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Abstract

Clinical trials are constantly evolving in the context of increasingly complex research questions
and potentially limited resources. In this review article, we discuss the emergence of “adaptive”
clinical trials that allow for the preplannedmodification of an ongoing clinical trial based on the
accumulating evidence with application across translational research. These modifications may
include terminating a trial before completion due to futility or efficacy, re-estimating the needed
sample size to ensure adequate power, enriching the target population enrolled in the study,
selecting across multiple treatment arms, revising allocation ratios used for randomization,
or selecting the most appropriate endpoint. Emerging topics related to borrowing information
from historic or supplemental data sources, sequential multiple assignment randomized trials
(SMART), master protocol and seamless designs, and phase I dose-finding studies are also pre-
sented. Each design element includes a brief overview with an accompanying case study to illus-
trate the design method in practice. We close with brief discussions relating to the statistical
considerations for these contemporary designs.

Introduction

Clinical trials are considered the gold standard of evidence in clinical research [1,2].
However, modern clinical research problems are becoming increasingly complex while
available resources may be limited. Traditional clinical trial designs with fixed sample sizes
and only one or two arms may be limited to efficiently address emerging research questions.
One such pathway to address these limitations is through the use of “adaptive” clinical trial
designs that allow for the prospective modification based on the accumulating data in a trial
[1,3–7].

In 2019, the US Food and Drug Administration (FDA) published guidance on the use and
implementation of adaptive designs for clinical trials [1]. This guidance included non-
binding recommendations for the design, conduct, and reporting of such clinical trials.
The FDA noted that adaptive designs may have multiple advantages over traditional, non-
adaptive designs for improving statistical efficiency of trial operating characteristics (e.g.,
type I error rates and power), addressing ethical considerations (e.g., stopping a trial early
if an intervention shows safety concerns or limited benefit, increasing randomization to bet-
ter-performing arms), adding to our understanding of treatment effects (e.g., enriching a
trial with more participants expected to benefit), and being more acceptable to stakeholders
(e.g., increased flexibility to successfully complete the trial) [1,8,9]. These adaptive designs
have the potential to be applied across clinical trial phases, from phase I dose-finding studies
to phase III confirmatory trials [1,2].

This review article first presents the seven major adaptive design elements presented in
the 2019 FDA guidance document, with a brief overview of the designs presented in Table 1.
A case study is presented in each design subsection to illustrate the approach in practice. We
follow this with an introduction of special topics relating to other novel trial designs and
methodologies that have emerged regarding borrowing historic information, SMART
designs, master protocol and seamless designs, and phase I dose-finding studies. The final
section presents general statistical considerations for adaptive trial designs before conclud-
ing with a brief discussion.
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FDA Adaptive Trial Elements

Group Sequential Designs

Group sequential designs allow for prospectively planned interim
analyses and possible early stopping due to efficacy, futility, or

harm [1]. These stopping rules may be binding (e.g., the trial must
stop) or nonbinding (e.g., the trial is recommended to stop, but
other considerations may warrant continuing the study). Since
the early works of Pocock [10] in 1977 and O’Brien and
Fleming [11] in 1979, the choice of efficacy-stopping boundaries

Table 1. Brief summary of FDA guidance document adaptive design elements

Adaptive design
element Brief description Advantages Challenges

Group sequential
designs

Designs that allow for one or more
prospectively planned interim analyses of trial
data with prespecified criteria for stopping the
trial, generally based upon evidence of
efficacy/effectiveness or futility

• Trial can stop early, reducing overall
sample size

• Results can be disseminated more
quickly if trial stops early

• May need a much larger
maximum sample size than a
trial without interim monitoring

• Early stopping may reduce
safety data on a new
intervention

Adapting the
sample size

When uncertainty exists around the estimates
used to power a study, an interim analysis can
use accumulating data to re-estimate the
sample size to ensure a trial has high power if
the true magnitude was less than hypothesized
but is still clinically meaningful

• Reduces chance of a negative trial
with a meaningful effect by
increasing the sample size to have
sufficient power

• Blinded approaches and re-
estimation of nuisance parameters
minimally impact type I error rates

• Sample size increase may be so
large as to be infeasible for
continued enrollment

• Certain approaches may inflate
the type I error rate without
special consideration

Adaptive
enrichment

A design which may adapt the patient
population to a targeted subgroup (usually
through demographic characteristics or by
genetic/pathophysiologic markers believed to
be related to the mechanism of action) or
continue to enroll the participants from the
originally specified trial population

• Can refine eligibility criteria to enroll
subgroups most likely to benefit
from the intervention

• Approaches exist for both
prognostic (identifying high-risk
patients) and predictive (identifying
more responsive patients)
enrichment

• Subgroups may be small (i.e.,
rare or hard to enroll) and
challenging to determine benefit

• Choice of demographic
characteristics or genetic
markers may lead to different
subgroups

Adaptations to
treatment arm
selection

Modification to the trial design that could add
or terminate study arms, present in both early
phase studies (e.g., dose-finding) and later
phase studies (e.g., seamless designs and
platform trials)

• Extremely flexible to terminate
study arms (for futility or efficacy)
and add new arms

• Shared control arm, if used, may
increase allocation to study
interventions

• Can use a single master protocol
versus multiple standalone trials

• Multiple comparisons may lead
to issues with type I error rates

• Criteria for terminating arms or
adding new arms may be
complex

• Overall resource use may be
challenging to plan for given
unknown number of arms and
sample size

Adapting patient
allocation

Also known as adaptive randomization (AR),
the incorporation of methods to modify the
randomization process that may be based on
baseline covariates (i.e., to achieve “balance”
in select covariates across study arms),
response/outcome AR (i.e., attempting to
randomize more participants to “effective”
arms), or maintaining equal amounts of
information when incorporating historic/
supplemental data sources

• Covariate-AR only uses baseline
characteristics to promote balance
across groups

• Response-AR increases probability
of allocation to better-performing
study arms

• AR when incorporating external
control arm data can increase
allocation to the intervention to
maintain a desired allocation (e.g., 1:1)

• Need to account for Covariate-
AR in the statistical analysis plan

• Response-AR has special
challenges with temporal trends,
two-arm studies, & potential
unblinding of study arms

• To incorporate external data
advanced statistical approaches
are needed and this
supplemental data may
introduce bias

Adapting
endpoint
selection

The ability to select one endpoint from a
collection of potential primary endpoints when
there is uncertainty about effect sizes across
outcomes at an interim analysis, when done in
FDA trials it involves extensive discussion and
the review with the FDA Review Division

• Can select a primary endpoint while
the trial is ongoing based on
uncertainty in the design stage

• Recent statistical research explores
new designs to incorporate this
adaptation

• Not recommended by the EMA
• FDA recommends review and
discussion with regulatory
authorities

• May be seen as cherry picking an
outcome that makes the
intervention look good

Adapting
multiple features

The above elements can be utilized
individually or may be combined within a
single adaptive trial design (at the expense of
increasing complexity that needs to be
carefully and thoroughly evaluated)

• Provides the greatest flexibility by
combining multiple adaptive
features

• May result in designs with greater
appeal to participants

• Combining multiple adaptive
features requires extensive
statistical work and simulation
studies

• May result in overly complex
studies when a traditional
design may have sufficed
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that control the overall type I error rate have been broadly dis-
cussed in the literature (e.g., Lan and DeMets [12,13]; Wang
and Tsiatis [14]; Jennison and Turnbull [15]; Chow and Chang
[5]). With regard to futility stopping rules, either binding or non-
binding, type I error rate control is guaranteed but type II error
may be inflated [16].

The related statistical approaches can be divided into frequent-
ist methods, including conditional power [17] and beta-spending
functions [18–21]; and Bayesian methods based on the predictive
power [22], posterior, or predictive probability [23]. Variations of
adaptive group sequential designs have been developed with mod-
ifications of sample size [24–26], treatment arm selection [27–29],
and patient enrichment [30,31] and are discussed in later sections.
It is worth noting that conventional methods tend to produce
biased estimates and undesirable coverage probability of confi-
dence intervals; therefore, various methods for the estimation of
the treatment effect that appropriately adjust for group sequential
stopping rules have been established [1,15,32].

Case Study: PARAMEDIC2 was a Phase III randomized, pla-
cebo-controlled trial to test the efficacy of epinephrine in out-
of-hospital cardiac arrest patients on 30-day survival rates
(EudraCT number 2014-000792-11) [32,33]. A frequentist group
sequential design was used with a total of 10 pre-specified interim
analyses spaced every 3 months. Since epinephrine was the stan-
dard treatment, a higher level of evidence was required to stop early
for futility. To account for this different expectation of evidence for
futility and efficacy, asymmetric stopping boundaries were imple-
mented including Pocock’s and O’Brien Fleming’s alpha-spending
functions for efficacy and futility, respectively [32]. Although epi-
nephrine showed a significantly higher survival rate in the final
analysis, the trial missed an opportunity to stop early for efficacy
due to slower recruitment and lower survival rates than were
expected when designing the study [33,34]. Through simulation
studies, the trial was re-constructed using three alternative
Bayesian group sequential designs where the stopping decisions
were based on the posterior probability of superiority and harm
[34]. The team then virtually re-executed the trial using
PARAMEDIC2 data where only two designs recommended stop-
ping early for benefit.

Sample Size Re-Estimation

Sample size re-estimation (SSR) is a form of clinical trial adaptation
that accounts for potential uncertainty in the expected treatment
effect. After the initial sample size calculation is performed to esti-
mate the number of participants required to maintain prespecified
power and type I error rate given an assumed treatment effect, the
accumulated data at each interim analysis can then be used to
re-estimate the sample size in order to maintain the same power
if the observed treatment effect is weaker than expected but still clin-
ically relevant. Many distinct methods exist to perform SSR, includ-
ing blinded (i.e., individual group assignment remains hidden in the
process of re-estimating) and unblinded (i.e., assignment is known
for the process of re-estimating) methods [35]. Bayesian SSR meth-
ods also exist [36,37], as do methods extending SSR to complex
study designs [38–40], less common statisticalmodels [41], and time
to event data [42]. SSR is most commonly used in mid to large scale
phase II/III confirmatory trials [43]. Further, re-estimationmethods
can be tailored to equivalence, noninferiority, or superiority hypoth-
esis testing contexts [44–46]. Because it relies on interim analyses
from incomplete data, SSR may inflate the type I error rate [47].
SSR which depends on re-estimating only nuisance parameters

(e.g., variance) or uses a blinded approach has little impact on type
I error rates, but unblinded methods may lead to an inflation of the
type I error rate [48–50]. This type I error inflation can be addressed
differently depending on how the re-estimation is performed and is
always an important consideration when planning or implementing
SSR. Used appropriately, SSR allows for uncertainty in the magni-
tude of the treatment effect, letting trials readjust their total sample
size throughout the trial based on accumulated information without
loss of statistical power.

Case Study: One adaptive trial with a planned SSR element is
the ongoing Nasal Oxygen Therapy After Cardiac Surgery
(NOTACS) trial (ClinicalTrials.gov number: NCT05308719)
[51]. This trial is evaluating the use of high-flow nasal oxygen
therapy (HFNT) compared to standard oxygen therapy (SOT)
for cardiac surgery patients at increased risk for postoperative pul-
monary complications. The sample size for this two-armed trial is
restricted to be between 850 and 1252 patients, with a single
interim sample size re-estimation analysis planned after at least
300 patients have accumulated 90 days of follow-up. This design
allows the trial to increase the sample size above 850 patients if,
based on interim data, the treatment effect of HFNT is lower than
originally expected but still clinically meaningful enough to justify
continuing the trial with the necessary higher sample size to main-
tain statistical power to detect an effect.

Adaptive Enrichment

In trials where it is believed that a subgroup of the population will
experience more benefit from an intervention, an adaptive enrich-
ment design provides the ability to drop lower performing sub-
groups at an interim analysis so that study resources are more
efficiently allocated to those with a greater chance of benefit
[1,9,52–54]. In general, two broad classes exist: prognostic and pre-
dictive enrichment [9]. Prognostic designs attempt to choose
patients more likely to have the study endpoint or have worsening
conditions (e.g., event- or progression-based studies), whereas pre-
dictive designs attempt to identify patients with a higher chance of
responding to the given treatment [9].

These designs are most common for confirmatory clinical
trials, but may be used in earlier phases [1,54,55]. The a priori
subgroups may be identified by either a single biomarker or
multiple biomarkers, but designs may also include methods to
identify adaptive thresholds for continuous biomarkers
[52,53]. An advantage of enrichment designs compared to a
study that only enrolls the targeted subgroup is that the overall
population, including nontargeted subgroups, may be evaluated
for potential benefit while providing the ability to drop the non-
targeted subgroups with no benefits or worsening conditions
[1]. A challenge of enrichment designs is accounting for the
multiplicity of both repeated testing of study hypotheses and
across multiple subgroups [1,52,54]. Burnett and Jennison dis-
cuss approaches to control the type I error rate within an adap-
tive enrichment trial, including a strong family-wise control
[54]. Regardless of whether study arms are dropped at an
interim analysis, the data from the overall study may be used
for statistical inference [1].

Case Study: An example of a clinical trial that included an
adaptive enrichment element is the Phase III Trial of TRC105
and Pazopanib Versus Pazopanib Alone in Patients With
Advanced Angiosarcoma (TAPPAS; ClinicalTrials.gov number:
NCT02979899) [56]. Due to uncertainty of the treatment effect
for progression-free survival (PFS) among cutaneous and
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noncutaneous disease subgroups of angiosarcoma, an adaptive
enrichment strategy based on conditional power was used after
40 events had occurred or within 30 days after enrollment of
120 participants to determine if the trial should continue without
any modifications, should potentially increase the overall sample
size (i.e., sample size re-estimation), or if the noncutaneous sub-
group should be dropped with an increase of the sample size for
the cutaneous group [56]. While there was no formal criteria for
stopping for futility, the TAPPAS Trial design specified an “infor-
mal futility zone” that the Data Monitoring Committee for the
study could use to stop the trial at an interim analysis [57].
Ultimately, the trial terminated for futility after 123 participants
were enrolled because the study had entered the informal futility
zone with a hazard ratio of 0.98 for PFS between the two groups
(p = 0.95) [56].

Treatment Arm Selection

Adaptations to treatment arm selection are methods that modify
the study design to allow for adding or dropping treatment arms.
Some examples are adaptive dose-finding, drop-the-losers, adap-
tive seamless, and adaptive platform designs [4,6]. These adapta-
tions can be used in both Bayesian and frequentist trial designs.
Some of the applications are described below, as well as in sub-
sequent sections detailing additional considerations of these types
of design modifications.

Adaptive dose-finding designs are usually used in the early
phases of studies to determine the minimum effective dose or
the maximum tolerable dose for a drug to use for future trials.
One method used for dose-finding designs is the continual reas-
sessment method where the dose relationship is assessed through-
out the trial using the data collected during the study [58].

The adaptive seamless design combines the objectives of two
trials into one. Seamless design trials can combine phases I and
II or phases II and III. This type of design eliminates the time
between the two phases of a trial and can lead to a smaller overall
sample size required to conduct the final analysis where it uses
data collected from subjects enrolled before and after the adap-
tation [59].

Drop-the-losers clinical trial designs allow the dropping of the
inferior treatment(s) or adding additional treatment arms. This is
usually a two-stage trial and during the first stage of the trial, the
inferior treatments are dropped based on pre-specified criteria or
by conducting interim analysis. The winning treatment is then
tested against a control [60].

Adaptive platform trial designs study multiple interventions for
a common targeted condition. Based on a decision algorithm,
treatments can be removed or added to the trial. The number
and type of treatments can change throughout the study period.
The benefit of this design is that the focus is on the condition rather
than the treatment [61,62].

Case Study:Cocaine use disorder (CUD) is a difficult condition
to treat, and research has not found an effective treatment for the
condition. Suchting et al. designed a drop-the-loser (DTL)
Bayesian adaptive trial to determine the most effective dose of
citalopram, a selective serotonin reuptake inhibitor that can treat
CUD, to evaluate in a larger confirmatory trial (ClinicalTrials.gov
number: NCT01535573) [63]. Using Bayesian posterior probabil-
ities, the researchers decided at the interim analysis which doses
would be dropped from the trial (20 mg/day; 40 mg/day). In the
implementation of the trial, the 20 mg/day dose was dropped after
50% of recruitment given that the 40 mg/day dose had a higher

chance of success. Ultimately, the 40 mg/day dose provided “mod-
erate-to-strong evidence” of positive effects at study conclu-
sion [63].

Adaptive Randomization

Randomization is the foundational basis for establishing efficacy of
an investigational treatment in a randomized controlled trial
(RCT). In theory, the randomness element seeks to establish study
arms with similar patient characteristics between arms such that
the only differing factor is the treatment assignment. Critical to
the success of randomization is ensuring appropriate sample size
allocation across arms as well as adjusting for any baseline cova-
riates for which it is important that there is no imbalance.

Several randomization approaches in RCTs exist: The simplest
approach is the coin flip; however, this method fails to control allo-
cations across study arms and does not offer any direct covariate
adjustment. To correct these issues, the idea of stratified block ran-
domization emerged in the mid-twentieth century [64,65]. This
approach uses pre-specified randomization sequences within sub-
groups of patients and is relatively straightforward to implement.
However, some limitations to stratified block randomization
remain, namely requiring continuous stratification variables to
be categorized, an inability to accommodate a large number of
stratification covariates, and increased risk of selection bias near
the end of a block when the allocation may be predicted [66].

To address the limitations of stratified block randomization,
covariate-adaptive designs were created to marginally balance
multiple covariates at once rather than achieve balance within each
stratum [67]. The minimization method is a covariate-adaptive
method which was originally proposed by Taves [68] and
Pocock and Simon [69]. It implements an approach to minimize
imbalance for each covariate of interest, thus allowing for more
flexibility and options including weighting of covariates [70,71].
However, minimization has been criticized for being more chal-
lenging to implement than stratified block randomization, requir-
ing investment in software and personnel time from a study
statistician.

Another strategy for randomization is the response-adaptive
design, which modifies the allocation ratios based on the accu-
mulating evidence of success in the trial arms [72,73]. This does
not ensure balance of the baseline covariates, but attempts to
allocate more participants to potentially effective study arms.
Korn and Freidlin note adaptive randomization methods have
the potential for increasing the total number of nonresponders
relative to equal fixed allocation designs (i.e., 1:1 allocation).
Further, response-adaptive randomization may introduce bias
from temporal trends, lead to the unblinding of study arms
and patients assigned to inferior arms due to variability in esti-
mating effects based on smaller sample sizes [74,75]. Recent
work noted that response-adaptive randomization may be less
susceptible to these issues in multiarm trials where the control
maintains a fixed allocation, but caution should still be taken in
implementing these methods [76].

Case Study: The Established Status Epilepticus Treatment Trial
(ESETT; ClinicalTrials.gov number: NCT01960075) randomized
participants to three intravenous anticonvulsive agents with an ini-
tial 1:1:1 allocation that changed based on a response-adaptive ran-
domization design after 300 participants were observed [77].
ESETT also allowed for early termination for success or futility
based on predefined stopping rules. After 300 participants, the ran-
domization ratios were updated based on accumulating data to
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increase allocations to what appeared to be more promising study
arms. However, the study was terminated for futility after 384
unique participants and it was determined that the probability
of meeting full enrollment and detecting a significant effect was
minimal [77].

Endpoint Selection

Endpoint selection is a critical part of designing a clinical trial. In
adaptive clinical trials, in addition to the trial’s feasibility, its cost,
and the intended goal of treatment, the modifications of trial pro-
cedures or statistical methodologies will impact the selection of
endpoints and outcomes, especially for adaptive designs of con-
firmatory clinical trials [7,78].

Whether it is selected at the beginning of the trial or adapted
during an on-going trial based on comparative interim results,
the primary outcome selected for evaluation, (1) must address
the trial objective and should be acknowledged as meaningful to
clinicians, patients, and policymakers and (2) must be supported
by enough scientific evidence to demonstrate its clinical relevance,
i.e., it represents a current and reliable measure of clinical benefit in
the target population [1,79].

Adaptation of the endpoint selection might be motivated by
the uncertainty about the treatment effect sizes on multiple
patient outcomes that are all considered acceptable as primary
endpoints for a trial [1]. Regulatory and institutional guidelines
elucidate directions in implementing the adaptation of endpoint
selection, such as the adaptation rule should be pre-specified, and
statistical hypothesis testing should account for the adaptive end-
point selection, as stated in the FDA’s 2019 Adaptive Trials
Guidance [1]. Additionally, the FDA notes early discussion with
the FDA review division is encouraged before considering adap-
tive endpoint selection methods [1]. On the other hand, the
European Medicines Agency’s (EMA) Committee for
Medicinal Products for Human Use (CHMP) in general warns
against changing the primary endpoint in adaptive trials, stating
the difficulty to justify changing the primary endpoints as they are
chosen to describe a clinically relevant treatment effect and/or
clinical benefit, which are defined during the study’s planning
stages and cannot be changed based on interim results of the
study [80].

Case Study: The use of adaptive endpoint selection is challeng-
ing with no straight-forward examples that the authors are aware
of currently published in the literature. This may be due to the rec-
ommendation to consult with regulatory authorities, such as the
FDA, prior to initiating such approaches or the strong recommen-
dations against outcome adaptations from the EMA to avoid the
appearance of bias or cherry picking by study investigators.

However, work is being done to move towards designs and con-
texts where adaptive endpoint selection may be advantageous.
Filozof et al. discuss the scientific and logistical usage of an adap-
tive design-based approach to develop therapeutic strategies for
patients with nonalcoholic steatohepatitis (NASH) [81]. The devel-
opment of drugs for NASH has been substantially slow for a num-
ber of reasons, such as the heterogeneous nature of NASH with
respect to the risk of progression to cirrhosis and the lack of a vali-
dated surrogate endpoint to clinical outcomes. Filozof et al. argue
that, given the high unmet medical need and the lack of validated
surrogate endpoints in NASH, the use of adaptive endpoint selec-
tion design methods appears reasonable as they provide the flex-
ibility and efficiency for identifying potential signals of clinical
benefit of the test treatment [81].

Recent work has been done to evaluate the statistical properties
and potential benefits of these designs in certain contexts. Xu et al.
proposed a design for rare diseases that maintains the family-wise
type I error rate when selecting a primary endpoint based on an
internal informational cohort when limited prior data exists and
separate natural history cohort studies may be expensive or chal-
lenging to conduct [82]. Roig et al. proposed an adaptive design
that allows the modification of the primary endpoint based on
blinded interim data while also recalculating the sample size
accordingly [83].

Adaptive Multiple Features

A clinical trial may also include multiple adaptive design features.
As with any single trial design feature, it is important to ensure that
the trial operating characteristics maintain the desired type I error
rate and statistical power while enrolling a realistic sample size
across a range of plausible future scenarios. Often, these are evalu-
ated through extensive simulation studies [1].

Case Study: The vitamin C, thiamine, and steroids in sepsis
(VICTAS; ClinicalTrials.gov number: NCT03509350) randomized
clinical trial enrolled adults with sepsis-induced respiratory or
cardiovascular dysfunction to examine if treatment with vitamin
C, thiamine, and hydrocortisone result inmore ventilator- and vas-
opressor-free days relative to placebo [84,85]. The design incorpo-
rated both an adaptive sample size selection and Bayesian
predictive probability monitoring for futility or efficacy [85]. If
fewer than 400 participants were enrolled, interim monitoring
would only consider stopping for efficacy, whereas sample sizes
above 400 would consider stopping for either futility or efficacy
[84]. Ultimately, the trial terminated after 501 participants due
to a change in funder’s priorities and no further enrollment
occurred and the criteria for statistical significance not being
met [84]. This represents an unexpected conclusion to the study,
but illustrates the potential for multiple adaptive elements to be
included in one study.

Other Novel Trial Designs and Adaptations

Incorporating External/Supplemental Information

Information or data external to a trial may be useful to incorporate
into analyses of a trial in order to increase the effective sample size.
Some designs may attempt to incorporate this information to
increase the sample size of treatment arms in the study, generally
based on evaluating the exchangeability (i.e., equivalence) of the
supplemental data with the current study data. Many approaches
exist and include multisource exchangeability modeling [86,87],
commensurate priors [88], power priors [89,90], and general
Bayesian hierarchical models [91]. It is also possible to include
adaptive randomization methods when information is borrowed
to maintain the overall proportion of trial data in a predetermined
ratio (e.g., if historic control data are borrowed, more participants
could be randomized to treatment arms) [92]. When considering
methods that incorporate supplemental information, one must
consider the sensitivity of methods to downweight nonexchange-
able sources as to avoid potentially biasing the results towards his-
torical data [86]. Additional challenges may be the specification of
priors in study protocols given the uncertainty of future scenarios,
butmethods exist to account for this uncertainty in the design stage
and to calibrate hyperparameters or tuning parameters [93].

Case Study: Putative Investigational Therapeutics in the
Treatment of Patients With Known Ebola Infection (PREVAIL
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II; ClinicalTrials.gov number: NCT02363322) was a platform trial
designed to sequentially evaluate potential therapies for the treat-
ment of Ebola virus disease in the context of the West Africa Ebola
outbreak in the mid-2010s with Bayesian posterior probabilities to
facilitate frequent interim monitoring [94]. Given the sequential
nature of the design, each “new” platform would always have at
least one “old” platform of data that was just completed, but these
data were not used in the PREVAIL II design due to concerns about
changing disease outcomes over time. Kaizer, Hobbs, and
Koopmeiners proposed a modified design that allowed for incor-
porating information from past platforms while also adapting the
randomization ratio to enroll more participants to the new inter-
vention if historic data were borrowed for the current control [92].
They demonstrated that information sharing could more quickly
identify potentially effective therapies while randomizing more
participants to the new arms with minimal bias based on the multi-
source exchangeability models used [92].

SMART Designs

The sequential multiple assignment randomized trial (SMART) is
an adaptive research design for building optimal adaptive interven-
tions. The general framework of a SMART design is as follows:
every participant is randomized to an intervention arm initially,
similar to the start of a classic, fixed RCT. Following this initial
assignment, patients move through a series of stages with the
option to either stay on or switch intervention arms, depending
on their response to the intervention in the stage prior. If a partici-
pant switches intervention arms at the next stage, they will be re-
randomized to a new treatment to maintain properties of causal
inference associated with randomization within an RCT. The
SMART framework mimics standard clinical practice in that, with
time, patients will be assigned to more effective treatments. The
SMART design therefore not only helps to build optimal dynamic
treatment regimens, but also permits researchers to identify char-
acteristics of patients for whom particular treatment regimens may
be most effective [95,96]. SMART designs, while not technically
adaptive since there are no prospectively defined modifications
to the design, do represent an emerging class of designs that address
pressing clinical questions relating to precision medicine and iden-
tifying the optimal treatment for any given patient.

Case Study: SMART designs are traditionally used in fields such
as precision and behavioral medicine, mental health, or substance
use where different combinations and sequences of treatments are
administered [97]. The Establishing Moderators and Biosignatures
of Antidepressant Response in Clinical Care (EMBARC;
ClinicalTrials.gov number: NCT01407094) study is one example
of a study that employed a SMART design [98]. The primary
aim of this two-stage, multisite, 8-week duration study was to dis-
cover candidate biomarkers as moderators of antidepressant treat-
ment among depressed patients. A SMART design was selected
due to the goal of investigating possible combinations of bio-
markers and clinical characteristics as mediators and moderators
to generate biosignatures for making personalized medication
treatment prescriptions [99]. Meanwhile, data were collected 1
week after randomization to provide early indicators of patient
response to treatment and thus to refine any subsequent treatment
adaptations and predictions regarding the treatment response.

Master Protocol Designs

Master protocols are single, comprehensive trials developed to
evaluate several concurrent sub-trials, involving assessment of

multiple therapies, diseases, or subpopulations [100–104]. There
are three general types: basket, umbrella, and platform trials.
Basket trials evaluate single therapies across multiple diseases with
common molecular alterations [100,105]. Sub-studies are often
similarly designed single-arm trials, allowing pooled safety and
efficacy data across subpopulations [101,104]. Umbrella trials
evaluate multiple therapies for a single disease stratified into sub-
groups [100,102,106]. Substudy designs can be single- ormultiarm,
though often include a control [104,107]. Platform trials investi-
gate multiple therapies in one or more diseases in an ongoingman-
ner with arms added or dropped as new data and evidence appear
[61,101,106], often using Bayesian methods based on probabilities
of treatment success or failure [61,108]. These designs may all
include adaptive elements (e.g., arm dropping or group sequential
methods) or be nonadaptive in their implementation.

Master protocols contain common guidelines for enrollment,
measurements, data management, and statistical analysis; create a
shared infrastructure across treatments; can reduce costs and increase
efficiencies; and allow recruiting broader patient populations, helping
bridge the translational gap toward clinical care [61,99,101,104,109].
Challenges include controlling false discovery rates [106,108,110,111],
population drift [61,101,108], coordination among multiple partners
[109], intensive review and monitoring processes [103], amendments
[112], and informed consent [103,112].

Case Studies: NCI-MATCH (Molecular Analysis for Therapy
Choice; ClinicalTrials.gov number: NCT02465060) is a phase II bas-
ket trial for patients with advanced refractory solid tumors, lympho-
mas, or multiple myeloma [113]. The Lung Cancer Master Protocol
(Lung-MAP; ClinicalTrials.gov number: NCT02154490) is an
umbrella trial for patients with advanced squamous nonsmall cell
lung cancer, consisting of two-arm, seamless phase II–III random-
ized substudy designs [114]. I-SPY-2 (Investigation of serial Studies
to Predict Your Therapeutic Response with Imaging and Molecular
Analysis 2; ClinicalTrials.gov number:NCT01042379) is amulticen-
ter phase II platform trial for patients with local metastatic breast
cancer breast cancer, with promising drugs graduating to Phase
III using Bayesian predictive probabilities [115–117].

Seamless Designs

Therapeutic development often occurs in distinct phases, with
pauses between the “learning” and “confirming” phases [3,118–
120]. Seamless designs combine phases into a single protocol with
no pause [3,121]. Operationally seamless designs combine phases
into one trial, while inferentially seamless designs also combine
data from distinct phases [3,118]. Seamless phase I/II designs
simultaneously assess toxicity and efficacy [122], while seamless
phase II/III designs combine the exploratory and confirmatory
stages [123], where futile treatments are dropped and promising
treatments are investigated further [3,118,120].

Seamless designs can accelerate the development timeline, reduce
total sample size, and better estimate the risk of adverse events
[3,118–120,124]. These designs require planning across stages,
including prespecification of protocols, interim analysis schedule,
statistical analysis plans, and data safety monitoring [3,119], which
can constrain flexibility and adaptability [124]. Poor selection of
short-term surrogate outcomes in early stages adversely affects later
stages [124,125]. Statistical methods that control type I error rates
are required to reduce false positives [3,120]. Seamless designs are
generally appropriate for nonpivotal trials or for therapies with suf-
ficient preliminary evidence [119,124].
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Case Studies: The Seamless Phase I/II Randomized Design for
Immunotherapy Trials (SPIRIT) was proposed to investigate an
immunotherapeutic agent that acts against the programed cell
death ligand 1 checkpoint inhibitor in recurrent ovarian cancer
[126]. The first stage determined the range of safe doses using a
Bayesian optimal interval design, while admissible doses were
explored in the second stage jointly modeling immune response
and PFS [127]. A seamless Phase IIb/III trial for chronic obstruc-
tive pulmonary disease identified treatments that exceeded a
threshold for clinical relevance and were superior to control based
on forced expiratory volume, then provided further evaluation
based on percentage of days with poor control [128].

Phase I Studies

Clinical trials are defined by a series of phases depending on their
overarching goal. A phase I clinical trial is a preliminary stage in
this sequence characterized by its purpose to establish safety of an
intervention and dosage in the case of a new drug. This includes
identifying themaximum tolerated dose (MTD) whichmay be car-
ried forward for future studies. Typically, these trials enroll a small
number of subjects, thus utilizing designs that maximize the num-
ber of resources available is paramount.

Adaptive designs such as model-based or model-assisted
approaches incorporate prior knowledge using Bayesian principles
to allow for efficient use of data collected during the trial [129]. One
such dose-finding design is the Bayesian Optimal Interval (BOIN)
and its extensions [127]. The BOIN design targets pre-specified
toxicity level and with optimal boundaries. Based on the observed
toxicities exhibited in a dosing cohort, the BOIN design recom-
mends the optimal dose level for the next sequence of patients.
Model-assisted designs generally provide an easier to interpret
framework to clinicians as all operating characteristics can be
pre-tabulated [129]. However, model-based approaches can
require more input during the conduct of the trial as they need
repeated model fitting and estimation. Care must be taken in
the assumptions made to implement the design with clinical input
and good statistical practice informing the final product, such as
the type I error rate control. Design choices must be made a priori
to adhere to the operating characteristics of the design.

Adaptive Phase I designs yield improved accuracy for identify-
ing the MTD relative to standard approaches such as the 3þ 3 and
allocate more patients to correct dosage level, improve safety out-
comes, and increase the amount of information available for sub-
sequent trials [129]. Recent advancements have also explored the
use of “expansion cohorts” which take the identified dose from
phase I seamlessly into an expanded phase II clinical trial [130].

Case Study: A phase I trial examined the optimal dose of TG02
and temozolomide in treating high-grade gliomas that are tradi-
tionally highly resistant to treatment (ClinicalTrials.gov number:
NCT02942264) [131]. A BOIN design was used with a target
dose-limiting toxicity rate of 35% for the MTD. Ultimately,
38 participants were included and the combined dose for the
two treatments was identified to use for designing a future phase
II randomized trial for evaluating efficacy [131].

Statistical Considerations

Statistical Analysis for Adaptive Designs

Analysis for adaptive trials generally involves computing a suitable
treatment effect estimator, inferences about the estimated effect,
and the type I error rate control [132]. The typical maximum

likelihood estimation (MLE) for the treatment effect in the fixed
sample size trial may be biased in adaptive designs because of
the trial design adaptation (e.g., stopping rule) and selection of
promising subgroups following interim analyses [133].
Robertson et al. provided an overview of treatment effect estima-
tors that improve the bias over MLE and their use in various types
of adaptive designs [133]. Statistical inference of the point estimate
needs to have a correct coverage of confidence intervals (CIs) and
account for design realizations such as multiple stages [15,134–
136]. Similar to CIs, hypothesis tests and p-values are combined
across multiple stages of adaptive designs based on the conditional
invariance assumption and it is advisable to pre-specify methods to
generate p-values in trial protocols [15,132]. During hypothesis
testing, the type I error rate needs to be adjusted when testing
multiple hypotheses or when choosing a subpopulation or treat-
ment, especially among confirmatory clinical trials [1,137–139].

The above discussion so far focuses on the frequentist frame-
work. However, Bayesian inference is commonly employed in
adaptive designs since it can maintain the desired trial operating
characteristics as demonstrated through simulation studies and
has an adaptive nature [1,140,141]. For analysis implementation,
software solutions in adaptive designs are summarized by
Danielson et al. in Chapter 12 [142]. In practice, the adaptive
nature of a design should be accounted for in the analysis plan
for the trial to avoid potential bias and unexpected coverage levels.

Trial Planning and Sample Size Calculations

A common theme throughout many of the designs is the impor-
tance of a priori planned adaptations and the identification of the
target sample size. Adaptive trial designs need to account for the
potential impact on the trial operating characteristics of making
mid-trial changes [1]. This is most efficiently done via statistical
simulation studies, but more traditional power calculations that
do not account for the adaptations may serve as a convenient start-
ing point to explore what changes (e.g., increased sample size) may
be needed [1,3]. As with any clinical trial, a range of possible sce-
narios should be explored with the resulting power and type I error
rates summarized to determine if the properties are acceptable for a
given context. These findings should be included in the study pro-
tocol with all assumptions and design elements clearly identified so
that the findings are reproducible.

Secondary Endpoints

Secondary endpoints are often tested using either gatekeeping or
hierarchical testing strategies in conventional trials as interim
analysis or trial extension is not intended [143–145]. These
approaches are pre-specified in the study protocol, hence the over-
all type I error rate is strongly controlled. In adaptive trials, these
techniques may not maintain a strong control of the overall type I
error rate [136]. Hung et al. present a procedure for the statistical
inference to test secondary endpoints after the primary endpoint
reaches statistical significance, which is more complex in adaptive
trials [145]. This complexity often arises from the fact that most
secondary endpoints are correlated with the primary endpoint
and hence more sophisticated approaches to adjust secondary end-
point analyses should be implemented [137].

Appropriate caution should be taken along with the follow-up of
proper regulatory guidelines in the analyses, adjustments, or inter-
pretations of secondary endpoints. Further, if the adaptive trial
requires the revision or modification of an endpoint, be it primary
or secondary, the decision to revise or modify the endpoint should
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be independent of the data obtained from the trial and should not
put the validity and integrity of the trial in question [146,147].

Safety Considerations

Adaptive design elements may affect the availability of safety infor-
mation for each study arm (e.g., terminating early for efficacy may
not provide sufficient information to evaluate risk vs. benefit) or
the adaptive element may place participants at excessive risk
(e.g., early phase dose-escalation studies that permit rapid escala-
tion) [1,136]. Where appropriate, a data safety monitoring board
should be used to provide an external source of guidance and
recommendation as to the safety of the overall study and to make
recommendations to the trial investigators for potential modifica-
tions. As with any trial, the safety of participants is of utmost
importance and adaptive designs should carefully consider trial
modifications in the context of potential tradeoffs with participant
safety.

Discussion

There is great potential for adaptive trial designs to improve the
efficiency of clinical trials for future research problems with
increasing complexity while potentially using fewer resources.
Given the wide range of potential adaptations and emerging trial
designs, it is clear that numerous designs for trials could be pro-
posed based on the combinations of different adaptive elements.
In general, while adaptive trials may provide increased flexibility,
there is a need for sustained statistical support to ensure any pro-
spectively planned modifications are made appropriately based on
the accumulating data. Table 2 further highlights some of the gen-
eral advantages and challenges in the implementation of adaptive
trial designs. It is also worth noting that not all research questions
warrant an adaptive design, and that nonadaptive designs may be
more appropriate.

Adaptive designs have the potential for furthering patient-cen-
tered research and recruiting more generalizable study popula-
tions. Modifications such as early termination or sample size re-
estimation that aim to avoid wasted resources, either by stopping
early due to substantial evidence or increasing the sample size to
detect clinically meaningful differences, allow research results to
more quickly disseminate to the communities which stand to ben-
efit most. Designs with enrichment, adaptive randomization, or
treatment arm selection attempt to address ethical concerns with
randomizing individuals to arms or enrolling subgroups which
may not benefit from the treatment, but special statistical consid-
erations need to be made to maintain the trial operating character-
istics. Currently, many adaptive designs examples occur in

preclinical and clinical research (translational phases T1 and
T2), but the adaptive methods may also be beneficial for clinical
implementation and public health research (translational phases
T3 and T4) to improve their efficiency, increase representation
among diverse groups, and provide increased flexibility.

In summary, we provided a brief introduction to various adap-
tive design elements and emerging novel trial approaches with
accompanying case studies to provide examples of the designs
in practice. Additional novel designs and concepts are constantly
emerging in the face of new challenges to address various research
questions, and this article may serve as a starting point to introduce
some of the design considerations to be used in practice. Finally,
when designing any clinical trial, care should be taken to ensure
the safety and integrity of the study for participants and the stat-
istical trial operating characteristics.
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