact. However, variational solutions of the constrained perimeter-minimization problem 

reveal that two interface solutions also exist. For instance, for an appropriately chosen area, 

one can find a solution with two interfaces of curvature kg symmetric with respect to the 

equator provided that they are contained within the region K + kg
2 < 0. Up to a choice of 

parameters, this leads to two new axisymmetric solutions: one equator centered, and one 

with two caps. Thus, we find caps that do not partition the shape in two, and one that 

even avoids high-curvature regions entirely. For surfaces where variational solutions are not 

available—such as the spinning top shape (Fig. 3d)—we can use simulation to find stable 

cap configurations. Here we observe that polarization can occur on either the rim or the pole 

depending on cap size. Such solutions bear some similarity to those found for binary alloy 

models38.

As noted above, plausible cell shapes tend to support multiple polar cap solutions. However, 

biology often requires one particular solution to be favored over others; pyramid-shaped 

embryonic mouse cells, for instance, must polarize to their outer surface. As a final 

exercise, we use our numerical scheme to test selection between distinct steady states on 

an egg-shaped surface that resembles a blastomere in an eight-cell mouse embryo (Fig. 

4)5. Understanding the mechanisms that guide polarization in these cells is a major open 

problem in mammalian developmental biology, with several competing hypotheses currently 

at play. Starting from random initial conditions slightly perturbed from the uniform unstable 

steady state, we investigate whether polarization favors the top or bottom of the surface as 

a function of α. This test is equivalent to an experiment modulating the cap size by over- 

or underexpressing enzymes controlling binding and unbinding to the surface. In vivo, the 

mouse cell always forms its polar cap on its blunt side, and yet on the basis of the previous 

section we might expect the cap to favor the side of the egg with sharper curvature. Contrary 

to both hypotheses, after 5,000 trials per data point we only record a relatively small bias 

whose direction could be tuned by the value of α. We interpret this result as an indication 

that, while geometry establishes possible cap locations, it does not play a major role is 

selecting between them (Supplementary Video 2). Looking at it another way, these results 

seem to indicate that geometry plays too small a selective role to account for the robustness 

of orientation selection seen in the embryo, suggesting that alternative mechanisms must be 

at work.
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Our results establish a systematic overview of geometry-forced symmetry breaking 

for axisymmetric surfaces, highlighting prototypical cases where the common sense 

understanding holds and where it fails. By carefully examining the results of numerical 

simulations, we were able to identify a cascade of pattern-forming timescales. We exploited 

the purely geometric nature of the long-timescale dynamics to establish a number of 

unambiguous properties about symmetry breaking, and demonstrated the distinction in 

symmetry-breaking polarization between classes of axisymmetric surfaces exemplified by 

prolate and oblate spheroids. Further, we constructed clear counterexamples illustrating the 

breakdown of the high-curvature localization rule. It remains an open question how far these 

results extend to the case of finite bulk diffusion, though existing results suggest that even 

this regime is guided by interface minimization on long timescales15,39.

Discussion

In this Article, we have illustrated how shape influences symmetry in one particular cell 

polarization model related to the Rho–GTP pathway, but the general question of how 

intracellular signaling reacts to geometric guiding cues remains a rich and active area of 

research. As noted in Supplementary Information, our numerical code is well suited to the 

study of other mechanisms of cell polarization problems in a range of other molecular 

contexts, such as the Rac–Rho pathway or CDC-42. Recent work has also highlighted the 

role of geometry in cell polarization at the tissue scale, offering another avenue for future 

work40. Beyond cell polarization, biology provides a host of other problems in need of 

efficient methods to study reaction–diffusion on surfaces. For example, surface-bound Rho–

GTP dynamics in starfish oocytes is emerging as a popular experimental system for the 

study of spiral waves and active turbulence41,42. Recent evidence suggests that geometry 

plays a major role in guiding this reaction–diffusion system39. Simultaneously, numerical 

studies of turbulent behavior in this system benefit immensely from the use of spectral 

methods, making this an obvious application for DFS43.

The DFS method developed here can also be generalized to other problems beyond reaction–

diffusion. It is a fairly straightforward exercise in geometry to calculate higher-order spatial 

derivatives in the same way as the Laplace–Beltrami operator. A DFS-based calculation of 

the surface biharmonic operator, for example, would be an extremely efficient way to study 

mechanical problems on axisymmetric domains. Once again, biology motivates a wide range 

of problems that would be suited to this. Models of actively deforming cell membranes, for 

example, generally require higher-order derivatives and are a major subject of interest in 

contexts such as cellular locomotion or division44,45. Biologically realistic cell deformation, 

for instance due to actomyosin contraction, is often analytically intractable and numerically 

expensive, creating a pressing need for numerical methods such as ours in this area46.

While the modified DFS method developed here performs well in the simple geometries 

considered in this work, it has its limitations. First, the DFS method is notably limited 

to axisymmetric surfaces. On the other hand, traditional mesh-based solvers such as 

the finite-element method (FEM) are applicable to general surfaces. However, what the 

DFS method lacks in generality it makes up for in speed by exploiting axisymmetry. In 

comparison with a second-order accurate subdivision FEM implemented in libMesh (version 
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1.5.1)47, our solver achieves an orders of magnitude speedup (Supplementary Fig. 3 and the 

corresponding discussion in Supplementary Information). Second, as the DFS method is a 

spectral method, it provides global resolution of functions on the surface with no opportunity 

for spatial adaptivity. While spectral methods can achieve exponential convergence for 

smooth functions, they suffer when the solution possesses a discontinuity or is not globally 

smooth. Adaptive mesh-based methods may perform better than a global spectral method 

when applied to reaction–diffusion systems where smoothness is not guaranteed.

Methods

The Laplace–Beltrami operator on axisymmetric surfaces.

Let ∂Ω be a smooth, axisymmetric, closed surface of genus zero embedded in ℝ3. Let 

(ρ(ξ, η), λ(ξ, η), θ(ξ, η)) ∈ [0, ∞] × [ − π, π] × [0, π] be a smooth parametrization of ∂Ω in spherical 

coordinates with (ξ, η) ∈ [ − π, π] × [0, π] denoting on-surface longitude and colatitude. Note 

that λ is the azimuthal angle and θ is the polar angle. Axisymmetry requires such 

a parametrization to have the form (ρ(ξ, η), λ(ξ, η), θ(ξ, η)) = (ρ(η), ξ, θ(η)); in other words, 

an axisymmetric surface is entirely defined through its generating curve (ρ(η), θ(η)). 

Converting this representation to Cartesian coordinates x(ξ, η) = (x(ξ, η), y(ξ, η), z(ξ, η)), we 

have

x(ξ, η) = ρ(η) sin θ(η) cos ξ, y(ξ, η)
= ρ(η) sin θ(η) sin ξ, z(ξ, η) = ρ(η) cos θ(η) .

The metric tensor g on ∂Ω is then given by

g =
gξξ gξη

gηξ gηη
=

xξ ⋅ xξ xξ ⋅ xη

xη ⋅ xξ xη ⋅ xη
,

where xξ = ∂x/ ∂ξ and xη = ∂x/ ∂η. Let the components of the inverse of g be denoted by

g−1 = gξξ gξη

gηξ gηη = 1
|g|

gηη −gξη

−gηξ gξξ
,

with |g| = det g. The surface gradient of a scalar-valued function u = u(ξ, η) defined on ∂Ω 
can then be written as

∇∂Ωu = gξξ∂u
∂ξ + gξη∂u

∂η xξ + gηξ∂u
∂ξ + gηη∂u

∂η xη .

Similarly, the surface divergence of a vector field u = u(ξ, η) = u1(ξ, η)xξ + u2(ξ, η)xη tangent to 

∂Ω can be written as

∇∂Ω ⋅ u = 1
|g|

∂
∂ξ |g| u1 + ∂

∂η |g| u2 .

Therefore, the Laplace–Beltrami operator on ∂Ω is given by
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∇∂Ω
2 u = ∇∂Ω ⋅ ∇∂Ωu

= 1
|g|

∂
∂ξ |g| gξξ∂u

∂ξ + gξη∂u
∂η + ∂

∂η |g| gηξ∂u
∂ξ + gηη∂u

∂η
= 1

|g|
∂
∂ξ

1
|g| gηη

∂u
∂ξ − gξη

∂u
∂η + ∂

∂η
1
|g| gξξ

∂u
∂η − gηξ

∂u
∂ξ .

For our axisymmetric surface ∂Ω, we have that

xξ =
−ρ sin θ sin ξ
ρ sin θ cos ξ

0
, xθ =

ρ′ sin θ cos ξ + ρ cos θ θ′ cos ξ
ρ′ sin θ sin ξ + ρ cos θ θ′ sin ξ

ρ′ cos θ − ρ sin θ θ′
,

and so the metric tensor is given by

g = ρ2 sin2 θ 0

0 ρ2θ′2 + ρ′2
,

with |g | = ρ2 sin2 θ ρ2θ′2 + ρ′2 . Therefore, the Laplace–Beltrami operator on ∂Ω is

∇∂Ω
2 u = gηη

|g|
∂2u
∂ξ2 + gξξ

|g|
∂2u
∂η2 + gξξ

|g|
∂

∂η
1
|g| + 1

|g|
∂

∂η gξξ
∂u
∂η

= 1
ρ2 sin2 θ

∂2u
∂ξ2 + 1

ρ2θ′2 + ρ′2
∂2u
∂η2 + ρ′3 − ρ3θ′θ′′ − ρρ′ ρ′′

ρ(ρ2θ′2 + ρ′2)2
+ θ′ cos θ

sin θ(ρ2θ′2 + ρ′2)
∂u
∂η .

Numerical methods.

The dimensionless cell polarization model on ∂Ω is a nonlinear, non-local partial differential 

equation of the form

∂u
∂τ = ℒu + N(u), (6)

with ℒu = δ2∇∂Ω
2 u and N(u) = (β + uν

γν + uν )(1 − α ∫
∂Ω

udS) − u. We discretize (6) using the 

DFS method in space and an implicit–explicit scheme in time.

For a smooth function u(x,y,z) on ∂Ω, the parametrization u(ξ, η) is periodic in ξ but not in 

η. To obtain a biperiodic function using the DFS method, we ‘double up’ u so that

u(ξ, η) =
u(ξ, η), (ξ, η) ∈ [ − π, π] × [0, π],
u(ξ + π, − η) (ξ, η) ∈ [ − π, 0] × [ − π, 0],
u(ξ − π, − η) (ξ, η) ∈ [0, π] × [ − π, 0] .

The function u(ξ, η) may then be discretized using a bivariate m × n Fourier series,
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u(ξ, η) ≈ ∑
j = − m/2

m/2 − 1
∑

k = − n/2

n/2 − 1
U jk eijη eikξ, (ξ, η) ∈ [ − π, π]2,

and computations on u(ξ, η) may be related back to the original function u(ξ, η).

We use an implicit–explicit scheme to stably evolve (6) in time, with the linear term ℒu 
treated implicitly and the nonlinear term (u) treated explicitly. Fix a step size Δτ > 0 

and time points τk = kΔτ for integers k ≥ 0, and let uk denote the DFS approximation 

to the solution to (6) at time τk. Using the fourth-order backward differentiation formula 

scheme (we start this multistep scheme using three steps of the fourth-order linearly implicit 

Runge–Kutta method LIRK448) in time yields a steady-state partial differential equation for 

uk + 1,

(25ℐ − 12 Δτ ℒ)uk + 1 = 48uk − 36uk − 1 + 16uk − 2 − 3uk − 3 + Δτ
48N(uk) − 72N(uk − 1) + 48N(uk − 2) − 12N(uk − 3) , (7)

which must be solved once per time step to compute uk + 1 from {uk, uk − 1, uk − 2, uk − 3}. 

Here, ℐ is the identity operator and we evaluate the nonlinear term pseudospectrally, 

which requires one forward and one inverse two-dimensional fast Fourier transform to be 

performed at a cost of (mn log mn) operations per time step. Specifically, we evaluate the 

nonlinear term as

N(u) ≈ fft2(Npseudo(ifft2(U)))Nspec(U) − U,

where fft2 and ifft2 denote the forward and inverse two-dimensional fast Fourier 

transforms, Npseudo(u) = β + uν

γν + uν  and Nspec(U) = 1 − α∑j = − m/2
m/2 wjU j0 with precomputed 

weights wj = ∫0
π eijη ρ sin θ ρ2θ′2 + ρ′2dη for −m/2≤j≤m/2. Equation (7) takes the form of 

a modified Laplace–Beltrami problem, ℒu − c2u = f, for some c ∈ ℝ and smooth function f 

on ∂Ω.

A fast modified Laplace–Beltrami solver for axisymmetric surfaces.—We now 

aim to develop a solver for the modified Laplace–Beltrami problem on ∂Ω,

∇∂Ω
2 u − c2 u = f, (8)

where f is a smooth function on ∂Ω and c ∈ ℝ. For our axisymmetric surface ∂Ω, (8) 

becomes

A(η)∂2u
∂η2 + B(η)∂u

∂η + C(η)∂2u
∂ξ2 − D(η)c2u = D(η)f, (9)

for (ξ, η) ∈ [ − π, π] × [0, π], where
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A(η) = ρ2 sin2 θ ρ2θ′2 + ρ′2 ,
B(η) = ρ sin2 θ ρ′3 − ρ3θ′θ′′ − ρρ′ ρ′′ + ρ2 sin θ ρ2θ′2 + ρ′2 θ′ cos θ,

C(η) = ρ2θ′2 + ρ′2 2,

D(η) = ρ2 sin2 θ ρ2θ′2 + ρ′2 2 .

Let u and f be the doubled-up versions of u and f, respectively, and define the functions

A(η) = A(η), η ∈ [0, π],
A( − η), η ∈ [ − π, 0], B(η) = B(η), η ∈ [0, π],

−B( − η), η ∈ [ − π, 0],
C(η) = C(η), η ∈ [0, π],

C( − η), η ∈ [ − π, 0], D(η) = D(η), η ∈ [0, π],
D( − η), η ∈ [ − π, 0] .

These functions are 2π periodic, globally smooth for η ∈ [−π,π], and equal to the functions 

A(η), B(η), C(η) and D(η) for η ∈ [0,π]. Then the governing equation for u is given by

A(η)∂2u
∂η2 + B(η)∂u

∂η + C(η)∂2u
∂ξ2 − D(η)c2u = D(η)f, (10)

for (ξ,η) ∈ [−π,π]2, which is equivalent to (9) when u is restricted to the original domain 

[−π,π] × [0,π].

We discretize (10) using the Fourier spectral method in two dimensions, which represents 

the functions u and f as matrices of bivariate Fourier coefficients U, F ∈ ℂm × n. 

Let Dm ∈ ℂm × m and Dn ∈ ℂn × n be diagonal Fourier differentiation matrices and 

MA, MB, MC, MD ∈ ℂm × m be Fourier multiplication matrices for the univariate functions 

A, B, C and D. For smooth geometries, these functions are band limited and can be 

represented using q Fourier coefficients with q ≪ max(m,n), thus making their Fourier 

multiplication matrices q banded. Upon discretizing (10), we obtain the matrix equation

MADm
2 + MBDm − c2MD U + MCUDn

2 = MDF . (11)

Since Dn is a diagonal matrix, (11) decouples column-wise and each column of U—which 

represents a fixed azimuthal mode—can be found independently by solving a separate m × 

m banded linear system,

MADm
2 + MBDm − c2MD + MC(Dn

2)kk U : , k = MDF : , k, (12)

for −n/2≤k≤n/2 − 1. Thus, solving the modified Laplace–Beltrami problem amounts to 

solving n banded linear systems of size m × m, at a total cost of (mn).

Convergence and benchmarking.—To demonstrate convergence and stability of the 

overall method, we performed both spatial and temporal self-convergence studies on a 

prolate spheroid with major axis 1.44 and minor axis 0.77 and parameters δ2 = 0.02, α 
= 2, β = 0.01, γ = 0.23 and ν = 2. To measure convergence in space, we first computed 
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a reference solution at time τ = 10 using an over-refined expansion of 512 × 512 Fourier 

coefficients and a time step of Δτ = 0.05, starting from random initial conditions for which 

polarization occurs. Then, we ran simulations from the same initial conditions using smaller 

values of m = n and measured the maximum pointwise relative error at τ = 10 between the 

reference and computed solutions. We observe superalgebraic spatial convergence—that is, 

convergence at a rate of (ρ−n) with ρ > 1—to the reference solution (Supplementary Fig. 

1).

To measure convergence in time, we computed a reference solution at time τ = 10 using an 

over-refined time step of Δτ = 2−8 ≈ 0.004 and an expansion of 64 × 64 Fourier coefficients, 

again starting from random initial conditions. We then ran simulations from the same initial 

conditions using larger values of Δτ and measured the maximum pointwise relative error at τ 
= 10 between the reference and computed solutions. We observe fourth-order convergence in 

time (Supplementary Fig. 2).

Finally, we benchmarked our DFS method against a second-order accurate subdivision 

FEM implemented in libMesh47,49. To do this, we ran simulations for 1,000 time steps 

over a range of modal sizes (using DFS) and mesh sizes (using FEM) and recorded the 

computation time and error compared with a reference solution. Supplementary Figure 3 

shows the relative error versus computation time for both methods. While the FEM requires 

minutes to achieve three-digit accuracy, our DFS method achieves 12-digit accuracy in a 

matter of seconds. It is worth noting that the FEM simulations here use an explicit forward 

Euler method in time, while our DFS method uses the implicit scheme described previously. 

Using a similar implicit scheme in the FEM simulations would likely increase the cost per 

time step and widen the gap between the methods seen in Supplementary Fig. 3.

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Dynamics of cell polarization.
a, Cytosolic proteins autocatalytically bind to the cell membrane nonlinearly and undergo 

slow lateral diffusion, leading to spontaneous symmetry breaking on the surface in vivo. b, 

Natural periodicity across the poles is lost when a function is represented using on-surface 

coordinates (ξ,η). The DFS method recovers this periodicity by reflecting and shifting the 

function, allowing computations to be carried out using two-dimensional Fourier series. c, 

Steady-state behavior exhibits non-trivial dependence on surface geometry. Some surfaces 
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even admit multiple classes of solution. Text in black denotes the symmetry group of the 

surface, text in blue the symmetry of the steady-state solution.
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Fig. 2 |. Pattern formation over a hierarchy of timescales.
a, Snapshots of the polarization dynamics at each characteristic timescale. On the fast 

timescale (1), time evolution is purely local via the reaction kinetics, which drive the 

phase separation of high- and low-density membrane regions. At the intermediate timescale 

(δ−1), the initially random distribution evolves towards a cap with fixed area. Finally, 

over the long timescale (δ−2), interface minimization drives the migration of the cap over 

the surface. b, Starting from a small, localized perturbation from a uniform concentration 

profile, the times needed for the interface to reach to within 1% of its maximum cap area 
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(red) and final interface length (blue) are calculated over a range of δ. Both cases exhibit 

clear power-law scaling with δ at the reported exponents. Simulations were performed with 

α = 3, β = 0, ν = 2, γ = 0.2.
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Fig. 3 |. Geometric effects on cap localization.
a, Steady-state solutions minimize the length of the interface between high- and low-

concentration regions. b, Oblate spheroids only have stable caps centered on equatorial 

points. c, A stable cap on the prolate spheroid is axisymmetric and centered on the pole. d, 

For this cap size, a stable solution exists centered on the rim of this spinning top shape, but 

not about the local maximum of Gaussian curvature at the pole. e, Surfaces with negative 

Gaussian curvature can admit a number of solutions, including multiple stable caps and 

solutions where high concentration does not localize to high positive curvature.
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Fig. 4 |. Polarity selection on asymmetric surfaces.
Polarity establishment on an egg-shaped surface of revolution is examined when simulations 

are time-evolved from a small random perturbation about a uniform steady state. Left: for a 

given simulation, we assign a value P=±1 depending on whether the polar cap goes to the 

sharp or blunt end of the egg. Right: we examine how polarization is influenced by α by 

plotting the mean value of P across n = 5,000 simulations at each value of α. Error bars 

denote 1 s.d. above and below this mean as calculated from the same set of simulations.
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