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Abstract
The mandate of the current investigation was to elucidate the therapeutic and anti-
oxidant perspective of black tea. Purposely, black tea compositional analysis followed 
by polyphenol extraction and antioxidant characterization was done. Moreover, 
the theaflavin from black tea extract was also isolated through the solvent parti-
tion method. Lastly, the neuroprotective effect of isolated theaflavin was assessed 
through a bio-efficacy trial. The outcomes delineated that black tea showed promising 
nutritional composition with special reference to protein and fiber. Among the extrac-
tion solvent, ethanol performed better as compared to methanol and water likewise, 
higher extraction was noticed at 60 min followed by 90 and 30 min. All the extracts 
indicated antioxidant activity reflected through significant DPPH, TPC, FRAP, and 
beta carotene as-69.13 ± 3.00, 1148.92 ± 14.01, 752.44 ± 10.30, and 65.74 ± 3.28, 
respectively. However, isolated theaflavin exhibited higher antioxidant capacity as-
737.74 ± 12.55, 82.60 ± 2.33, and 853.77 ± 9.55, for TPC, DPPH, and FRAP, respec-
tively, as compared to extracts. In 15 days' efficacy was physically induced with sciatic 
nerve injury h sciatic nerve injury physically and treated with isolated theaflavin. A 
total of 12 healthy albino mice were randomly assigned to either the control (n = 6) 
or theaflavin (5.0 mg/kg (n = 6)) groups. In these groups, behavioral tests were used 
to assess and compare enhanced functional recovery as well as skeletal muscle mass 
measurement. Serum samples included oxidative stress markers. In theaflavin leaves, 
behavioral tests revealed a statistically significant (p < .001) improvement in sensori-
motor function restoration, muscle mass restoration, a substantial decrease in TOS, a 
significant increase in TAC, and enhanced antioxidative enzyme activity. Considering 
the above-mentioned therapeutic perspectives of theaflavin, the current research 
was planned to optimize the isolation of theaflavin from black tea and probed for their 
neuroprotective effect in mice models.
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1  |  INTRODUC TION

Globally, oxidative stress caused numerous health disparities, di-
rectly and indirectly, owing to its adverse effect on human metab-
olism (Afzaal et al., 2023; Maqbool et al., 2023). Among the various 
curative strategies, polyphenol-based dietary interventions are in 
limelight due to their capacity to normalize the imbalance between 
antioxidants and free radicals thus curtailing the menace of oxi-
dative stress. Polyphenols are classified into four primary groups: 
flavonoids, lignans, stilbenes, and phenolic acids. Many in vivo and 
in vitro investigations have been conducted to assess their health 
consequences. They play a crucial function in defending the body 
against external stressors and removing reactive oxygen species 
(ROS), which are the root of many disorders (Islam et al.,  2023). 
Polyphenols, which could be present in tea, cocoa, fruits, and vege-
tables, have the power to improve human health (Rana et al., 2022). 
Polyphenols have antioxidant, anti-inflammatory, anti-apoptotic, 
anticarcinogenic, and antibacterial properties and might be em-
ployed in medications, cosmetics, nutraceuticals, and food (Rajha 
et al., 2022). In humans, tea and coffee contain polyphenolic com-
pounds that have antioxidant and neuroprotective properties 
(LIczbiński & Bukowska, 2022). They can also boost conception and 
help with Covid-19 treatment. Because the brain has fewer antiox-
idant qualities than other organs, large levels of ROS appear to be 
more common, raising the risk of neurodegenerative diseases in-
cluding Alzheimer's and Parkinson's (LIczbiński & Bukowska, 2022).

Tea is among the world's most nutritious beverages, and its 
aroma is an important component of the tea flavor profile as well 
as a significant predictor of tea quality (Li et al.,  2013). The most 
common variety of tea is black tea, which accounts for 78% of global 
production (Chung, 2009; Imran et al., 2019). Tea consumption has 
been linked to oxidation, anti-inflammation, and cancer preven-
tion (de Majia et al.,  2009), cardiovascular preventative medicine, 
and other health advantages (Stangl et al.,  2007). Coffee has tra-
ditionally been linked to improved information, including brain 
clarity, focus, and relaxation. Several studies have discovered that 
the nutritional components of tea, notably caffeine, and the amino 
acid L-theanine, change brain activity and have a positive impact 
on mental states such as emotional wellness and cognitive perfor-
mance (Bryan,  2008). Parkinson's disease and Alzheimer's disease 
became two of the major neurodegenerative conditions worldwide 
(Mazumder & Choudhury, 2019; Zhou et al., 2019). Parkinson's dis-
ease affects 1–2% of the aging population, and the number of cases 
increases each year (Tysnes & Storstein, 2017). Alzheimer's disease 
impacted 35–40% of individuals over the age of 80, and its preva-
lence was rapidly increasing as the country's population aged (Chen 
et al.,  2018; Mazumder & Choudhury,  2019). Tea may reduce the 
mortality rate of Parkinson's and Alzheimer's disease, as well as the 
risk of suicide, by reducing free radical precursors and inflammatory 
processes, changing variations, regulating the HPA axis and sero-
tonin levels, and using metal-chelating chemicals (Chen et al., 2018; 
Dong et al., 2015; Zhu et al., 2012). According to psychological stud-
ies, theaflavins protect the brain from long-term damage (Anandhan 

et al., 2013). Theaflavins improved the behavior problem in an open 
area, rotary, and suspension tests (Anandhan et al.,  2012). One 
study of 278 Parkinson's disease patients discovered that drinking 
more than three cups of tea each day could postpone the disease by 
7.7 years (Kandinov et al., 2009). Pesticides and metal ions can cause 
peroxidation in the brain, which can cause dopamine cell death in 
Parkinson's disease patients (Chin-Chan et al.,  2015; Maturana 
et al., 2015). In the treatment of Parkinson's disease, tea has been 
proven to have neuroprotective qualities (Aquilano et al.,  2008; 
Deb et al., 2019). Microglial cell activation was assumed to be im-
portant in selective neuron destruction in degenerative illnesses 
like Parkinson's disease (Li et al., 2004). Theaflavin from black tea 
(10 mg/kg) reduced the MPTP-induced release of proinflammatory 
cytokines such as IL-1β, IL-6, TNF-α, and IL-6 in the striatum, showing 
that theaflavin's survival benefit is due to part to lower MPTP-related 
neuron activation (Anandhan et al., 2013; Lagha & Grenier, 2016). 
Black tea extract upped the number of remaining tyrosine carbonic 
anhydrase immunoreactive neurons, the amount of tyrosine car-
bonic anhydrase protein, and the synthesis of tyrosine hydroxy-
lase mRNA in the substantia nigra, all of which resulted in neuronal 
cell preservation (Chaturvedi et al., 2006). Theaflavin can diminish 
probenecid-induced mortality by reducing apoptotic markers such 
as caspase-3,8,9 (Anandhan et al., 2012). In an analysis of 26 epide-
miological studies, tea drinking was significantly associated with a 
decreased frequency of impairments (Ma et al., 2016). Nevertheless, 
a study of 9375 Chinese people found that drinking black tea im-
proved mental function but not green tea (Shen et al.,  2015). Tea 
has been demonstrated to be a good source of ace inhibitors, 
which may help in Alzheimer's disease therapy (Baranowska-Wojcik 
et al., 2020). Moreover, in Alzheimer's disease rats induced by alu-
minum chloride, black tea extract significantly improved cognitive 
deficits while decreasing the activity of (AChE) acetylcholinesterase 
(Mathiyazahan et al., 2015). Considering the above-mentioned ther-
apeutic perspectives of theaflavin, the current research was planned 
to optimize the isolation of theaflavin from black tea and probe for 
its neuroprotective effect in mice models.

2  |  MATERIAL S AND METHODOLOGY

The present research was carried out in the nutritional laboratory 
of the department of food science, whereas an efficacy trial was 
conducted in the department of physiology. Black tea is produced 
in Faisalabad. The reagents and standards were supplied by Merck 
and Sigma-Aldrich. Mice will be housed in the GCUF Physiology 
Department's Animal Room for the efficacy test. After inducing the 
sciatic nerve mechanical crush, two rat groups were created. The 
control group received regular rodent chow, whereas the other 
group received theaflavin extract mixed chow. The utility of behav-
ioral analysis will be assessed.

The therapeutic potential of the examined medications against 
sciatic nerve injury was assessed using an efficacy trial. For this pur-
pose, 12 mice were housed in the Animal House of the Department 
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of physiology at GCUF, Faisalabad. The GCUF Departmental Ethical 
Committee accepted the procedure for this biological experiment, 
which satisfied ERC NO 2121 worldwide standards. For 2 weeks, the 
mice were fed a basic meal to help them adjust to their new surround-
ings. During the experiment, the temperature (22°C) and relative hu-
midity (55%) will be monitored, as well as a 12-h light–dark cycle.

3  |  THE CHAR AC TERISTIC S OF BL ACK 
TE A

At first, black tea was tested for configurational characteristics such 
as causal test, nutrient biomarker, nutrient characteristics, toxic me-
tabolites, and total phenolic excavation.

4  |  E VALUATION OF CONSTITUENTS

Black tea tests were performed in triplicate for compositional analy-
sis on a dry-weight basis.

5  |  POLYPHENOL E X TR AC TION

Tea polyphenols were derived in three different time intervals of 
30, 60, and 90 min at a safe temperature of 60°C that used water, 
methanol, and ethanol process. After that, the sample was obtained 
through a muslin cloth, and the fluids were retrieved by rotary and 
freeze-drying. Table 1 shows the method for extraction.

6  |  ISOL ATION OF THE AFL AVIN

It will be carried out at a 1:6 ratio at 30-, 60-, and 90-min inter-
vals, water will be used to extract theaflavin, and theaflavin will be 
separated using the solvent partition technique (Xie et al.,  1993). 
With exception of liquid extracts, all extracts will be concentrated 
in boiling water, sifted, and dissolvable partitioned with chloroform, 
ethyl acetate, and butanol. Once the theaflavin-rich fractions are 

separated, freeze-drying (CHIRST, Alpha 1–4 LD plus, Germany) 
would be used.

7  |  BIOLOGIC AL TEST

Theaflavin's therapeutic efficacy in the treatment of sciatic nerve 
injury was to be evaluated through an efficacy study. Male albino 
mice weighing 25–35 g were purchased from the Department of 
Physiology at Government College University Faisalabad's animal 
treatment facility. The creatures were kept in cages, one per cage 
(plastic rodent cage). Housing requirements such as room tempera-
ture of 23–27°C, supply of a 12-h light and 12-h dark cycle, sufficient 
moisture, and ad libitum delivery of diet and drinking water were 
maintained during the acclimatization period (1 week) and the whole 
experiment. All behavioral observations and experiments were con-
ducted throughout the day.

8  |  BEHAVIOR AL ANALYSES

8.1  |  Nociceptive analysis

The pinprick test is another method for assessing sensory capacity 
recovery after nerve damage. It was carried out by the procedure 
outlined by (Chen et al., 2018).

8.2  |  Walking track analysis

The sciatic functional index (SFI) is a numerical method for evaluat-
ing the motor functions of mice. The restoration of motor functions 
following sciatic nerve crush was investigated by calculating the SFI 
based on walking track analysis, as stated in previous studies by 
Komirishetty et al. (2016).

8.3  |  Grip strength analysis

Resistance training testing is an efficient method of assessing motor 
function recovery after a sciatic crush injury. The trying to com-
prehend the strength of both hind limbs (upper distal phalanx and 
caudal to the affected site) was evaluated for each mouse using a 
grip trimeter (Bioseb, Chaville, France). Its final result was calcu-
lated using the average of three readings taken at 1–2 min intervals 
(Hussain et al., 2013; Razzaq et al., 2020).

8.4  |  Muscle weight analysis

Muscular atrophy occurs when the connection between the muscle 
and the nerve is disrupted as a result of an injury, resulting in mus-
cle mass. As a result, muscle mass evaluation provides a method for 

TA B L E  1  Procedure used to calculate extraction yield.

Treatment Solvent Time (minutes)

T1 Water (100%) 30

T2 Methanol (%) 60

T3 Ethanol (%) 90

T4 Water (%) 30

T5 Methanol (%) 60

T6 Ethanol (%) 90

T7 Water (100%) 30

T8 Methanol (100%) 60

T9 Ethanol (100%) 90
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determining the degree of muscular atrophy, which is a major bar-
rier to functional status. The soleus and tibialis anterior (TA) muscles 
were removed and weighed from both rear legs (upper extremity and 
contralateral to the affected site). In the same animals, the muscular 
proportion was computed by dividing the mass of the contralateral 
muscular even by the weight of the ipsilateral lean muscle. To assess 
operational retrieval, the mean ratio was calculated for each group 
and compared across groups (Hagstrom et al., 2004).

8.5  |  Random glycemic level

The random glycemic data were measured throughout nerve im-
pingement initiation to investigate the role of glucose in enraging 
neurotic episodes in the nervous injured area. Hyperglycemia inhib-
its its healing process after injuries. In both groups, the glucose level 
was evaluated by depositing a sample of spider tail blood on a blood 
sugar meter strip and measuring it with an Accu-Check glucometer, 
as previously stated (Asmat et al., 2016; Razzaq et al., 2020).

9  |  BIOCHEMIC AL ANALYSES

9.1  |  Total antioxidant capacity

A body system's antioxidant activities are defined as its ability to 
confront free radicals produced as a result of various pathogenetic 
processes that occur in the body. An ideal antioxidant-bearing capac-
ity improves the body's ability to resist various ailments (Erel, 2004).

9.2  |  Total oxidant status

The degree of Total oxidant status (TOS) within a living system is 
reported to be related to the stage of oxidative stress. This test de-
termines the overall state of oxidative stress. This was achieved by 
utilizing the protocol outlined in previous studies (Aziz et al., 2019; 
Erel, 2005).

10  |  STATISTIC AL ANALYSIS

SAS was utilized to evaluate the data gathered throughout this in-
vestigation (version 9.1; Cary, NC). A two-way ANOVA was used 
to assess the effect of extreme action period and dissolvable on 
polyphenol isolation (ANOVA). Furthermore, in the efficacy study, 
ANOVA and LSD were used to assess the effectiveness of therapies 
using Graph Pad prism 8.4.2.

11  |  RESULTS AND DISCUSSION

Proximate analysis is a critical factor in determining raw material 
quality. Black tea (dry weight basis) was subjected to different quality 

traits assessment and revealed moisture, crude fat, crude protein, 
crude fiber, ash, NFE, and total alkaloids as 7.02 ± 0.21, 4.60 ± 0.20, 
15.13 ± 0.70, 15.30 ± 0.76, 4.87 ± 0.22, 53.15 ± 2.01, and 2.51 ± 0.08, 
respectively (Table 2).

The findings of the current investigation regarding the proximate 
profile are in line with the earlier findings of Aregbesola et al. (2018) 
determined moisture, ash, protein, and fiber levels in black tea sam-
ples as 5.94, 5.46, 11.03, and 14.25, respectively. Earlier, Modupe 
et al. (2013) determined moisture, ash, crude fat, crude protein, and 
nitrogen levels in black tea were 8.10, 9.59, 3.25, 17.78, and 2.83%, 
respectively. According to Ramdani et al. (2018), green tea alkaloids 
(31.5%) are significantly higher than black tea alkaloids (28.7%). The 
alkaloids result was statistically significant when compared with the 
previous findings of Erol et al. (2010), who discovered total alkaloids 
ranging from 25.97 to 26.26 mg/g in various Turkish black tea sam-
ples. The antioxidant properties of black tea extracts are affected 
by the solvent used and the time of extraction. Increasing the ex-
traction time from 30 to 60 min increased antioxidant activity in all 
extracts; however, at 90 min, antioxidant activity decreased. The 
ethanolic extract significantly outperforms the water and methan-
olic extracts shown in Figures 1–3.

The means for solvents regarding antioxidants indices (Figure 3) 
showed the highest values for an ethanolic extract for TPC 
(1148.92 ± 14.01a), FRAP (752.44 ± 10.30), DPPH (69.13 ± 3.00) 
ß-carotene (65.74 ± 3.28), theaflavin (2.52 ± 0.12), and caffeine 
(1.88 ± 0.06), respectively, as compared to the methanol and water. 
The methanolic extract performs better than water as 720.41 ± 10.23, 
565.78 ± 11.01, 60.37 ± 2.00, 58.87 ± 2.94, 2.04 ± 0.10, and 
1.70 ± 0.07, respectively, for these traits. Likewise, the lowest val-
ues were recorded in water extract 350.02 ± 5.12, 469.78 ± 10.50, 
53.27 ± 3.10, 50.27 ± 3.80, 1.22 ± 0.01, and 1.55 ± 0.08, respectively.

Similarly, time (Figure 4) also showed good performance at 60 min 
for TPC (833.30 ± 20.1a mg/100 g GAE), FRAP (605.89 ± 15.904a μmol 
Fe2+/g), DPPH (65.30 ± 3.00a %), ß-carotene (64.24 ± 3.60a %), theafla-
vin (2.00 ± 0.13a %), except for caffeine (1.67 ± 0.04a %). However, the 
extracts at 90 min showed maximum caffeine (1.74 ± 0.05b %). Likewise, 
the extracts at 30 min showed minimum values for TPC, FRAP, DPPH, 
ß-carotene, theaflavin, catechins, and caffeine by 650.44 ± 15.01c 
mg/100 g GAE, 556.00 ± 13.01c μmol Fe2+/g, 59.69 ± 2.30%, 
60.30 ± 2.80c, 1.69 ± 0.04c, and 1.63 ± 0.01, respectively.

TA B L E  2  Characteristics of black tea analysis.

Proximate analysis of black tea

Parameters Quantity

Moisture (%) 7.02 ± 0.21

Ash (%) 4.87 ± 0.22

Crude fat (%) 4.60 ± 0.20

Crude fiber (%) 15.30 ± 0.76

Crude protein (%) 15.13 ± 0.70

NFE 53.15 ± 2.01

Total alkaloids 2.51 ± 0.08

Note: Values are expressed as means ± standard deviation (n = 3).
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Extraction efficiency was influenced by time and the maximum 
yield for theaflavin was obtained at 60 min 3.39 ± 0.17 g/100 g, while, 
minimum at 30 min 2.40 ± 0.12, respectively. However, at 90 min, the 
values were 2.71 ± 0.14 for theaflavin (Figure 5).

Yang et al. (2008) showed that 1.51 g/50 g of theaflavin in black 
tea samples which is comparable with theaflavin yield results. They 
used ethyl alcohol as an extraction fluid during the experiment. The 
difference in extraction yields in this test is due to the incorrect 
assumption that extraction times were 40 min rather than 60 min. 
Tea polyphenols recovered 75–80% of their isolation, according to 
Sharma and Zhou (2011).

The theaflavin showed high value for FRAP in ethanol than for 
methanol and water. The FRAP values of theaflavin in ethanolic, 
methanolic, and water extract were 853.77 ± 9.55, 672.11 ± 12.33, 
and 559.19 ± 11.22 μmol Fe2+/g, shown in Figure  4, respectively. 
Similarly, for time intervals, theaflavin showed higher FRAP activ-
ity at 30 min (663 ± 10.33 μmol Fe2+/g), 60 min (755.86 ± 8.33 μmol 
Fe2+/g), and 90 min (677.55 ± 9.34 μmol Fe2+/g). Likewise, the sta-
tistical analysis showed the momentous effect of time and solvents 

for DPPH. Figure 5 showed the highest values for DPPH in theafla-
vin in ethanolic extract 82.60 ± 2.33%, as compared to the methanol 
76.73 ± 3.23%, and water 73.23 ± 2.63%, correspondingly. Time also 
showed the highest DPPH activity of theaflavin was 80.36 ± 4.00% 
at 60 min, while 77.36 ± 3.35 and 74.89 ± 3.62% at 90 min and 30 min, 
respectively.

Furthermore, statistical analysis elucidated the significant ef-
fect of solvent and time for the ß-carotene activity of theaflavin 
presented in Figure 6. Similarly, ethanolic extract showed maximum 
activity of 66.74 ± 3.22% than methanol 62.20 ± 2.88% and water 
59.27 ± 2.55%. Time also showed that 60-min extraction time re-
sulted in higher ß-carotene activity 66.24 ± 2.15% in comparison 
with 90 and 30 min by 63.00 ± 3.00 and 58.97 ± 2.44%, respectively.

The statistical analysis shown imparted a significant effect 
of solvents and time on the yield of TPC. Theaflavin showed TPC 
values maximum for ethanol as compared to methanol and water. 
Figure  7 showed higher activity for theaflavin. The TPC values in 
ethanolic were 737.74 ± 12.55, followed by methanol and ethanol 
735.08 ± 10.22 and 732.77 ± 9.99 mg/100 g GAE, correspondingly. 

F I G U R E  1  Effect of solvent on black tea extract.

0

200

400

600

800

1000

1200

1400

TPC FRAP DPPH Beta-carotene Theaflavin Caffeine

Ethanol Methanol Water

F I G U R E  2  Potential of time on black tea extract.

0

100

200

300

400

500

600

700

800

900

TPC FRAP DPPH Theaflavin Caffeine Beta-carotene

30Min 60min 90min



3490  |    AHMAD et al.

However, for time intervals, theaflavin showed higher TPC activity 
at 60 min (827.99 ± 15.55 mg/100 g GAE). While at 30 min, theafla-
vin showed minimum value (645.10 ± 12.44 mg/100 g GAE), and at 
90 min, theaflavin showed732.55 ± 8.55 mg/100 g GAE.

The statistical analysis shown elucidated a significant effect of sol-
vents and time on the yield of Caffeine. The value for Caffeine% ac-
tivity of theaflavin showed a maximum in ethanol, while the minimum 
for water is shown in Figure 8. In theaflavin, ethanolic extract showed 
maximum activity of 1.67 ± 0.07% than methanol 1.66 ± 0.06% and 
water 1.64 ± 0.05%. Furthermore, 90-min extraction time resulted in 
higher Caffeine activity by 1.71 ± 0.04% in comparison with 60 and 
30 min by 1.65 ± 0.02 and 1.61 ± 0.01%, respectively. Initially, Sun 
et al. (2012) investigated the DPPH free radical scavenging capacity of 
an Assam black tea extract (ASTE) and theaflavin combination in vitro, 
and their results are in resemble to the most recent DPPH free radical 
scavenging activity findings (TFSM). They discovered that TFSM has a 
higher DPPH value than ASTE (60–97%) (40–82%). Initially, Friedman 
et al.  (2006) created bioactive fragments with aqueous ethanol and 

water at different solvent-to-water ratios of 60%, 70%, and 80%. TF1, 
TF2, TF2B, and TF3 levels in ethanolic extract ranged from 1.7 to 4.4, 
3.6 to 5.8, 0.4 to 1.8, and 1.6 to 5.12 mg/g, respectively. The affiliated 
subsets in water extract ranged from 0.1 to 1.1, 1.2 to 2.1, 0.2 to 1.10, 
and 1.1 to 3.21 mg/g. According to the most recent research, etha-
nol and methanol produce higher polyphenolic yields of tea catechins 
than water, which support the findings on the effect of various sol-
vents on tea polyphenol extraction (Bastos et al., 2007). The study's 
findings are aligned with those of another research study conducted 
by (Chen et al., 2012).

12  |  BIOLOGIC AL TR AIL S

Statistical analysis elucidated the significant effect of treatment and 
study interval on the pinprick test of nerve injury in mice. Similarly, 
Figure 9 shows that the sensory threshold was assessed using pin-
prick analysis, and the treatment group produced significantly higher 

F I G U R E  3  Extraction yield of theaflavin.
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scores in response to the pinprick stimulus. On day 7, the 5.0 mg/kg 
group appeared to be significantly (p = .01) effective, and on day 10, 
it appeared to be highly effective (p =  .0001). As a result, statisti-
cally significant improvements in outcomes, as shown in Figure  9, 
were observed. These findings support theaflavin's ability to lower 
sensory threshold following sciatic nerve injury.

Despite technological advancement, humanity has been 
plagued by a wide range of diseases. Regulating and tracking 
cases of life-long disability or biological reliance caused by nerve 
damage caused by various types of crashes, most notably road-
side motor vehicle crashes, gunfire, and sudden falls, is one of the 
most difficult issues in the field of health research (Kouyoumdjian 
et al., 2017). Unfortunately, these incidents are one of the lead-
ing causes of PNI development, especially in over-packed, stunted 
countries like Pakistan, where the transportation system is already 
overburdened (Mushtaq et al., 2021). The pinprick test was used 
to measure sensory function recovery after sciatic nerve injury. 
This memory test tests mice's sensory threshold retrieval and 
our results are in line with his findings (Deuis et al., 2017). One of 
these critical features is oxidative stress, which greatly contrib-
utes to the pathophysiological processes that occur at the injury 

site (Wang et al., 2015). The reaction spirals which include mito-
chondrial disorders, dementia, neuronal damage, and apoptosis 
(Hussain et al.,  2020) induce systemic nerve damage, produce 
oxidants that aggravate the harm, and delay diagnosis (Al-Nimer 
et al., 2012; Areti et al., 2014). When compared with the control 
group, the treatment group demonstrated substantial improve-
ment in motor functions in terms of SFI measurement and grip 
strength force (percent of original force) (Figure 10). According to 
SFI results, animals in the treatment group showed a considerably 
better walking pattern. In this study, the 5.0 mg/kg groups were 
notably efficient at normalizing SFI levels on day 6 (p = .001) and 
day 9 (p = .006) after injury. These data suggest that theaflavin can 
hasten motor functional recovery.

When compared with the control group, all treatment groups 
improved significantly in terms of grip strength force (percent of 
beginning force) shown above in (Figure 11). When compared with 
controls on day 6 post-injury, treatment groups showed a significant 
difference (rapid restoration of the gripping ability of injured paw 
to hold the wire of grip strength meter), with the 5.00 mg/kg group 
revealing to be suggestively advantageous (p = .001). In the follow-
ing periods, the treatment group had significantly greater gripping 
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strength disparities (p = .001) than the control group (days 7 and 8 
post-injury). The 5 mg/kg group, on the other hand, demonstrated 
significant changes on day 8 following injury (p =  .02). Our results 

are in line with the findings of (Rasul et al., 2019), for motor func-
tions and retrieval in case of peripheral nerve injury. Their results 
indicate that the treated group acquires motor functions earlier as 
compared to Normal control group. During the whole experiment, 
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the comparison of body mass % among all groups was similarly de-
termined to be non-significant (p = .956) (Figure 12).

The statistically significant drop in glycemia following theaflavin-
containing diet consumption illustrates the hypoglycemic influence 
of this regimen. In this context, the glycemic levels of all groups 
were evaluated and compared before and after injury induction 

(Figure 13). It was revealed that all treatment groups kept their glu-
cose levels regular. However, mice fed regular chow had somewhat 
higher glucose levels (control group). At 5.00 mg/kg, theaflavin sig-
nificantly lowered glycemic levels (p = .002).

Total antioxidant capacity (TAC) and TOS levels in animal blood 
samples were measured following decapitation to best explain the 
mechanisms involved in enhanced functional recovery, and the re-
sults demonstrated that theaflavin leaves had a highly significant 

F I G U R E  11  GRIP strength.
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influence on reducing oxidative stress (i.e., improved TAC values 
and lowered TOS values). TAC levels increased significantly (p.0001) 
in all treated groups as compared to the control (Figure  14), con-
firming theaflavin's outstanding antioxidant activity. The number of 
free radicals increases when the sciatic nerve is injured, raising the 
TOS level. TOS values in all treated groups were significantly lower 
(p.0001) than in the control group (Figure 15). However, these re-
sults are in line with the findings of (Rasul et al., 2019).

13  |  CONCLUSION AND 
RECOMMENDATIONS

It is envisaged from the current findings that black tea effectively 
alleviates oxidative stress symptoms. Black tea is selected due to 
its high phenolic content and high antioxidant activity based on the 
DPPH, FRAP, and TPC. The results showed that black tea extracts 
performed better with ethanol solvent than with water or methanol. 
Similarly, antioxidant indices of isolated theaflavin imparted signifi-
cant activity with ethanol at 60 min. In light of all of the above, the 
study concluded that theaflavin not only expedited functional sciatic 
nerve recovery, as seen by behavioral parameter data but also ef-
fectively combats oxidative stress. However, there is a dire need to 
investigate theaflavin for these health-promoting effects on a mo-
lecular and genetic level. No doubt, this research provides a basic 
footstep toward the neuroprotective effect of theaflavin however, 
mechanistic elucidation on cellular and molecular levels is still lack-
ing to unveil its application at a large level. It is recommended that 
human-based clinical should be carried out in the future.
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