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Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Its variable course makes it difficult to standardize 
patient treatment. This article aims at a literature review on available drugs for treating SLE and on drugs that have shown 
therapeutic effects in this disease. The PubMed/MEDLINE electronic search engine was used to identify relevant studies. 
This review presents the current therapeutic options, new biological therapies, and combination therapies of biologics 
with standard immunosuppressive and immunomodulating drugs. We have also underlined the importance to implement 
the treat-to-target strategy aimed at reducing or discontinuing therapy with glucocorticosteroids (GCs). The awareness of 
the benefits and risks of using GCs helps in refining their dosage and thereby obtaining a better safety profile. The advent 
of biological targeted therapies, and more recently, low-molecular-weight compounds such as kinase inhibitors, initiated 
numerous clinical trials in SLE patients and led to the approval of two biological drugs, belimumab, and anifrolumab, for 
SLE treatment. Progress in the treatment of SLE was reflected in the 2019 and 2021 recommendations of the European 
Alliance of Associations for Rheumatology (EULAR). However, a mass of recent clinical research data requires continuous 
consolidation to optimize patient outcomes.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic autoim-
mune disease with a multidimensional clinical picture. Due 
to the unpredictable course of this disease and the involve-
ment of many organs, treating SLE remains challenging for 
physicians. Decades of experience in treating patients with 
SLE have improved our understanding of the mechanisms 
of action and therapeutic effects of antimalarial drugs and 
glucocorticosteroids (GCs). Due to the spectacular and rapid 
action of GCs in dampening disease exacerbations (flares), 

they have been used for years as basic drugs in SLE treat-
ment. However, it is known that these drugs cause serious 
complications. More recent studies indicate that the admin-
istration of higher GC doses is, in many cases, unnecessary 
and associated with organ damage [1]. A wider range of 
available treatment options and more effective treatment of 
disease comorbidities, especially cardiovascular disease and 
infections, improved patient outcomes and reduced mortality 
[2, 3]. Other common serious complications of SLE requir-
ing appropriate management are atherosclerosis, end-stage 
renal disease (ESRD), dyslipoproteinemia, diabetes mellitus, 
osteoporosis, cataracts, and chronic fatigue.

The current treatment strategy for SLE is based on 
the treat-to-target principle and focuses on achieving a 
defined state of remission or low disease activity. This 
treatment approach may result in increased clinical ben-
efits for patients with SLE [4–7]. It should be realized by 
(i) induction of remission, (ii) consolidation of remission, 
and (iii) remission maintenance. The treat-to-target strat-
egy involves the use of immunosuppressive treatment and 
biologics to achieve the goal of low disease activity or, 
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preferably, remission without the need for GCs. In this 
context, the objective assessment of disease activity is 
essential (according to the most recommended tools, such 
as the SLE Disease Activity Index [SLEDAI]) to establish 
a long-term treatment strategy (taking into account risk 
factors such as cardiovascular risk [CVR]) and aiming at 
reducing or even stopping treatment with GCs. Generally, 
the treatment of patients with SLE should follow the rec-
ommendations of the European Alliance of Associations 
for Rheumatology (EULAR) [8, 9]. However, the final 
choice of treatment is a shared decision of the patient and 
the physician based on a weighted risk–benefit assessment 
for an individual patient. This choice is based on the phy-
sician’s experience and considers the disease activity, the 
risk of flare, and damage accrual.

The aim of this article was to perform a literature 
review on drugs for treating SLE that are available or that 
have shown therapeutic effects. The PubMed/MEDLINE 
electronic search engine was used to identify relevant stud-
ies. The search was focused on original studies, recom-
mendations, reviews, and systematic reviews presenting 
state-of-the-art knowledge in the field and on the most 
up-to-date studies demonstrating novel therapeutic possi-
bilities. Therefore, this review presents the current thera-
peutic options, especially in terms of new biological thera-
pies and combination therapies of biologics with standard 
immunosuppressive and immunomodulating drugs. We 
have underlined the need to implement the treat-to-target 
strategy aimed at reducing and discontinuing GC therapy 
which is often abused and generates organ complications.

Medicines used to treat SLE

SLE is characterized by the presence of multiple autoanti-
bodies against nuclear components and systemic inflamma-
tion, which lead to the damage of multiple organs. Abnormal 
maturation and activation of B-cells play a pivotal role in 
the immunopathogenesis of SLE in both antibody-dependent 
and antibody-independent manners [10]. Anti-inflammatory 
and immunosuppressive drugs are used to treat immuno-
logical disturbances in SLE. These include non-specific 
anti-inflammatory and immunosuppressive drugs, such as 
antimalarial drugs, GCs, non-corticosteroid immunosup-
pressants, and targeted therapies. The targeted therapies 
directly or indirectly affect B-cell survival and activation, 
leading to the depletion of B-cells or inhibition of their 
activity. The characteristics of non-corticosteroid immuno-
suppressants and biologics used in SLE treatment are pre-
sented in Table 1.

Antimalarials

The treatment of autoimmune diseases with antimalarials 
has a long history, and chloroquine (CQ) and hydroxychlo-
roquine (HCQ) are still used to treat patients with SLE. 
The main effects of antimalarial drugs are the inhibition 
of lysosomal activity and autophagy, inhibition of pro-
inflammatory cytokine signaling and secretion, inhibition 
of T-cell proliferation, and blocking of Toll-like receptors 
[11–13].

The activity of SLE and the accrual of organ damage 
can be significantly reduced with chronic HCQ treat-
ment, provided that the patient's blood HCQ concentra-
tion remains at 800–1000 ng/ml [14, 15]. HCQ also delays 
the appearance of disease flares [16, 17]. However, the 
expected clinical results are difficult to achieve due to poor 
patient compliance; 7–29% of patients treated with this 
drug had HCQ < 200 ng/ml [18]. This observation dem-
onstrates the need to monitor patients' adherence to HCQ 
therapy. In lupus nephritis (LN), a severe phenotype of 
lupus, antimalarials reduce the risk of renal flare, ESRD, 
and death [19, 20]. Other benefits of using antimalarial 
drugs include prolonged survival and reduction of damage 
accrual [21–23]. In the context of organ protection, it is 
important that antimalarials use allows reduction of GC 
dose [24]. HCQ has also been shown to have a beneficial 
effect on lipid profile and glycemic control. It can improve 
endothelial function and inhibit platelet aggregation and 
arachidonic acid release. The other benefit of antimalarial 
therapy is diminishing the risk of developing cardiovascu-
lar disease by reducing the number of thrombotic events. 
HCQ has also protective effects against severe bacterial 
and viral infections and their complications [25, 26]. HCQ 
treatment is recommended as the background therapy for 
all patients with SLE without contraindications to this 
drug [8]. These contraindications are limited to retinopa-
thy and cardiomyopathy and relate to high doses of HCQ. 
Therefore, in SLE, a dose of HCQ > 5 mg/kg body mass 
(corresponding to an HCQ cumulative dose of > 1000 g) 
is not recommended [27]. Maculopathy develops in 2% 
and 0.1% of patients with SLE within 10 years of CQ or 
HCQ treatment, respectively. To detect asymptomatic, 
early, and reversible retinopathy, careful monitoring of 
patients undergoing this therapy is necessary [28]. HCQ 
can be administered to reduce the rates of lupus flares in 
pregnant women [29]; however, the scarcity of data on 
pharmacokinetics and posology of this drug in pregnant 
women does not allow for indication of recommended 
HCQ dosage [30].

Quinacrine, used to treat skin lesions in SLE, does not 
increase retinopathy risk. This drug inhibits the produc-
tion of TNF-α and INF-α by dendritic cells and monocytes 
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Table 1  Non-corticosteroid immunosuppressants and biologics characteristics in SLE

Immunosuppressive 
agent

Dose Main indications in 
SLE

Adverse events Special issue

Non-steroidal immuno-
suppressants

CYC Low dose
 500 mg, iv, biweekly, 

4 times
High dose
 0.75–1.0 mg/m2, iv, 

monthly, 6 times

Severe organ involve-
ment:

 LN
 NPSLE
 Vasculitis

Cystitis (especially 
high doses)

Gastrointestinal
Hematological

Teratogenic effect
Premature ovarian 

failure
Malignancies
To prevent bladder 

toxicity—Mesna 
administration

For overall less toxic-
ity—regimen accord-
ing to Euro-Lupus 
[51]

MMF 2.0–3.0 g/day, orally Hematologic
Skin
LN in induction and 

maintenance therapy

Gastrointestinal
Hematological

Teratogenic effect

Calcineurin inhibitors
 CsA 3.0—5.0 mg/kg/day, 

orally
LN
Skin
Hematologic

Nephrotoxicity
Metabolic (hyperten-

sion, hyperglycemia, 
hyperlipidemia)

Hirsutism

Safe during pregnancy 
and lactation

Continuing with folic 
acid during pregnancy

 Voclosporin 23.7 mg, twice daily, 
orally

LN Hypertension
Nephrotoxicity
Serious infections
Malignancies

Combination therapy 
with MMF in LN

Dose adjustment based 
on eGFR

Advantages compared 
with CsA and tacroli-
mus with respect to 
dosing and toler-
ability

 Tacrolimus 0.2–0.3 mg/kg/day, 
orally

LN Nephrotoxicity
Cardiomyopathy

Combination therapy 
with MMF in LN 
with nephrotic pro-
teinuria

 AZA 1.0–5.0 mg/kg/day, 
orally

Pregnancy and lacta-
tion:

 ≤ 2.0 mg/kg/day, 
orally

Hematologic
Skin
LN in maintenance 

therapy

Gastrointestinal
Hepatotoxicity
Hematological

Drug interactions with 
allopurinol

Safe during pregnancy 
and lactation

Mild GCs-sparring 
effect

 MTX 7.5–25 mg/week, 
orally/sc

Joints
Skin
Serositis

Gastrointestinal
Hepatotoxicity
Hematological

Teratogenic effect
Mild GCs-sparring 

effect
Use with caution in 

elderly patients and in 
patients with reduced 
GFR (< 30 ml/min)
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[31]. A synergistic effect of HCQ and quinacrine on the 
improvement of cutaneous lupus erythematosus has been 
reported [32].

Glucocorticoids

Glucocorticoids can rapidly control SLE activity and remain 
the cornerstone of SLE therapy. The potency of GCs in 
dampening inflammation is associated with a broad spec-
trum of effects on the immune system; GCs reduce the 
expression of cytokines and adhesion molecules, inhibit 
leucocyte traffic, and their access to inflammation sites, 
and interfere with leucocyte, fibroblast, and endothelial cell 
functions [33]. Observational studies indicate that up to 88% 
of patients with SLE are treated with GCs, and more than 
half continue this therapy for a long time [34, 35]. A signifi-
cant proportion of the early and late damage during disease 
treatment could be attributed to GC therapy [35, 36]. These 
findings are of great importance because irreversible organ 
damage has been reported to be a predictor of morbidity and 
mortality in SLE [37]. Therefore, using GCs more restric-
tively should help prevent serious complications in patients 
with SLE. According to the current recommendations, the 
use of CGs should be limited or completely discontinued 
depending on the activity of the disease, the duration of 
treatment, and the desired effects of GC treatment [5].

After diffusion into the cell, GCs can activate transcrip-
tion factors either directly (via the genomic pathway) or indi-
rectly (via the non-genomic pathway) [38]. In the genomic 
pathway, GC binds to the cytosolic receptor (GR), thereby 
becoming activated. The GC-GR complex then translocates 
to the cell nucleus, where it induces the transcription of 
genes encoding anti-inflammatory mediators. The effect of 
the genomic pathway is evident hours or days after its acti-
vation. However, the clinical effects of GC may be faster 
as high systemic doses of methylprednisolone can quickly 
alleviate the symptoms of a flare. The rapid effects of GCs 
are related to the activation of the non-genomic pathway. 
In this mechanism, GC binding allows the GR to interact 
with intracellular proteins as well, leading to rapid inhibition 
of inflammatory mediators such as arachidonic acid. The 
recruitment potential of a given pathway depends on the type 
and dose of GC. Compared to other steroids, methylpred-
nisolone or dexamethasone are 10–15 and 20 times more 
potent in inducing a non-genomic pathway, respectively 
[39]. When using a dose above 30–100 mg/day of prednisone 
equivalent, the saturation of the cytosolic GR is ~ 100%, and 
the genomic pathway is fully operational. In contrast, the 
non-genomic pathway operates at clinically relevant levels 
at doses of > 100 mg/day of prednisone equivalent [40]. The 
usual dose of 1 mg/kg/day for treating SLE exacerbations 
is empirical and is currently not recommended since it was 
observed that the resulting response rates after using high 

AZA azathioprine, CsA cyclosporine, CYC cyclophosphamide, eGFR estimated glomerular filtration rate, GCs glucocorticosteroids, FDA Food 
and Drug Administration, GFR glomerular filtration rate, iv intravenous, LN lupus nephritis, MMF mycophenolate mofetil, NPSLE neuropsychi-
atric systemic lupus erythematosus, sc subcutaneous

Table 1  (continued)

Immunosuppressive 
agent

Dose Main indications in 
SLE

Adverse events Special issue

Biologics  Belimumab Iv: 10.0 mg/kg on 
days 0, 14 and 28, 
then every 28 days

sc: 200 mg/week
In LN: 400 mg/

week, 4 times; then 
200 mg/week

Skin
Joints
LN

Infections
Depression
Progressive multifocal 

encephalopathy

Complementary treat-
ment in seropositive 
moderate to severe 
SLE

Not recommended in 
severe NPSLE

FDA-approved to treat 
seropositive, moder-
ate SLE in children 
5–17 years of age

 Anifrolumab 300 mg, iv, every 
4 weeks

Skin
Joints

Infections, especially 
herpes zoster

Complementary treat-
ment in seropositive 
moderate-to-severe 
SLE

GCs-sparing effect

 Rituximab 500–1000 mg, iv, on 
days 0 and 14, the 
next course to be 
administered after 
6 months

Refractory LN
NPSLE

Progressive multifocal 
encephalopathy

Infections

Drug off label
Different administration 

schedules
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initial prednisone doses of 1 mg/kg/day did not differ sig-
nificantly from those obtained for pulse methylprednisolone 
in lower doses (0.3 and 0.5 mg/kg day), whether CYC or 
MMF was used [40]. This is an important observation as it 
has recently been shown that many side effects are related 
to the dose of GC used and the activation of the genomic 
pathway. Serious toxicity begins at 7.5 mg/day of prednisone 
equivalent, which is the borderline between low and medium 
pharmacological doses. Data from observational and clinical 
studies have shown that low-dose methylprednisolone pulses 
(125–500 mg daily) are potent treatments for severe acute 
lupus exacerbations with few associated side effects [41, 42]. 
However, even with low GC doses, the risk of cataracts, 
ischemic heart disease, osteoporosis, and fractures in long-
term GC treatment may increase [43]. Therefore, lower GC 
doses (i.e., < 5 mg/day of prednisone equivalent) should be 
considered when it is not possible to discontinue long-term 
GC therapy. Concomitant use of antimalarial and immuno-
suppressive drugs may help to maintain a low GC dose or 
even to withdraw it [44, 45].

It should be noted that the definition of remission also 
considers the dose of GC the patient is taking; the use of 
GC in a daily dose of above 5 mg excludes the occurrence 
of remission of SLE in a patient [5]. According to recom-
mendations of the European Renal Association-European 
Dialysis and Transplant Association for LN, withdrawal of 
GCs is suggested in patients being in remission for 3 years 
[46]. However, in real life, clinicians prefer to withdraw 
GC after 5 years of sustained remission while maintaining 
immunosuppressive therapy, particularly when the disease 
has a relapsing–remitting course with severe organ involve-
ment [34]. The greatest concern for clinicians prior to dis-
continuing GC therapy in patients with inactive SLE is 
the risk of disease exacerbation. A recent meta-analysis of 
738 lupus patients after discontinuation of GC revealed an 
increased risk of clinical flare (although not a major flare) 
and less organ damage assessed by the SLICC/ACR dam-
age index [47]. Other recently published data indicate that 
gradual withdrawal of GC is safe in clinically inactive SLE 
and is associated with fewer disease flares and less damage 
accrual [48]. In the case of prolonged exposure of patients 
to GCs, an increase in the frequency of infections should be 
taken into account [26, 49].

Non‑corticosteroid immunosuppressants

Non-corticosteroid immunosuppressants target different 
B-cell populations. Cyclophosphamide (CYC) preferentially 
depletes less mature B-cells (naïve and pre-switching mem-
ory B-cells), while mycophenolate mofetil (MMF) depletes 
circulating plasmablasts. Azathioprine (AZA) is less potent 
in suppressing naïve and memory B-cells than MMF [50]. 
Non-corticosteroid immunosuppressants constitute the basic 

therapy for reducing SLE activity. They are used to initiate 
and maintain therapy. The type and dose of immunosuppres-
sants should be adapted to the activity of lupus, the type, and 
the severity of the organ involved or manifestations. The 
most commonly used non-corticosteroid immunosuppres-
sants in SLE are AZA, calcineurin inhibitors, methotrexate 
(MTX), and MMF. Life-threatening involvement of organs 
and systems, such as in LN and neuropsychiatric lupus, 
requires more aggressive parenteral treatment with CYC or 
MMF in combination with GCs. The teratogenic properties 
of CYC, MMF, and MTX should be considered when treat-
ing young women with maternity plans [29].

CYC interferes with DNA and blocks replication in pro-
liferating cells, including B-cells. High doses of intravenous 
CYC in combination with GC are used as first-line therapy 
to induce remission in proliferative LN. Data from the Euro-
Lupus Nephritis Trial show that remission-inducing treat-
ment with a low dose of CYC gives clinical results compa-
rable to those obtained with high-dose treatment but has a 
better safety profile [51]. These observations may influence 
the management of other difficult-to-treat cases of SLE, 
such as patients with vasculitis, and may reduce mortality. 
However, other randomized clinical trials of proliferative 
LN have shown little to no difference in complete remission 
rate in patients treated with intravenous CYC or MMF as 
induction therapy [52].

MMF, an orally administered prodrug, is metabo-
lized in the liver to the active mycophenolic acid mol-
ecule. Mycophenolic acid is a potent, reversible inhibitor 
of inosine-5′-monophosphate dehydrogenase, an enzyme 
essential for the de novo synthesis of guanosine-5′-
monophosphate. The use of MMF to inhibit DNA repli-
cation affects especially T cells and B cells, as they rely 
almost exclusively on de novo purine synthesis. MMF is 
recommended for the treatment of patients with LN. This 
drug is effective in inducing remission and as a long-term 
maintenance therapy. Compared to CYC, the use of MMF 
may lead to complete renal remission more frequently with 
a more favorable side effect profile [52]. In maintenance 
therapy, MMF was shown to be superior to AZA in prevent-
ing relapse in LN [52]. However, recent data suggest that the 
risk of LN relapse may be related to changes in B cell sub-
populations and different B cell signatures in patients [50].

Calcineurin inhibitors affect B cells indirectly by inhibit-
ing the activity of T cells. These drugs bind to the cytosolic 
protein cyclophilin and inhibit calcineurin, which prevents 
the activation of the NF-AT transcription factor. The tradi-
tional drug from this group is cyclosporin A (CSA), which 
has a beneficial effect and a good safety profile in pregnant 
women with SLE. Voclosporin (already registered in the US 
and EU) is a novel calcineurin inhibitor that, when combined 
with MMF and GC, allows a better complete renal response 
rate than MMF and GC alone in patients with active LN. The 
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advantage of using voclosporin is fewer side effects, such 
as hypertension, increased mortality, and worsening renal 
function [53, 54]. Tacrolimus is another calcineurin inhibitor 
that is used in severe LN. Long-term data of a randomized 
controlled trial confirmed non-inferiority of tacrolimus to 
MMF as induction therapy of LN assessed by response rate 
to treatment and rate of flares [55].

AZA is mainly used as maintenance therapy for mod-
erate-to-severe lupus. AZA is a prodrug that converts into 
6-mercaptopurine and interferes with DNA replication 
and purine synthesis in lymphocytes. Animal studies have 
shown that the immunosuppressive effects of AZA are dose-
dependent. Higher doses of AZA are needed for the effective 
suppression of humoral immunity than for the suppression of 
cellular immunity [56, 57]. According to a systemic analysis 
of nine studies, maintenance treatment of proliferative LN 
with AZA may increase the relapse rate compared to MMF 
(MMF risk ratio 1.75, 95% CI 1.20 to AZA 2.55) [52]. It was 
shown that the depletion of B-cells at an earlier stage of their 
development results in better treatment outcomes which may 
explain the stronger immunosuppressive effect of MMF than 
AZA [50]. AZA can be continued during pregnancy [29].

MTX may be effective when the musculoskeletal and 
mucocutaneous domains are involved in mild-to-severe SLE 
[9]. Results of the study involving 41 patients with cutane-
ous disease indicate that MTX may be superior to placebo 
in terms of complete clinical response (absence of malar/
discoid rash) at 6 months of follow-up [58].

Biologics

The biologics approved for treating patients with SLE are 
belimumab and anifrolumab. Rituximab (RTX) is used 
off-label, and many other biological drugs are evaluated in 
clinical trials. Biologics should be considered in persistently 
active or recurrent SLE (Fig. 1).

Anti‑BlyS agents

Two members of the TNF superfamily, B cell stimulator 
(BlyS) and ligand-inducing B cell proliferation (APRIL), 
can support autoreactive B cell survival and autoantibodies 
production in SLE [59]. BlyS exists in a soluble and mem-
brane-bound form and is produced by dendritic cells and 
macrophages. Elevated serum levels of BlyS were found in 
patients with SLE. Moreover, both INF-α and INF-γ, dereg-
ulated in SLE, stimulate BlyS expression. BlyS can bind to 
three receptors: BR3 (BAFF-R), transmembrane activator-1 
and calcium modulator and cyclophilin-interaction (TACI), 
and B-cell maturation antigen (BCMA) (Fig. 2). Expres-
sion of BlyS receptor types vary across different subsets 
of B cells. Mature B cells express BR3 and TACI, while 
plasma cells express BCMA. Thus, the biological effects 

elicited by BlyS depend on the type of receptor to which 
it binds. Data from animal models suggest that increased 
soluble BlyS levels in SLE may stimulate the production of 
anti-double-stranded DNA (dsDNA) antibodies. Moreover, 
autoreactive antibodies can be produced independently of 
T-cells when an excessive amount of BlyS is present [59]. 
APRIL is expressed by bone marrow stromal cells and sup-
ports the survival of plasma cells [59].

Belimumab is a human anti-BlyS monoclonal antibody 
(administered intravenously or subcutaneously) that was 
approved in 2011 in the US and Europe for the treatment 
of adult SLE and in 2019 for the intravenous treatment of 
pediatric lupus patients (ages 5–17). Belimumab binds to 
soluble BlyS. Two international, multicenter, randomized, 
placebo-controlled phase III trials, BLISS-52 and BLISS-
76, demonstrated the efficacy of belimumab in serologi-
cally active moderate-to-severe lupus [60, 61]. BLISS-LN 
compared intravenous belimumab versus placebo in patients 
with active LN Class III, IV, and V on background therapy 
(GC and MMF or CYC). Significantly more patients had 
a complete renal response, including a reduction in urine 
protein to creatinine ratio to < 0.5 and no treatment failure 
at week 104 in the belimumab group than in the placebo 
group (odds ratio 1.7; 95% CI 1.1–2.7). The renal response 
was also higher and occurred earlier in patients treated 
with belimumab [62]. Subcutaneous administration of beli-
mumab was studied in the BLISS-SC study. Patients with 
LN improved in renal parameters and allowed for tapering 
GCs doses [63]. Clinical observations indicate a slow dis-
ease response rate and a long onset of belimumab efficacy. 

Fig. 1  Treatment strategies affecting B cells in SLE. The diagram 
shows the molecules (in white fields) involved in B cell stimulation 
and interaction with other cell types (dendritic cells, T cells). These 
molecules are therapeutic targets in SLE; blocking their activity may 
help to normalize B cell activity in SLE. The shaded boxes show the 
biological drugs currently available that affect the activity of B cells, 
T cells, and APCs. Biological drugs marked in red are approved for 
treating patients with SLE or are used off-label (RTX). APC antigen-
presenting cell, BAFF (BlyS) B lymphocytes stimulator, APRIL 
ligand-inducing B cell proliferation, TACI transmembrane activator-1 
and calcium modulator and cyclophilin ligand-interactor, BCMA B 
cell maturation antigen, RTX rituximab
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This phenomenon is related to the slow turnover rate of BlyS 
and the slow off-time for BlyS and its receptor, which limits 
the drug’s action. It was also found that belimumab reduces 
mortality in patients with SLE (0.4/100 person-years) com-
pared to the general population (1.63/100 person-years) [64]. 
In addition, the adverse event rate with belimumab treat-
ment was acceptable. Therefore, belimumab is considered 
an effective and safe biological therapy and is expected to 
be used both for remission induction in refractory SLE and 
maintenance therapy to reduce the dose of GC.

Another fully human monoclonal antibody against BlyS 
is tabalumab. Tabalumab binds to both soluble and mem-
brane-bound BlyS. The results of the two phase-III studies, 
ILLUMINATE-1 and -2, showed higher rates of disease 
responses (according to SRI-5) in the serologically active 
subgroup of patients, and a significant decrease in anti-
dsDNA antibodies, increases in C3 and C4 levels, and reduc-
tions in total B-cells and immunoglobulins after treatment 
with tabalumab. However, the clinical response to tabalumab 
was insufficient [65, 66].

The premise for the development of atacicept was the 
assumption that blocking BlyS and APRIL simultaneously 
in SLE might be more effective than neutralizing BlyS alone. 
Atacicept is a soluble human recombinant fusion protein 
consisting of IgG1-Fc and the extracellular domain of TACI 
and is administered subcutaneously. Atacicept, through the 
extracellular domain of TACI, binds and neutralizes BlyS 
and APRIL [67]. It demonstrated encouraging effects in 
serologically active patients with SLE (phase IIb ADRESS 
II study and post hoc analysis), but due to severe infections 
during phase III, the APRIL-SLE was suspended [68, 69].

B cells depletion antibodies

B cell loss can be induced using monoclonal antibodies 
targeting their surface molecules CD20, CD22, and CD19. 

While no such drug is currently approved for treating SLE, 
numerous studies are ongoing.

Anti-CD20 monoclonal antibodies are effective in the 
treatment of hematological cancers and RA. The profound 
reduction in the CD20-expressing B cell populations results 
from antibody-dependent cellular cytotoxicity (ADCC), 
complement-dependent cytotoxicity, and apoptosis [70]. 
One such drug is rituximab (RTX), a chimeric monoclo-
nal antibody approved for treating rheumatoid arthritis and 
granulomatosis with polyangiitis. Given the crucial role of 
B-cells in the pathogenesis of SLE, initial results from clini-
cal trials have been disappointing. In the EXPLORER trial 
of patients with moderate-to-severe SLE, there were no dif-
ferences between placebo and rituximab in achieving the pri-
mary and secondary endpoints [71]. However, in that study, 
a sensitive cutoff was used for non-response. In addition, 
aggressive background treatment might have masked the 
RTX effects. In patients with LN treated with RTX, response 
to treatment was greater in patients with greater anti-dsDNA 
and C3/C4 levels reduction. However, this medication did 
not improve clinical outcomes after 1 year of treatment [72]. 
Interestingly, considerable variability in peripheral blood B 
cell depletion among patients with LN was reported, and the 
achievement of complete peripheral depletion, its rapidity, 
and duration were associated with the improvement of renal 
function [73]. Variability in response among patients with 
SLE may be related to the formation of human anti-chimeric 
antibodies, which are correlated with poor B cell depletion 
[74]. Although the use of RTX in treating patients with SLE 
is not approved, it is used off-label in difficult-to-treat cases, 
especially in severe LN and lupus with neuropsychiatric 
symptoms [8]. A review of uncontrolled studies and cases 
involving 188 SLE patients who received RTX as an off-
label revealed that 91% of patients improved in at least one 
lupus domain [75]. Clinical improvement was also noted 
in patients with neuropsychiatric lupus who were treated 

Fig. 2  Therapeutic targets in 
SLE. The diagram shows the 
cell signaling pathways that 
drugs interfere with. CsA 
cyclosporine A, mTORC1 
mammalian target of rapamycin 
complex, JAK Janus kinase, 
JAKi JAK inhibitor, STAT 
signal transducer and activator 
of transcription, NF-kB nuclear 
factor κB, AP-1 activator 
protein 1, NFAT nuclear factor 
of activated T cells, CYC cyclo-
phosphamide, MMF mycophe-
nolate mofetil, MTX methotrex-
ate, AZA azathioprine
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with RTX. However, 45–60% of these patients experienced 
a relapse within 17 months of RTX therapy [76, 77].

The next-generation humanized anti-CD20 monoclo-
nal antibodies are ocrelizumab, obinutuzumab, and ofa-
tumumab. They emerged to overcome the immunogenic 
activity of the chimeric antibody [78]. Although the novel 
anti-CD20 monoclonal antibodies can induce anti-human 
antibodies, they bind to the Fc receptor on B-cells with 
higher affinity and thus exert a more potent cytotoxic effect 
(CDC and/or ADCC).

Monoclonal antibodies targeting other B cell surface mol-
ecules are also tested in SLE, but no significant therapeutic 
effects have been yet obtained. Obexelimab (anti-CD19 anti-
body) did not show very encouraging effects in phase II in 
moderate SLE [79]. The humanized antibody epratuzumab 
binds to CD22 and transduces the negative signal leading 
to the inhibition of B-cell activity [80]. However, treating 
patients with moderate or severely active SLE with epratu-
zumab did not improve response rates over that observed in 
the placebo [81]. The high response rates to placebo after 
optimizing standard treatment and a suboptimal dosing regi-
men of epratuzumab may have resulted in trial failure.

Anti‑INF I receptor antibodies

Interferon signature is a common SLE feature [82]. It is 
associated with increased levels of INFα in active disease, 
especially LN and neuropsychiatric lupus. Production of 
INFα in SLE can be induced by Toll-like receptors 9 (TLR9) 
or TLR7 upon binding their respective ligands. Ligands for 
TLR9 and TLR7 may be free DNA or RNA, respectively, 
present in SLE due to the ineffective removal of apoptotic 
bodies or the formation of extracellular neutrophil traps 
[82]. Given the vital role of type I INF in the pathogenesis 
of SLE, the results of numerous clinical trials with anti-
INFα antibodies have been disappointing. Anifrolumab has 
recently been approved in the US for treating adult patients 
with moderate to severe SLE who receive standard treat-
ment. Anifrolumab is a human monoclonal antibody against 
the type I INF receptor. This drug blocks signals induced 
by the type I IFNs. Anifrolumab was examined in placebo-
controlled studies in patients with moderate-to-severe SLE 
undergoing standard therapy with GCs, immunosuppres-
sants, and antimalarials. In the phase II MUSE study, ani-
frolumab significantly reduced disease activity (assessed 
using SRI-4, modified SRI, BICLA, and BILAG 2004) com-
pared to placebo, with greater effect size in patients with a 
high IFN signature [83]. In phase III of the randomized, 
placebo-controlled TULIP clinical trial, patients with mod-
erate to severe SLE, excluding LN, were involved. TULIP-2 
study demonstrated the efficacy of anifrolumab, which was 
reflected in an increased BICLA (BILAG-based Combined 
Lupus Assessment) disease response rate, and a reduction 

in skin disease severity. The GC-sparing effect was also 
achieved with anifrolumab treatment [84].

Anti‑IL‑12/IL23 p40 antibody

T-cell abnormalities in SLE manifest as abnormal cytokine 
production. The cytokines IL-12 and IL-23 promote inflam-
mation by stimulating Th1 cells and producing IL-17 [85, 
86]. Ustekinumab was designed to suppress the activity of 
IL-12 and IL-23 by binding to their shared p-40 receptor 
subunit, thereby blocking the interaction of these cytokines 
with their respective receptor. Ustekinumab is approved for 
treating psoriasis (PS) and psoriatic arthritis (PsA). Phase II 
clinical trial of ustekinumab in active SLE showed a satis-
factory response rate expressed by SLEDAI-2 K Responder 
Index-4, which was maintained for up to one year. Phase III 
of this clinical trial is ongoing [87].

Combination therapy

Resistance to conventional treatment with GCs and non-
corticoid immunosuppressants is common among patients 
with SLE [88]. Biologics have become an alternative and 
are being assessed in clinical trials in patients whose dis-
ease is not sufficiently controlled by conventional drugs. 
Sequential therapy can help improve the effectiveness of 
B cell depletion. Treatment with RTX and CYC, followed 
by belimumab, was evaluated in the CALIBRATE study 
in refractory or recurrent LN. This treatment strategy pre-
vented autoreactive B-cell re-emergence but did not lead to 
sufficient clinical improvement [89]. However, in another 
phase II clinical trial, treatment with belimumab followed 
by RTX significantly reduced levels of serum anti-dsDNA 
antibodies and the risk of severe flare in patients with SLE 
who were refractory to conventional therapy [90]. A rand-
omized, controlled phase III trial of SynBioSe-2 is ongoing 
to investigate the long-term clinical and immunological effi-
cacy of the combination of belimumab followed by RTX in 
LN. Interestingly, belimumab was also used as maintenance 
therapy in two SLE cases with refractory renal and pulmo-
nary manifestations rescued by bortezomib as induction of 
remission [91].

Janus kinases inhibitors

The emergence of low-molecular-weight compounds in the 
treatment armamentarium allowed researchers to interfere 
directly with the intracellular cytokine signaling pathways.

Interaction of the proinflammatory cytokine with its 
membrane receptor triggers intracellular signaling that 
leads to gene transcription and inflammatory mediators’ 
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production. Intracellular signal transmission depends on the 
activity of enzymes—kinases that phosphorylate signaling 
molecules [92]. In treating rheumatic diseases, 4 members of 
the Janus kinases family (JAK1, JAK2, JAK3, and tyrosine 
kinase-2; TYK2) and their 7 downstream signal transduc-
ers and activators of transcription (STATs) are currently of 
greatest interest. JAK inhibitors (JAKi) bind to the enzymati-
cally active domain of JAK, thereby blocking its activity and 
cytokine-induced signal transduction. Baricitinib is an oral 
JAK1 and JAK2 inhibitor approved for the treatment of RA. 
In the phase IIb randomized multicenter placebo-controlled 
trial, baricitinib significantly improved the arthritis symp-
toms and resolved skin rash in patients with active SLE with 
skin or joint manifestations. Phase III of the clinical trial 
of baricitinib in SLE is ongoing [93]. TYK2 mediates the 
functional responses to IL-23, IL-12, and type I IFN stim-
ulation. Selective TYK2 inhibitors might benefit patients 
with PS, PsA, inflammatory bowel disease (IBD), and SLE 
[94]. The TYK2 inhibitor, deucravacitinib, was effective in 
reducing SLE activity and tender and swollen joint counts 
in patients in an international, randomized, double-blind, 
placebo-controlled phase II clinical trial [95] and warrants 
further phase III research trials.

Bruton’s tyrosine kinase inhibition

Bruton's tyrosine kinase (BTK) is a cytoplasmic signaling 
molecule involved in the development, survival, and activa-
tion of B cells. Fenobrutinib is an orally highly selective 
BTK inhibitor that reversibly binds its target. It was effective 
in reducing CD19-positive B cells and antibody production 
but was not sufficiently effective in randomized, placebo-
controlled phase II trials in moderate-to-severe SLE [96].

Proteasome inhibitors

Proteasomes are protein complexes that degrade unneces-
sary or damaged proteins by proteolysis. They are crucial for 
the survival and function of plasma cells, which anti-CD20 
antibodies cannot eliminate due to the lack of surface CD20 
[97]. Bortezomib is an N-protected dipeptide that binds to 
the catalytic site of the 26S proteasome. It is approved for 
the treatment of multiple myeloma. In Japan, studies are 
ongoing to investigate bortezomib in a multicenter, double-
blind, randomized controlled trial in patients with refractory 
SLE [98].

Conclusions and future perspectives

The data presented in this narrative review derived from 
original studies (31 randomized controlled trials, 25 obser-
vational and 9 basic studies), reviews of clinical or basic 
studies (19), systematic reviews of clinical studies (7), 
recommendations in SLE treatment (8) and 1 case report. 
Although referenced publications demonstrate diverse levels 
of clinical evidence, they represent very well the multidi-
mensional picture of current and new therapeutic possibili-
ties in SLE treatment. The clinical data reviewed indicate 
that establishing a standardized treatment for all patients 
with SLE is a challenge due to the complex pathogenesis 
and heterogeneity of the clinical picture of this disease. 
Immunological profiling and precision medicine based on 
transcriptome analysis can help identify immune phenotypes 
and gene signatures in patients with SLE [99]. This can lead 
to a better understanding of the pathogenesis of this disease 
and, consequently, improve treatment tailoring and clini-
cal outcomes. In the long term, this modern approach may 
aid in selecting new treatment targets and prognostic SLE 
biomarkers.
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