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Electroencephalographic (EEG) methods have great potential to serve both basic and clinical science approaches 

to understand individual differences in human neural function. Importantly, the psychometric properties of EEG 

data, such as internal consistency and test-retest reliability, constrain their ability to differentiate individuals 

successfully. Rapid and recent technological and computational advancements in EEG research make it timely to 

revisit the topic of psychometric reliability in the context of individual difference analyses. Moreover, pediatric 

and clinical samples provide some of the most salient and urgent opportunities to apply individual difference 

approaches, but the changes these populations experience over time also provide unique challenges from a psy- 

chometric perspective. Here we take a developmental neuroscience perspective to consider progress and new 

opportunities for parsing the reliability and stability of individual differences in EEG measurements across the 

lifespan. We first conceptually map the different profiles of measurement reliability expected for different types 

of individual difference analyses over the lifespan. Next, we summarize and evaluate the state of the field’s 

empirical knowledge and need for testing measurement reliability, both internal consistency and test-retest reli- 

ability, across EEG measures of power, event-related potentials, nonlinearity, and functional connectivity across 

ages. Finally, we highlight how standardized pre-processing software for EEG denoising and empirical metrics 

of individual data quality may be used to further improve EEG-based individual differences research moving 

forward. We also include recommendations and resources throughout that individual researchers can implement 

to improve the utility and reproducibility of individual differences analyses with EEG across the lifespan. 
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. Introduction 

There is great momentum within both basic and clinical human

cience to apply individual difference approaches to brain research.

xamining differences between individuals is an important means

o understand how variation in environmental experiences impacts

he brain, and how brain measures relate to other systems and lev-

ls of measurement, like differences in cognition or behavior (e.g.

mbrosini and Vallesi, 2016 ; Drew and Vogel, 2008 ; Hakim et al., 2021 ;

odel et al., 2019 ; Jones et al., 2020 ; Sanchez-Alonso and Aslin, 2020 ;

ogel et al., 2005 ; Vogel and Machizawa, 2004 ). These approaches

re also critical for efforts towards precision clinical science, includ-

ng identification of brain-based biomarkers for risk, health status, out-

omes, intervention targets, and treatment response indicators (e.g.

osl et al., 2018 ; de Aguiar Neto and Rosa, 2019 ; Frohlich et al.,

019 ; Furman et al., 2018 ; Gabard-Durnam et al., 2019 ; Geuter et al.,
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018 ; Hannesdóttir et al., 2010 ; Jones et al., 2020 ; Moser et al., 2015 ;

tewart et al., 2011 ; Wilkinson et al., 2020 ). Developmental popula-

ions provide additional opportunities to apply individual difference

pproaches, including linking early brain measure differences to sub-

equent emergent behaviors or symptoms and mapping heterogeneity

n brain development trajectories in both basic and clinical contexts

e.g. Bosl et al., 2018 ; Frohlich et al., 2019 ; Gabard-Durnam et al.,

019 ; Hannesdóttir et al., 2010 ; Hodel et al., 2019 ; Jones et al., 2020 ;

oser et al., 2015 ; Sanchez-Alonso and Aslin, 2020 ; Wilkinson et al.,

020 ). 

Importantly, the validity of brain measurements to serve these pur-

oses in individual differences research is constrained by their psy-

hometric reliability ( Parsons et al., 2019 ). That is, if there is insuffi-

ient certainty about individuals’ brain estimates due to error, it will

e impossible to derive meaningful associations between those brain

stimates and individual phenotypes. There are multiple approaches
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o conceptualizing, measuring, and interpreting psychometric reliabil-

ty (e.g., Allen et al., 2004 ; Brandmaier et al., 2018 ; Tang et al.,

014 ; Tomarken et al., 1992 ). Psychometric reliability as used in this

anuscript encompasses both the consistency of a feature’s estimate

ithin an individual’s data obtained within a session (internal con-

istency as defined by Cronbach (1951) ; Streiner, 2010 ; Strube and

ewman, 2007 ) and self-similarity in repeated measurements for indi-

iduals across sessions (test-retest reliability as measured by intraclass

orrelation coefficient proposed first by Fisher (1958) ; Bartko, 1966 ;

en and Lo, 2002 ). While developmental and clinical studies are partic-

larly fertile contexts for applying individual difference approaches, the

hanges these populations experience over maturation or clinical course

lso provide unique challenges in evaluating brain measure psychome-

ric reliability for individual difference analyses ( Sanchez-Alonso and

slin, 2020 ). 

Though issues of measurement reliability in individual differences

esearch are neither new nor unique topics to neuroscience ( Elliott et al.,

021 ; Greene et al., 2022 ; Kennedy et al., 2022 ; Kragel et al., 2021 ;

oble et al., 2021 ), recent communication about these issues in mag-

etic resonance imaging (MRI) contexts has led some to declare the en-

ire field of cognitive neuroscience “at a crossroads ” in terms of util-

ty for individual differences analyses ( “Cognitive neuroscience at the

rossroads, ” 2022 ). Is this so? Recent technological and computational

dvances in electroencephalography (EEG) make it timely to revisit

he topic for several reasons. First, EEG has become increasingly cost-

ffective, mobile, and scalable with engineering advancements that fa-

ilitate increased use of this method with larger sample sizes. These tech-

ological advancements make individual differences approaches possi-

le and powered to detect a wide range of effects in far more studies

oving forward. For example, multiple large-scale, multi-site, or multi-

ational EEG-based studies (e.g., Healthy Brain and Child Development

tudy, Wellcome LEAP 1 kD Program, the Autism Biomarkers Consor-

ium of Clinical Trials, Baby Siblings Research Consortium; Jordan et al.,

020 ; McPartland et al., 2020 ; Ozonoff et al., 2011 ) are underway and

rovide increased opportunities in the near future for performing indi-

idual differences analyses with EEG, especially in developmental con-

exts. There has also been tremendous innovation in the types of EEG

eatures one can extract from the signal that requires consideration

f how to optimize their reliability for individual differences research.

oreover, recent shifts in EEG pre-processing and denoising strategies

lso affect even well-characterized features’ measured reliability pro-

les across the lifespan. Renewed discussions about EEG measurement

eliability and the implications for individual difference study designs

nd analyses have largely focused on specific populations or EEG mea-

ures (e.g., Boudewyn et al., 2018 ; Clayson, 2020 ), with far less work

ooking across types of EEG features or in contexts of change ( Becht and

ills, 2020 ; Foulkes and Blakemore, 2018 ; Webb et al., 2022 ). 

Here we take a developmental neuroscience perspective to consider

rogress and new opportunities for parsing the reliability and stability of

ndividual differences in electroencephalography (EEG) measurements

cross the lifespan. We first conceptually map the different profiles of

easurement reliability required for different types of individual dif-

erence analyses over the lifespan. Next, we summarize and evaluate

he state of the field’s empirical knowledge and need for testing mea-

urement reliability, both internal consistency and test-retest reliability,

cross EEG measures of power, event-related potentials (ERPs), nonlin-

arity (e.g., entropy, complexity), and functional connectivity across

ges. Finally, we highlight two salient challenges and opportunities

or change in the research process that may make substantial impact

n improving EEG-based individual differences research: 1) standard-

zed, automated pre-preprocessing software for EEG denoising, and 2)

mpirical metrics of individual data quality. We conclude each topi-

al section with recommendations and resources that individual sci-

ntists can implement immediately and in future studies with EEG to

mprove reproducibility of individual differences findings across the

ifespan. 
2 
. Mapping profiles of psychometric reliability for individual 

ifference analyses 

Individual difference analyses with EEG measures all test questions

t the between-person level. They require greater variability in a mea-

ure between participants than within a given individual (i.e., one must

e more similar to oneself than to other people for a measure). This

nsures that researchers can distinguish between individuals with con-

dence. Thus, testing the psychometric reliability of an EEG feature (the

egree to which a measure follows these conditions of self- versus other-

imilarity) is a critical step in conducting individual difference analyses.

eyond the psychometric reliability constraints however, there is great

exibility in individual difference analyses. They can be performed with

 variety of analytic techniques from bivariate correlations to multi-

le regression frameworks and machine-learning predictive modeling

o answer both data-driven and hypothesis-driven research questions

 Botdorf et al., 2016 ; Figueredo et al., 2005 ; Hounkpatin et al., 2018 ;

at et al., 2022 ; Qin et al., 2014 ; Sorella et al., 2022 ). Indeed, here we

emain agnostic to the research questions at hand for any individual

esearcher, but we note the importance of theory, both topical and sta-

istical, in deriving research questions and guiding the research process

enerally. We hope this manuscript will provide complementary infor-

ation and guidance about how to best answer the research questions

hat require individual difference analyses. 

It is also important to note briefly that many types of research ques-

ions, including some of the earliest and most common in human neuro-

cience, do not pertain to individual difference analyses at all. Indeed,

any commonly-used psychological and neuroscience tasks were de-

igned to minimize individual differences in performance and brain ac-

ivity rather than reveal them (though they can be modified to reveal

ndividual differences if desired; Dai et al., 2019 ; Soveri et al., 2018 ).

hese designs may instead examine differences within-person (e.g., con-

ition differences like eyes-open vs. closed EEG power, most ERP de-

igns with multiple task conditions, even brain-behavior analyses if per-

ormed across conditions within-individuals). Reliability considerations

or strictly within-person analyses will not be considered here (though

ee MacDonald and Trafimow (2013) and Trafimow and Rice (2009) for

mportant discourse around those designs). Between-group difference

esigns may also fall into this category historically, minimizing indi-

idual differences to reveal differences between the groups of partici-

ants (e.g., EEG-related differences between adults with schizophrenia

s. those without, or between children and adults). Thus, not all of a re-

earcher’s questions or designs will need or accommodate considering

ndividual difference-related psychometric reliability profiles. 

However, for those studies that do seek to use an individual differ-

nces approach, it is important to consider several contextual factors.

hat is, different contexts require different psychometric profiles of in-

ernal consistency and test-retest reliability for valid inferences to be

rawn about individual differences. Additional considerations also ap-

ly when measuring reliability in contexts of change, including learn-

ng, development, and clinical course. Below, we conceptually map this

andscape of reliability profiles required for different kinds of individ-

ating EEG markers with illustrative examples. We hope this mapping

rovides clarity for researchers about what forms of reliability should

e assessed with which study designs before conducting particular indi-

idual difference analyses of interest. 

.1. Patterns of internal consistency reliability 

Internal consistency reflects measurement stability within a testing

ession. As a general rule, individual difference EEG markers for any

urpose should be stable features with corresponding high internal con-

istency scores. That is, there should be high certainty about each indi-

idual’s estimate for the EEG measure from that testing session. Inter-

al consistency measurements may suffer (i.e., show low stability) for

everal reasons, including high measurement error, high within-person
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ariability, or low between-person variability ( Waltmann et al., 2022 ).

his last condition is non-trivial, as recently noted by several researchers

 Hedge et al., 2018 ; Infantolino et al., 2018 ), given many standard task

esigns prioritize within-person differences over between-person differ-

nces. Careful task selection (if measuring in a task context) that fa-

ilitates differences between participants is therefore critical to facili-

ate individual difference analyses. Internal consistency should always

e evaluated before performing individual difference analyses to ensure

oth the appropriateness of that analysis and to understand the con-

traints (bound by internal consistency levels) on potential statistical

xplanation or prediction in that analysis. 

.1.1. Internally consistent measures of change 

We highlight a special case in contexts of change where high within-

erson variability may nonetheless lead to high internal consistency val-

es if measured appropriately: markers of learning, neural variability,

r habituation. For this set of individual difference measures, the stable

eature is the change or variability in the EEG signal itself. For exam-

le, several lines of clinical research have begun to consider differences

n neural variability in conditions like Autism Spectrum Disorder and

chizophrenia (where those with the condition exhibit either increased

r decreased variability in EEG measures relative to neurotypical com-

arisons; MacDonald et al., 2006 ; Trenado et al., 2018 ). Individual dif-

erences in how quickly brain responses habituate to stimuli provide a

elated set of inquiries about brain variability in clinical contexts (e.g.,

avanagh et al., 2018 ; Hudac et al., 2018 ). Similarly, neural markers of

earning (e.g., learning rate) may differ between individuals in mean-

ngful ways (e.g., Waltmann et al., 2022 ). In each of these cases, al-

hough changes are observed and expected over the course of the EEG

ecording, study design may allow for internal consistency evaluation

f the changes. For example, in resting-state EEG, bootstrapped split-

alf analyses may reveal consistent estimates of the standard deviation

f power values between iterations of data-halves. For task paradigms,

ultiple assessments of the habituation, learning, or variability should

e included to enable calculating internal consistency. That is, degree

f habituation to tones should be evaluated for two sets of tones, and

earning tasks should include at least two rounds of learning to evalu-

te differences in learning rate or accuracy (e.g., Waltmann et al., 2022 ).

his design may not be possible for all populations or contexts of interest

e.g., long ERP tasks with repeated bouts of learning may not be pos-

ible in early developmental contexts, especially for visual paradigms)

nd may limit when such individual markers of variability and learning

re considered accordingly. There may also be interest in measuring the

esponse differences between two conditions as an individual marker of

earning or change (i.e., using difference scores as an index of change).

ote that two task conditions or ERP components each demonstrating

igh internal consistency may not necessarily produce a difference score

ith corresponding high internal consistency ( Infantolino et al., 2018 ;

higpen et al., 2017 ). Thus, if difference scores are of interest as po-

ential individual difference markers, the difference score itself must

e evaluated for internal consistency rather than the two underlying

onditions’ scores. The case of EEG measures of change and variation

emonstrate how individual difference analyses do not necessarily pre-

lude within-person variability that may be especially evident in devel-

pmental and clinical populations. 

.2. Patterns of test-retest reliability 

Test-retest reliability reflects stability of markers across testing ses-

ions and time. Unlike internal consistency where higher reliability

cores are always more appropriate in individual difference analyses,

ultiple patterns of test-retest reliability are acceptable depending on

he population, analysis purpose, and timescale, as illustrated below. 
3 
.2.1. Low test-retest reliability 

Patterns of low test-retest reliability between testing sessions may

ndeed be valid contexts for a restricted set of individual difference

nalyses. Namely, if one is interested in associating within-session state-

elated EEG measures with other in-session state-related measures (e.g.,

ognition, affective state, etc.), low test-retest reliability may be ex-

ected or test-retest reliability may even be impossible to measure. For

xample, in a decision-making game, participants can change strategy

se from session to session, so test-retest reliability of the related EEG

easure can be low (each individual will look different from session

o session), but there may still be important information within-session

bout individual differences in degree of strategy use relating to that

articular EEG measure. In the context of such brain-cognitive-behavior

nalyses, the expected stability of the cognitive/affective/behavioral

easure is important. If that measure shows high variability across test-

ng administrations within a person, e.g., high influence of state-like

instead of trait-like) contributions, the EEG-measured correlates may

imilarly show low test-retest reliability while still offering robust rela-

ion with the phenomena of interest (e.g., Clarke et al., 2022 ). 

.2.2. High test-retest reliability 

Patterns of high test-retest reliability are desired for several types

f individual difference analyses. This profile applies to stable contexts,

n which the brain and its relation with physiology, behavior, the envi-

onment, or disease state is not expected to vary over time. For exam-

le, individual difference analyses in healthy young adults may fit this

rofile, as may those examining adult EEG features related to trait-like

ognitive, affective, or behavioral profiles (e.g., EEG features related to

table temperament or attachment profiles or native language(s) skills).

nother case may come from EEG biomarkers of stable disease or dis-

rder characteristics or endophenotypes. Finally, analyses assessing the

nfluence of prior environmental factors or current stable environmental

actors on brain-related features may adhere to this reliability profile.

or example, how does frequency of emotional abuse in childhood in-

uence young adult EEG-derived neural phenotypes? In each of these

ases, there is very low expectation that the brain, and thus, the EEG

eatures, should demonstrate meaningful change from testing session to

esting session, and so patterns of high test-retest reliability are expected

o infer meaningful individual differences. 

.2.3. High short-term, low long-term test-retest reliability 

This final pattern of reliability applies to many contexts of change,

ncluding clinical course, developmental change, and intervention tar-

eting. For these populations and/or contexts, change over longer

imescales is expected, so they will have low long-term test-retest re-

iability (though rank order stability measurement may reveal consis-

ent rankings if not estimates over periods of change for some features).

ong-term is subjective, of course, and depends on the particular con-

ext at hand. For example, low test-retest reliability over many months

n infancy may indicate the presence of developmental change rather

han lack of reliability for a given EEG measure. Similarly, one may se-

ect intervention target EEG measures because they exhibit change over

ime (e.g., plasticity) and thus may be more modifiable than a measure

ith high stability over the potential intervention ages. Additionally, a

eliable marker of clinical severity should not exhibit high long-term

est-retest reliability if that encompasses the course of the condition

ithin an individual (instead the marker should change as an individ-

al’s status changes with time). Thus, in all of these cases, low long-term

est-retest reliability is actually desired. Immediate test-retest stability

hough can provide confidence that the candidate measure is a reliable

ndicator of that person’s developmental or clinical status in the mo-

ent. That is to say, though an EEG feature may change from 9 to 12

onths of age, one should still expect high test-retest reliability for that

eature if measured same day or the next day. The timescale for de-

ermining sufficient measure stability is clinical condition-specific and
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evelopmentally-dependent. That is, several weeks between measure-

ents is functionally different in infancy than in adulthood given the

espective rates of change in the brain. Still, if a candidate measure’s

alues change within hours of measurement at any age (absent any in-

ervention or clinically-significant change in the interim hours), it will

ikely have poor utility as an individual difference marker. 

.3. Recommendations for individual researchers 

We offer the following recommendations that individual researchers

an implement in designing studies and planning individual difference

nalyses from the outset to improve measured reliability profiles. 

1) Researchers may use prior literature or pilot testing to ensure in-

dividual differences will be elicited by the study paradigm. For ex-

amples of researchers evaluating study design changes to optimize

individual differences in canonical paradigms, see Dai et al., 2019 ;

Soveri et al., 2018 . Ideally, measurement error will be minimized

through design and sufficient trials will be planned to ensure sta-

ble within-individual estimates can be derived (see Sections 2 and

3 below for guidance in optimizing trial number and trial retention

during preprocessing, respectively). Prior test-retest literature may

also inform whether the candidate EEG measure(s) of interest fit the

reliability profile required for the study context (e.g., if exploring a

potential intervention target, does this EEG measure show change

within the developmental window of interest?) 

2) For designs where learning, habituation, or EEG variability are the

features of interest, consider designs that facilitate testing internal

consistency of those changes before conducting individual difference

analyses (e.g., two blocks of learning, sufficient trials to calculate

internal consistency of the variability index like standard deviation,

etc.). 

3) Finally, researchers should check the assumptions about expected

test-retest conditions for their study context and ensure any prior

literature or within-lab pilot testing supports those test-retest expec-

tations for the planned individual difference analyses. 

. Reliability of EEG measurements across the lifespan 

As others have noted before, psychometric reliability is a property

f measurement in context rather than the EEG measure itself (e.g.,

layson et al., 2021 ; Thompson, 2003 ; Vacha-Haase, 2016 ). That is,

he same EEG measure that may show excellent internal consistency

n one population may demonstrate low consistency in a different pop-

lation or differing consistency when measured in lab-based research

ettings relative to at-home acquisitions. Reliability may also depend

n pre-processing or parameterization of the measure itself (discussed

n Section 3 below). Thus, researchers and journals have begun call-

ng for study-specific evaluation and reporting of EEG measure reliabil-

ty in contexts of individual differences analyses (e.g., Carbine et al.,

021 ; Clayson, 2020 ; Clayson et al., 2021a , 2021b , 2019 ; Clayson and

iller, 2017a , 2017b ; Hajcak et al., 2017 ; Thigpen et al., 2017 ). We sup-

ort the momentum to assess and report reliability within each study,

nd we also believe there is value in looking at the extant reliability

iterature across ages and types of features for several reasons. First,

hile measuring internal consistency is technically feasible for each

tudy, measuring test-retest reliability is neither pragmatic nor possible

n all cases. Reviewing extant literature may provide guidance (ideally

or studies matched for ages, populations, context) and highlight gaps in

he field’s knowledge that must be filled before measures can be used for

ome types of individual difference analyses. Second, reviewing reliabil-

ty findings (both internal consistency and test-retest reliability) across

ges and measures provides guidance for new study design and a priori

eature selection and parameterization compatible with pre-registration

nitiatives. We note that drawing on extant literature in these cases does

ot negate the subsequent need to calculate internal consistency reliabil-

ty within the study once underway. Third, such a review also provides
4 
ome information about lifespan change in EEG measure reliability that

ay not be practical to capture within a single study but may also guide

uture study design in terms of participant ages or analysis planning. Fi-

ally, for several of the more recently introduced EEG features, we hope

hat reviewing extant literature exploring reliability will provide useful

nformation to guide optimization of these features’ measurement and

arameterization (e.g., see nonlinear EEG feature section below). 

Therefore, below we evaluate the field’s knowledge of reliability

or the measures most commonly used with EEG data for in-lab con-

exts with largely neurotypical populations (unless otherwise indicated).

pecifically, we evaluate what is known for power, event-related poten-

ials (ERP), nonlinear, and functional connectivity measures by collating

xisting studies that have calculated internal consistency and/or test-

etest reliability. We summarize the current state of the field’s knowl-

dge for each measure with regards to both internal consistency and

est-retest reliability for adult populations followed by pediatric popula-

ions that experience significant brain change during maturation (here,

ncluding infants, toddlers, children, adolescents). Importantly, individ-

al studies have used different reliability metrics and different thresh-

lds (with different degrees of consensus for a given measure) for catego-

izing reliability results. Consequently, we have elected not to formally

ake the summary a systematic review. Instead, where there is suffi-

ient literature converging on a single reliability method for an EEG

easure, we have focused on reporting comparisons with that partic-

lar method for consistency (thus not all studies reporting reliability

etrics are included below). This strategy facilitates offering summary

tatistics about reliability that average across measures and studies. This

trategy also lets us focus the review on more contemporary contexts

nd acquisition setups as more recent studies show increased consensus

n reliability measurement and reporting. Moreover, though we report

he empirical values of reliability for all studies, to facilitate qualita-

ive conclusions from the collective literature, we have used the fol-

owing scale of thresholds that we found to be most frequently used

n extant literature (reflecting the greatest consensus): poor — values <

.40; fair —0.40 ≤ values ≤ 0.59; good — 0.60 ≤ values ≤ 0.74; and ex-

ellent — values ≥ 0.75 for test- retest reliability ( Deuker et al., 2009 ;

aartsen et al., 2020 ; Hardmeier et al., 2014 ; Hatz et al., 2016 ; Jin et al.,

011 ; Kuntzelman and Miskovic, 2017 ). We then provide recommenda-

ions for individual actions moving forward for each EEG measure and

 final summary across all measures considered. 

.1. Power 

A common way to quantify EEG oscillatory activity is to com-

ute spectral power, where power is operationalized as the peak sig-

al amplitude squared ( Mathalon and Sohal, 2015 ). There are mul-

iple approaches to characterize EEG power. For example, studies

ay examine either baseline or task-related power, and quantify ab-

olute power or relative power (the percentage of power in a spe-

ific frequency/frequencies relative to total power across all frequen-

ies) ( Marshall et al., 2002 ). Moreover, EEG power is often collapsed

cross frequencies into canonical frequency bands. These power fea-

ures can also be combined across hemispheres or frequency bands to

orm what we refer to as relational power features, like the theta-beta

atio and hemispheric alpha asymmetry features. Finally, contemporary

pproaches parameterize the power spectrum in terms of periodic (i.e.,

scillatory) and aperiodic (e.g., 1/f slope) contributions (e.g., Spectral

arameterization; Donoghue et al., 2020 ). We consider the internal con-

istency and test-retest reliability evidence across these types of power

easures. 

.1.1. Internal consistency of power measures 

Studies calculating the internal consistency of power measures are

urprisingly sparse considering the longevity of EEG power as a mea-

ure in the field. Though the studies that do exist suggest power is ex-

remely reliable within testing sessions ( Tables 1 and 2 ). Across power
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Table 1 

Internal consistency of adult power studies. 

Paper Age(s) Sample Size Paradigm Type of Power 

Consistency 

Measure(s) 

Frequency 

Band Consistency 

Hill et al. (2020) Not specified N = 31 Resting-state Broad frontal asymmetry Spearman-Brown Alpha 0.99 

High frontal asymmetry Spearman-Brown Alpha 0.99 

Rocha et al. (2020) Older adults N = 31 Resting-state Relative (to nearby 

frequencies only) 

Cronbach’s 𝛼 Alpha 0.87 

Towers and 

Allen (2008) 

Undergraduates N = 204 Resting-state Frontal asymmetry Spearman-Brown Alpha 0.91 

Burgess and 

Gruzelier (1993) 

18–39 years N = 24 Resting-state Absolute Cronbach’s 𝛼 Delta 0.92 

Theta 0.95 

Alpha 0.95 

Beta 0.95 

Task-related Absolute Cronbach’s 𝛼 Delta 0.90 

Theta 0.94 

Alpha 0.90 

Beta 0.94 

Allen et al. (2003) 18–45 years N = 30 Resting-state Frontal asymmetry Cronbach’s 𝛼 Alpha 0.87 

Gold et al. (2013) 18–50 years N = 79 Resting-state Frontal aymmetry Cronbach’s 𝛼 Alpha 0.76 

Absolute Cronbach’s 𝛼 Theta 0.99 

Lund et al. (1995) Mean age of 28.5 

years 

N = 49 Resting-state Absolute Cronbach’s 𝛼 Delta 0.92 

Theta 0.96 

Alpha 0.96 

Beta 0.95 

Relative Cronbach’s 𝛼 Delta 0.90 

Theta 0.94 

Alpha 0.94 

Beta 0.90 

Table 2 

Internal consistency of pediatric power studies. 

Paper Age(s) Sample Size Paradigm Type of Power 

Consistency 

Measure(s) 

Frequency 

Band Consistency 

Hill et al. (2020) 12 months N = 31 Resting-state Frontal asymmetry Spearman-Brown Alpha 0.81 

Anaya et al. (2021) 8 months N = 108 Resting-state Frontal asymmetry Cronbach’s 𝛼 Alpha 0.80 

Relative Cronbach’s 𝛼 Alpha 0.89 

Delta 0.66 

Beta 0.92 

12 months N = 71 Resting-state Frontal asymmetry Cronbach’s 𝛼 Alpha 0.82 

Relative Cronbach’s 𝛼 Alpha 0.91 

Delta 0.73 

Beta 0.91 

18 months N = 69 Resting-state Frontal asymmetry Cronbach’s 𝛼 Alpha 0.82 

Relative Cronbach’s 𝛼 Alpha 0.91 

Delta 0.67 

Beta 0.96 
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easures, internal consistency values for both adult and pediatric sam-

les are considered excellent (adult: 𝛼 = 0.92, n = 20 measurements,

E = 0.01; pediatric: 𝛼 = 0.83, n = 12, SE = 0.03). The existing studies

valuate both canonical power frequency bands (adult: 𝛼 = 0.93, n = 18

easurements, SE = 0.007; pediatric: 𝛼 = 0.84, n = 9 measurements,

E = 0.04; Anaya et al., 2021 ; Burgess and Gruzelier, 1993 ; Gold et al.,

013 ; Lund et al., 1995 ; Rocha et al., 2020 , see Fig. 1A ) and relational

ower features like frontal alpha asymmetry (adult: 𝛼 = 0.82, n = 2

easurements, SE = 0.06; pediatric: 𝛼 = 0.81, n = 3 measurements,

E = 0.007; Allen et al., 2003 ; Anaya et al., 2021 ; Gold et al., 2013 ;

ill et al., 2020 ; Towers et al., 2008 , see Fig. 1A ). There is also some

vidence that the lowest frequency bands like delta demonstrate lower

nternal consistency relative to other bands in early development, per-

aps because they are quite sensitive to arousal state changes that hap-

en quickly and dramatically during testing in infancy (e.g., Anaya et al.,

021 ). 

.1.2. Test-retest reliability of canonical power frequency bands 

Many studies in adult populations have examined the test-retest re-

iability of EEG power. Across methods of test-retest evaluation and

imescales, baseline EEG power is generally found to be very reliable

 Angelidis et al., 2016 ; Burgess and Gruzelier, 1993 ; Corsi-Cabrera et al.,
5 
007 ; Fernández et al., 1993 ; Keune et al., 2019 ; McEvoy et al.,

000 ; Näpflin et al., 2007 ; Pollock et al., 1991 ; Rocha et al., 2020 ;

chmidt et al., 2012 ; Suárez-Revelo et al., 2015 , see Table 3 ). For ex-

mple, Ip et al. (2018) have examined test-retest reliability of EEG ab-

olute power using intra- class correlations ( ICC s) in adults between

ultiple sessions 20–22 days apart. Adjacent timepoints showed excel-

ent test-retest reliability ( ICC s = 0.84–.97) in theta, alpha, and beta

anonical frequency bands (especially at frontal, midline, and parietal

ites). Delta and gamma bands showed more variable test-retest reliabil-

ty across regions ( ICC s = 0.30–.87). ICCs across the complete ∼80 day

eriod showed similar results. Studies have also looked at test-retest re-

iability of EEG power during task paradigms ( Fernández et al., 1993 ;

p et al., 2018 ; Keune et al., 2019 ; McEvoy et al., 2000 ; Rocha et al.,

020 ; Salinsky et al., 1991 ; Schmidt et al., 2012 ; Suárez-Revelo et al.,

015 , see Table 3 ). For example, McEvoy et al. (2000) found strong cor-

elations between sessions an average of 7 days apart for absolute theta

nd alpha power during working memory ( r > 0.9) and psychomotor

igilance ( r > 0.8) tasks. Several studies have also offered direct com-

arisons with baseline EEG power reliability. Näpflin et al. (2008) were

ble to reliably individuate participants over a retest interval of more

han one year using absolute alpha peak characteristics during both a

orking memory task (2008) and from baseline EEG (2007). Though,
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Fig. 1. Internal consistency and test-retest reliability of power measures. A: Average internal consistency values calculated using Cronbach’s Alpha for adult canonical 

frequency band power, adult alpha asymmetry, pediatric canonical frequency band power, and pediatric alpha asymmetry. B: Test-retest values calculated using 

intra-class correlations for each adult alpha asymmetry study based on time between testing sessions (in months). C: Test-retest values calculated using various 

reliability methods (denoted by different shapes in figure legend) for each adult canonical frequency band power study based on time between testing sessions (in 

months). D: Test-retest values calculated using various reliability methods (denoted by different shapes in figure legend) for each pediatric canonical frequency band 

power study based on time between testing sessions (in months). Green markers denote same-day time to retest. Black marker borders denote relative power. 

I  

i  

b  

s  

d  

(  

m  

(

 

s  

m  

a  

s  

a  

I  

a  

r  

(  

a  

2  

(  

b  

a

 

p  

c  

(  

s  

b  

i  

f  

S  
p et al. (2018) found that absolute baseline EEG test-retest reliabil-

ty was generally higher than absolute task-related EEG power relia-

ility from auditory paradigms within the same individuals over four

essions 20–22 days apart. Taken together, absolute and relative power

uring tasks appear to be stable across short (several minutes) and long

over one year) intervals in adults, though baseline EEG power may be

ore reliable than power evoked during at least some task paradigms

 Fig. 1C ). 

In contrast, relational power measures, formed by relating power in

pecific frequency bands or over specific scalp topography, have shown

ore variable reliability, ranging from fair to excellent in adults. For ex-

mple, the theta beta ratio measured in resting-state EEG has shown con-

istently excellent test-retest reliability on the scale of weeks in younger

nd older adults ( r = 0.93 in young adults ( Angelidis et al., 2016 );

CC = 0.96 in older adults ( Keune et al., 2019 )). Additionally, alpha

symmetry has shown fair to good reliability in adults when time to
6 
etest spans from one week to over a decade later ( ICC = 0 .61 at 1 week

 Koller-Schlaud et al., 2020 ); ICC = 0 .61 at 8 weeks and ICC = 0 .56

t 16 weeks ( Allen et al., 2003 ); ICC = 0 .61 at 56 days ( Metzen et al.,

021 ); ICC = 0 .61 at 3 months ( Gold et al., 2013 ); rSB = 0 .73 at 12 years

 Tenke et al., 2018 ), see Fig. 1B ). Overall, studies examining frequency

and power in adults indicate adequate reliability across most bands

nd relational band measures over time periods longer than a year. 

Few studies to date have examined test-retest reliability of EEG

ower bands in pediatric populations, and those that do have been

onducted only for baseline EEG with older children and adolescents

 Table 4 ). Gasser et al. (1985) used spearman rank correlations to

how that absolute and relative baseline power in most frequency

ands and locations showed similar patterns of test-retest reliability

n typically-developing peri-adolescents over 10 months (mean values

or 𝜌 = 0.58–.80 for absolute power; 𝜌 = 0.47–.80 for relative power).

imilarly, Winegust et al. (2014) have shown that baseline absolute
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Table 3 

Test-retest reliabilities of adult power studies. 

Paper 

Age(s) at First 

Test 

Sample 

Size Time to Retest Paradigm Type of Power 

Reliability 

Measure(s) Frequency Band Reliability 

McEvoy et al. 

(2000) 

18–29 years N = 20 1 hour Resting-state Absolute Pearson’s r Frontal midline theta 0.81 

Posterior theta 0.85 

Alpha 0.91 

Task-related 

(WM) 

Absolute Pearson’s r Frontal midline theta 0.96 

Posterior theta 0.96 

Alpha 0.98 

Task-related 

(PVT) 

Absolute Pearson’s r Frontal midline theta 0.94 

Posterior theta 0.94 

Alpha 0.96 

7 days Resting-state Absolute Pearson’s r Frontal midline theta 0.79 

Posterior theta 0.82 

Alpha 0.88 

Task-related 

(WM) 

Absolute Pearson’s r Frontal midline theta 0.91 

Posterior theta 0.92 

Alpha 0.96 

Task-related 

(PVT) 

Absolute Pearson’s r Frontal midline theta 0.88 

Posterior Theta 0.89 

Alpha 0.88 

Angelidis et al. 

(2016) 

18–31 years N = 41 1 week Resting-state Absolute Pearson’s r Theta 0.94 

Beta 0.90 

Theta/Beta Ratio 0.93 

Schmidt et al. 

(2012) 

Mean age of 36.3 

years 

N = 33 1 week Resting-state Absolute ICC Frontal alpha 0.86 

Central alpha 0.94 

Parietal alpha 0.95 

Task-related Absolute ICC Frontal alpha 0.86 

Central alpha 0.91 

Parietal alpha 0.89 

Suarez- 

Revelo et al. 

(2015) 

Mean age 23.3 

years 

N = 15 4–6 weeks Resting-state Relative ICC Delta 0.46 

Theta 0.76 

Alpha 0.75 

Beta 0.63 

Gamma 0.57 

Task-related Relative ICC Delta 0.25 

Theta 0.48 

Alpha 0.62 

Beta 0.52 

Gamma 0.32 

Corsi- 

Cabrera et al. 

(2007) 

18–29 years N = 6 1 month (total of 

9 months) 

Resting-state Absolute Multiple 

correlation 

coefficient R 

Total power 0.95 

Pollock et al. 

(1991) 

56–76 years N = 46 4.5 months Resting-state Absolute Pearson’s r Delta 0.50 

Theta 0.81 

Alpha 0.84 

Beta 0.81 

Relative Pearson’s r Delta 0.47 

Theta 0.65 

Alpha 0.68 

Beta 0.68 

Salinsky et al. 

(1991) 

23–52 years N = 19 5 minutes Task-related Absolute Spearman rank 

correlations 

Delta 0.90 

Theta 0.91 

Alpha 0.95 

Beta 0.95 

Relative Spearman rank 

correlations 

Delta 0.86 

Theta 0.90 

Alpha 0.89 

Beta 0.93 

12–16 weeks Task-related Absolute Spearman rank 

correlations 

Delta 0.81 

Theta 0.83 

Alpha 0.82 

Beta 0.88 

Relative Spearman rank 

correlations 

Delta 0.82 

Theta 0.85 

Alpha 0.80 

Beta 0.88 

Rocha et al. 

(2020) 

Older adults N = 31 10 days Resting-state Relative (to 

nearby 

frequencies only) 

Pearson’s r Alpha 0.62 

Task-related Relative (to 

nearby 

frequencies only) 

Pearson’s r Alpha 0.83 

( continued on next page ) 

7 
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Table 3 ( continued ) 

Paper Age(s) at First 

Test 

Sample 

Size 

Time to Retest Paradigm Type of Power Reliability 

Measure(s) 

Frequency Band Reliability 

Burgess and 

Gruzelier (1993) 

18–39 years N = 24 40 minutes Resting-state Absolute Pearson’s r Delta 0.70 

Theta 0.86 

Alpha 0.91 

Beta 0.89 

Allen et al. 

(2003) 

18–45 years N = 26 8 weeks Resting-state Frontal 

asymmetry 

ICC Alpha 0.61 

N = 15 16 weeks Resting-state Frontal 

asymmetry 

ICC Alpha 0.56 

Pathania et al. 

(2021) 

Undergraduates N = 60 30 minutes Resting-state Spectral slope 

(LMER) feature 

ICC Power spectral 

density 

0.91 

Aperiodic slope 

(SpecParam) 

ICC Power spectral 

density 

0.86 

Keune et al. 

(2019) 

18–75 years N = 10 2 weeks Resting- 

state/Task- 

related 

Absolute ICC Theta/beta ratio 0.96 

Theta 0.98 

Beta 0.97 

Gold et al. (2013) 18–50 years N = 79 3 months Resting-state Frontal 

asymmetry 

ICC Alpha 0.61 

Absolute ICC Theta 0.90 

Vuga et al. 

(2006) 

19–39 years N = 99 1.2 years Resting-state Lateral frontal 

asymmetry 

ICC Alpha 0.60 

Mid-frontal 

asymmetry 

ICC Alpha 0.54 

Parietal 

asymmetry 

ICC Alpha 0.58 

Koller- 

Schlaud et al. 

(2020) 

Mean age of 27 

years 

N = 23 7 days Task-related Frontomedial 

asymmetry 

ICC Alpha 0.52 

Frontolateral 

asymmetry 

ICC Alpha 0.70 

Parietomedial 

aymmetry 

ICC Alpha 0.71 

Parietolateral 

asymmetry 

ICC Alpha 0.49 

Metzen et al. 

(2021) 

20–70 years N = 541 56.7 days Resting-state Absolute ICC Alpha 0.75 

Frontal 

asymmetry 

ICC Alpha 0.56 

Parietal 

asymmetry 

ICC Alpha 0.65 

Tenke et al. 

(2018) 

18 + years N = 46 12 years Resting-state Absolute 

(CSD-fPCA) 

Spearman Brown Alpha 0.92 

Posterior 

asymmetry 

Spearman Brown Alpha 0.73 
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rontal alpha power demonstrates borderline excellent test-retest reli-

bility ( ICC s = 0.73–.74) over a one-month interval in typically devel-

ping adolescents. Several pediatric studies have also examined whether

ower test-retest reliability differs between typically-developing and

linical populations. Fein et al. (1983) found that same-day test-retest

eliability for power was good-excellent for both dyslexic and typically-

eveloping children ( ICC s > 0.70). Similarly, Levin et al. (2020) found

hat both typically- developing and autistic children demonstrated ex-

ellent reliability of baseline total power over up to several weeks when

rocessed with standardized software (here, HAPPE and BEAPP soft-

are; typically-developing group ICC = 0.86; autistic group ICC = 0.81).

owever, a recent paper by Webb et al. (2022) found that typically-

eveloping children demonstrated only fair reliability across power

ands over a period of six weeks, while autistic children demonstrated

ood reliability over the same time period (typically-developing group

CC = 0.54; autistic group ICC = 0.68). Several of these studies have

lso noted higher ICCs for absolute compared to relative baseline power

n development ( Fein et al., 1983 ; Gasser et al., 1985 ). Relatedly,

here is limited knowledge about the test-retest reliability of relational

ower features (e.g., alpha asymmetry, theta-beta ratio). For example,

incent et al. (2021) and Anaya et al. (2021) have both found that

rontal alpha asymmetry scores were only weakly stable across infancy

nd early childhood, whether measured as correlated values or rank

rders. Delta-beta ratios demonstrated similar age-related changes dur-

ng this early developmental window ( Anaya et al., 2021 ). In sum, these

tudies suggest high reliability of canonical frequency band power (espe-
8 
ially absolute power) in both healthy and clinical pediatric populations

n childhood through adolescence ( Fig. 1D ). 

.1.3. Test-retest reliability of periodic and aperiodic power spectrum 

eatures 

Studies have also used the Spectral Parameterization (i.e., Spec-

aram, formerly Fitting Oscillations and One-Over-F (FOOOF)) and

ther algorithms developed recently ( Donoghue et al., 2020 ; Wen and

iu, 2016 ) to characterize the EEG power spectrum in terms of peri-

dic and aperiodic features (e.g., Ostlund et al., 2021 ). This direction

s especially important given the emerging recognition and exploration

f differences in functional significance and neural underpinnings for

he periodic versus aperiodic power spectrum components ( Colombo

t al., 2019 ; Demanuele et al., 2007 ; He et al., 2010 ; McDonnell and

ard, 2011 ; Podvalny et al., 2015 ). Fortunately, though this approach

s quite new, several studies have already investigated the reliability

f periodic/aperiodic power spectrum features with promising prelim-

nary results. In adults, the aperiodic slope shows excellent test-retest

eliability on the same day with two different methods of calculation,

inear mixed-effects regression and SpecParam (LMER ICC s = 0.85–.95,

pecParam ICC s = 0.78–.93; Pathania et al., 2021 ). Using a different

pproach, Demuru and Fraschini (2020) investigated how SpecParam

eatures can identify participants from a large dataset of n = 109 of base-

ine EEG recordings. The SpecParam spectral offset and aperiodic slope

eatures both performed very well as discriminators. In pediatric pop-

lations, Levin et al. (2020) found variable reliability estimates across
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Table 4 

Test-retest reliabilities of pediatric power studies. 

Paper 

Age(s) at First 

Test 

Sample 

Size 

Time to 

Retest Paradigm Type of Power 

Reliability 

Measure(s) Frequency Band Reliability 

Winegust et al. 

(2014) 

Mean age of 

15.9 years 

N = 9 1 month Resting-state Absolute ICC Left mid-frontal 

alpha 

0.74 

Right mid-frontal 

alpha 

0.73 

Absolute Pearson’s r Left mid-frontal 

alpha 

0.74 

Right mid-frontal 

alpha 

0.73 

Levin et al. 

(2020) 

Mean age of 

6.6 years 

(TD group) 

N = 26 Median 6 

days 

Resting-state Relative ICC Total power 0.86 

Spectral offset 

(SpecParam) 

ICC Power spectral 

density (PSD) 

0.48 

Aperiodic slope 

(SpecParam) 

ICC Power spectral 

density (PSD) 

0.28 

Number of peaks 

(SpecParam) 

ICC Power spectral 

density (PSD) 

0.02 

Largest alpha peak: 

center (SpecParam) 

ICC Alpha 0.70 

Largest alpha peak: 

amplitude (SpecParam) 

ICC Alpha 0.86 

Largest alpha peak: 

bandwidth (SpecParam) 

ICC Alpha 0.42 

Mean age of 8 

years 

(ASD group) 

N = 21 Median 6 

days 

Resting-state Relative ICC Total power 0.81 

Spectral offset 

(SpecParam) 

ICC Power spectral 

density (PSD) 

0.53 

Aperiodic slope 

(SpecParam) 

ICC Power spectral 

density (PSD) 

0.70 

Number of peaks 

(SpecParam) 

ICC Power spectral 

density (PSD) 

0.23 

Largest alpha peak: 

center (SpecParam) 

ICC Alpha 0.62 

Largest alpha peak: 

amplitude (SpecParam) 

ICC Alpha 0.83 

Largest alpha peak: 

bandwidth (SpecParam) 

ICC Alpha 0.34 

Gasser et al. 

(1985) 

10–13 years N = 26 10 months Resting-state Absolute Spearman rank 

correlations 

Delta 0.59 

Theta 0.70 

Alpha 0.76 

Beta 0.62 

Relative Spearman rank 

correlations 

Delta 0.47 

Theta 0.63 

Alpha 0.76 

Beta 0.76 

Fein et al. 

(1983) 

10–12 years N = 32 4–5 hours Resting-state Absolute ICC Total power > 0.90 

Relative ICC Total power 0.70 - 

0.90 

Vincent et al. 

(2021) 

5 months, 7 

months, or 12 

months 

N = 149 24–31 

months 

Resting-state FAAln Pearson’s r Alpha -0.02 

FAAratio Pearson’s r Alpha -0.02 

FAAlnratio Pearson’s r Alpha -0.07 

FAAlnrel Pearson’s r Alpha 0.36 

Anaya et al. 

(2021) 

8 months N = 43–89 4 months Resting-state Frontal asymmetry Pearson’s r 

(rank-order stability) 

Alpha 0.09 

Delta-Beta coupling Pearson’s r 

(rank-order stability) 

Delta/Beta Ratio -0.06 

6 months Resting-state Frontal asymmetry Pearson’s r 

(rank-order stability) 

Alpha -0.19 

Delta-Beta coupling Pearson’s r 

(rank-order stability) 

Delta/Beta Ratio 0.08 

10 months Resting-state Frontal asymmetry Pearson’s r 

(rank-order stability) 

Alpha 0.27 

Delta-Beta coupling Pearson’s r 

(rank-order stability) 

Delta/Beta Ratio -0.05 

Webb et al. 

(2022) 

6–11.5 years 

(TD Group) 

N = 119 6 weeks Resting-state Absolute ICC Delta 0.39 

Theta 0.51 

Beta 0.68 

Alpha 0.67 

Gamma 0.45 

Aperiodic slope 

(SpecParam) 

ICC 2–50 Hz 0.54 

6–11.5 years 

(ASD Group) 

N = 280 6 weeks Resting-state Absolute ICC Delta 0.66 

Theta 0.68 

Beta 0.75 

Alpha 0.73 

Gamma 0.56 

Aperiodic slope 

(SpecParam) 

ICC 2–50 Hz 0.59 

9 
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aseline EEG SpecParam measures between sessions of about one week

part in typically-developing and autistic children. For example, aperi-

dic slope demonstrated variable reliability estimates between partici-

ant groups, with good reliability in the autism group ( ICC = 0.70) and

oor reliability in the typically-developing group ( ICC = 0.28). Over a

onger period of six weeks, Webb et al. (2022) found that aperiodic slope

ad fair reliability across both a typically-developing group ( ICC = 0 .54)

nd autism group ( ICC = 0 .59). Further, Levin et al. (2020) found

hat other features had poor reliability across all children, including

he number of spectrum peaks. Thus, some SpecParam features may

e more appropriate for biomarker/individual difference investigations

han others over development. Overall, the studies reviewed here in pe-

iatric and adult samples suggest that EEG aperiodic features, such as

periodic slope and offset, may be a reliable source of interindividual

ariation. 

.1.4. Power measurement recommendations 

Given the reliability studies conducted from childhood through

dulthood so far, we offer the following recommendations. 1) Power

easured in canonical frequency bands typically has sufficient in-

ernal consistency and test-retest reliability from childhood through

dulthood to be considered for any individual difference study design.

here is some evidence that measuring power during baseline/resting-

tate conditions produces more reliable estimates than measuring

ower during task paradigms, though in studies to date, power in

oth contexts is adequately reliable for individual difference analy-

es. 2) Relational power features like frontal alpha asymmetry have

hown excellent internal consistency in adult and pediatric sam-

les but display only fair-good test-retest reliability in adulthood

nd inadequate test-retest reliability in studies conducted in infancy

hrough early childhood. 3) Contemporary approaches characterizing

he power spectrum through periodic and aperiodic features (e.g.,

pectral Parameterization, IRASA) show promise for reliable mea-

urement but further testing should be undertaken in both pediatric

nd adult populations to explore optimizing these measurements’ re-

iability for individual difference assessments. Tutorials are available

o guide users through applying spectral parameterization methods

o their data (e.g., Ostlund et al., 2022 ; Voytek Lab ( https://fooof-

ools.github.io/fooof/auto_tutorials/index.html ); Wilson and Cassani

 https://neuroimage.usc.edu/brainstorm/Tutorials/Fooof )). 4) Very lit-

le is reported on internal consistency and test-retest reliability of any

ower measurements in infants and young children. Though test-retest

eliability is especially challenging to measure with fidelity at the

oungest ages when change is most rapid, researchers must begin mea-

uring and reporting internal consistency values for their power mea-

urements at these ages with available tools before using them for indi-

idual difference analyses. 

.2. Event-related potentials 

Event-related potentials (ERPs) have been used extensively across

he lifespan as a temporally-sensitive measure of task-evoked brain ac-

ivity. Analyses often break ERPs down into components, distinct de-

ections in the ERP waveform characterized by location on the scalp,

olarity, timing post-stimulus (i.e., latency), and sometimes task con-

ext. These different ERP components relate to specific cognitive, af-

ective, and perceptual processes in the brain, so ERP components are

eing used in a variety of individual difference study designs, especially

n clinical populations (e.g., Beker et al., 2021 ; Cremone-Caira et al.,

020 ; Webb et al., 2022 ; for best practices in using ERPs in clinical pop-

lations, see ( Kappenman and Luck, 2016 ). Fortunately, there is a large

ody of work evaluating the internal consistency and test-retest relia-

ility profiles of different ERP measurements (for examples, see recent

eta-analysis from Clayson (2020) on reliability of the error-related

egativity (ERN) and this thorough examination of factors influencing
10 
eliability of ERPs from Boudewyn et al. (2018) ). We summarize this lit-

rature with respect to peak amplitude, mean amplitude, and latency to

eak amplitude measurements, the most commonly assessed ERP mea-

ures (though see Clayson et al. (2013) and Luck and Gaspelin (2017) for

rguments against using peak amplitude for reliability reasons). 

.2.1. Internal consistency of ERPs 

Fewer internal consistency studies were identified relative to test-

etest reliability studies across the lifespan that used consistent reliabil-

ty metrics (see Tables 5-8 ). Available evidence ( Cassidy et al., 2012 ;

ämmerer et al., 2012 ; D.M. Olvet and Hajcak, 2009a ; Sandre et al.,

020 ; Walhovd and Fjell, 2002 ) suggests ERP peak amplitude measure-

ents in adults across studies usually demonstrate excellent internal

onsistency ( r SB 

= 0 .77, n = 31 measurements, SE = 0.03; Fig. 2A ). Meanwhile,

dult mean amplitude studies ( Bresin and Verona, 2021 ; Cassidy et al.,

012 ; Foti et al., 2013 ; Hajcak et al., 2017 ; Levinson et al., 2017 ;

eyer et al., 2013 ; Pontifex et al., 2010 ; Sandre et al., 2020 ; Xu and

nzlicht, 2015 ) indicated even higher levels of excellent internal con-

istency across all ERPs ( r SB 

= 0 .85, n = 22 measurements, SE = 0.02; Fig. 2A ).
he P3, a component related to attention and working memory, was most

ommonly evaluated across adult peak amplitude studies ( Cassidy et al.,

012 ; Hämmerer et al., 2012 ; Walhovd and Fjell, 2002 ) and adult

ean amplitude studies ( Bresin and Verona, 2021 ; Cassidy et al., 2012 ),

emonstrating excellent internal consistency for both types of amplitude

easurement (peak: rSB = 0.83, n = 9 measurements, SE = 0.04; mean:

SB = 0.84, n = 8 measurements, SE = 0.04; Fig. 2A ). 

With regard to pediatric studies in childhood and adolescence

 Hämmerer et al., 2012 ; Jetha et al., 2021 ; Meyer et al., 2014 ), the

nternal consistency of peak amplitudes across all ERPs was considered

ood ( rSB = 0.65, n = 15 measurements, SE = 0.04; Fig. 2A ). Mean-

hile, studies measuring mean amplitude across all ERPs in childhood

nd adolescence ( Luking et al., 2017 ; Morales et al., 2022 ; Pontifex et al.,

010 ) indicated excellent internal consistency ( rSB = 0.81, n = 7 mea-

urements, SE = 0.08; Fig. 2A ), outperforming peak amplitude measure-

ent in pediatric samples. However, it is important to note the lim-

ted number of studies evaluating mean amplitude internal consistency

ompared to peak amplitude internal consistency in pediatric samples.

he peak amplitude of the ERN component, related to error processing,

as most commonly measured in pediatric samples for both peak am-

litude ( Meyer et al., 2014 ) and mean amplitude ( Luking et al., 2017 ;

orales et al., 2022 ; Pontifex et al., 2010 ), demonstrating good in-

ernal consistency across studies of ERN peak amplitude ( rSB = 0.60,

 = 4 measurements, SE = 0.10; Fig. 2A ) and excellent internal con-

istency across studies of ERN mean amplitude ( rSB = 0.77, n = 5

easurements, SE = 0.10; Fig. 2A ). Note, once again, the literature

s still quite limited in evaluating the ERN using either peak or mean

mplitude, necessitating additional evidence to more confidently draw

onclusions regarding its reliability. Collectively, evidence to date sug-

ests that mean ERP amplitude measurements across all ages and peak

RP amplitude in adulthood demonstrate excellent internal consistency,

hile peak ERP amplitude in pediatric samples indicates lower inter-

al consistency. Measurements of mean ERP amplitude thus seem the

est candidates to target for individual difference analyses across the

ifespan. 

Internal consistency of ERP latency measurements is not as well-

haracterized. Latencies are typically calculated as latency-to-peak am-

litude. Based on the only three adult papers identified ( Cassidy et al.,

012 ; D.M. Olvet and Hajcak, 2009a ; Walhovd and Fjell, 2002 ), the

nternal consistency of ERP latencies was fair ( rSB = 0.53, n = 19 mea-

urements, SE = 0.07; Fig. 2B ) across components. In pediatric sam-

les, we identified only one paper that found fair ERP latency internal

onsistency ( rSB = 0.50, n = 9 measurements, SE = 0.03; Jetha et al.,

021 ; Fig. 2B ). Acquisition set-ups may affect latency measurements

n more ways than amplitude measurements (which are usually ex-

racted within a temporal window whereas latency measurements are

https://fooof-tools.github.io/fooof/auto_tutorials/index.html
https://neuroimage.usc.edu/brainstorm/Tutorials/Fooof
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Table 5 

Internal consistency of adult ERP peak amplitude and mean amplitude studies. 

Paper Age(s) Sample Size 

Consistency 

Measure ERP Measure(s) Consistency 

Cassidy et al. 

(2012) 

19–35 years N = 25 Spearman-Brown P1 Peak 0.73 

N1 (P08) Peak 0.88 

N1 (P07) Peak 0.89 

P3a Peak 0.93 

P3a Difference Peak 0.66 

P3b Peak 0.73 

P3b Difference Peak 0.63 

ERN Peak 0.64 

ERN Difference Peak 0.72 

Pe Peak 0.88 

Pe Difference Peak 0.89 

P400 Peak 0.87 

N170 Peak 0.81 

ERN Peak-to-Peak 0.51 

ERN Difference Peak-to-Peak 0.44 

P3a Mean 0.9 

P3a Difference Mean 0.70 

P3b Mean 0.68 

P3b Difference Mean 0.71 

Pe Mean 0.76 

Pe Difference Mean 0.85 

P400 Mean 0.88 

Area Under the P3a 0.89 

Area Difference P3a 0.73 

Area Under the P3b 0.63 

Area Difference P3b 0.74 

Area Under the Pe -0.08 

Area Difference Pe 0.84 

Area Under the P400 0.73 

Levinson et al. 

(2017) 

Undergraduates N = 59 Spearman-Brown FN Mean 0.80 

RewP Mean 0.86 

Cronbach’s 𝛼 FN Mean 0.82 

RewP Mean 0.86 

Walhovd & 

Fjell (2002) 

Mean age of 56.1 years N = 59 Spearman-Brown P3 (Pz) Peak 0.92 

P3 (Cz) Peak 0.93 

P3 (Fz) Peak 0.84 

Hämmerer et al. 

(2012) 

Younger adults (mean 

age = 24.27 years) 

N = 47 Spearman-Brown Go-P3 Peak 0.96 

Older adults (mean 

age = 71.24 years) 

N = 47 Spearman-Brown Go-P3 Peak 0.89 

Hajcak et al. 

(2017) 

Not specified N = 53 Spearman-Brown ERN Mean 0.75 

Cronbach’s 𝛼 ERN Mean 0.75 

Meyer et al. 

(2013) 

Mean age of 19.14 years N = 43 Cronbach’s 𝛼 ERN Mean 0.70 

D.M. Olvet and 

Hajack (2009) 

Undergraduates N = 45 Spearman-Brown CRN Peak 0.98 

ERN Peak 0.86 

ERN-CRN Difference Peak 0.80 

Area Under the CRN 0.98 

Area Under the ERN 0.86 

Area Difference ERN-CRN 0.71 

Area Under the Pe 0.87 

Bresin and 

Verona (2021) 

Mean age of 29 years N = 55 Spearman-Brown P3 Incongruent Mean 0.92 

P3 Congruent Mean 0.93 

P3 No-Go Mean 0.95 

P3 Go Mean 0.95 

ERN Mean 0.80 

CRN Mean 0.92 

Pe Mean 0.78 

Pc Mean 0.94 

Foti et al. (2013) 18–65 years 

(Healthy Individuals) 

N = 52 Cronbach’s 𝛼 ERN Mean Flanker 0.86 

ΔERN Mean Flanker 0.84 

Pe Mean Flanker 0.81 

ΔPe Mean Flanker 0.83 

ERN Mean Picture/Word Task 0.41 

ΔERN Mean Picture/Word Task 0.69 

Pe Mean Picture/Word Task 0.66 

ΔPe Mean Picture/Word Task 0.79 

28–68 years 

(Patients with Psychotic 

Illness) 

N = 84 Cronbach’s 𝛼 ERN Mean Flanker 0.63 

ΔERN Mean Flanker 0.48 

Pe Mean Flanker 0.75 

ΔPe Mean Flanker 0.73 

ERN Mean Picture/Word Task 0.35 

ΔERN Mean Picture/Word Task 0.40 

Pe Mean Picture/Word Task 0.28 

ΔPe Mean Picture/Word Task 0.39 

( continued on next page ) 
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Table 5 ( continued ) 

Paper Age(s) Sample Size Consistency 

Measure 

ERP Measure(s) 

Consistency 

Pontifex et al. 

(2010) 

18–25 years and 60–73 

years 

N = 83 Cronbach’s 𝛼 ERN Mean 0.96 

Pe Mean at least 

0.90 

Sandre et al. 

(2020) 

Mean age of 20.1 years N = 263 Spearman-Brown ERN Peak (Cz) 0.80 

ERN Peak (FCavg) 0.76 

CRN Peak (Cz) 0.82 

CRN Peak (FCavg) 0.72 

ERN Peak-to-Peak (Cz) 0.75 

ERN Peak-to-Peak (FCavg) 0.67 

CRN Peak-to-Peak (Cz) 0.54 

CRN Peak-to-Peak (FCavg) 0.47 

ERN Mean (Cz) 0.81 

ERN Mean (FCavg) 0.78 

CRN Mean (Cz) 0.97 

CRN Mean (FCavg) 0.97 

Cronbach’s 𝛼 ERN Peak (Cz) 0.73 

ERN Peak (FCavg) 0.63 

CRN Peak (Cz) 0.77 

CRN Peak (FCavg) 0.68 

ERN Peak-to-Peak (Cz) 0.74 

ERN Peak-to-Peak (FCavg) 0.64 

CRN Peak-to-Peak (Cz) 0.80 

CRN Peak-to-Peak (FCavg) 0.66 

ERN Mean (Cz) 0.63 

ERN Mean (FCavg) 0.57 

CRN Mean (Cz) 0.75 

CRN Mean (FCavg) 0.70 

Xu and 

Inzlicht (2015) 

Mean age of 19.2 years N = 39 Cronbach’s 𝛼 ERN Mean 0.59 

CRN Mean 0.97 

ΔERN Mean 0.74 

Pe Mean 0.94 

ΔPe Mean 0.92 

Table 6 

Internal consistency of pediatric ERP peak amplitude and mean amplitude studies. 

Paper Age(s) Sample Size 

Consistency 

Measure ERP Measure(s) Consistency 

Jetha et al. 

(2021) 

Kindergarten - 

1st grade 

N = 110 Spearman Rho 

(rank order 

stability) 

P1 Peak (O1) 0.59 

P1 Peak (O2) 0.64 

P1 Peak (Oz) 0.69 

N170 Peak (P7) 0.67 

N170 Peak (P8) 0.54 

VPP Peak (Fz) 0.59 

VPP Peak (FC1) 0.62 

VPP Peak (FC2) 0.56 

VPP Peak (Cz) 0.65 

Meyer et al. 

(2014) 

8–13 years N = 44 Spearman-Brown ERN Peak (Fz) Flanker 0.67 

ERN Peak (Cz) Flanker 0.85 

ERN Peak (Fz) Go-NoGo 0.38 

ERN Peak (Cz) Go-NoGo 0.50 

Hämmerer et al. 

(2012) 

Children (mean 

age = 10.15 

years) 

N = 45 Spearman-Brown Go-P3 Peak 0.81 

Adolescents 

(mean 

age = 14.38 

years) 

N = 46 Spearman-Brown Go-P3 Peak 0.91 

Luking et al. 

(2017) 

8–14 years N = 177 Spearman-Brown ERN Gain Mean 0.85 

ERN Loss Mean 0.86 

ERN Difference (Gain-Loss) Mean 0.36 

Morales et al. 

(2022) 

4–9 years N = 326 Spearman-Brown ERN Correct Mean 0.96 

ERN Error Mean 0.80 

Pe Correct Mean 0.98 

Pe Error Mean 0.89 

Pontifex et al. 

(2010) 

8–11 years N = 83 Cronbach’s 𝛼 ERN Mean at least 

0.90 

Pe Mean at least 

0.90 

12 
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Table 7 

Internal consistency of adult ERP latencies (to peak amplitudes) studies. 

Paper Age(s) Sample Size 

Consistency 

Measure ERP Measure(s) Consistency 

Cassidy et al. 

(2012) 

19–35 years N = 25 Spearman-Brown P1 0.70 

N1 (O2) 0.86 

N1 (P07) 0.93 

P3a 0.38 

P3a Difference 0.34 

P3b 0.01 

P3b Difference 0.03 

ERN 0.39 

ERN Difference 0.15 

Pe 0.52 

Pe Difference 0.30 

P400 0.05 

N170 0.87 

Walhovd & 

Fjell (2002) 

Mean age 56.1 

years 

N = 59 Spearman-Brown P3 (Pz) 0.77 

P3 (Cz) 0.79 

P3 (Fz) 0.77 

D.M. Olvet and 

Hajack (2009) 

Undergraduates N = 45 Spearman-Brown CRN 0.86 

ERN 0.56 

ERN-CRN Difference 0.71 

Table 8 

Internal consistency of pediatric ERP latencies (to peak amplitudes) studies. 

Paper Age(s) Sample Size 

Consistency 

Measure ERP Measure(s) Consistency 

Jetha et al. 

(2021) 

Kindergarten - 

1st grade 

N = 110 Spearman Rho 

(rank order 

stability) 

P1 (O1) 0.57 

P1 (O2) 0.36 

P1 (Oz) 0.37 

N170 (P7) 0.52 

N170 (P8) 0.53 

VPP (Fz) 0.55 

VPP (FC1) 0.55 

VPP (FC2) 0.53 

VPP (Cz) 0.51 

Fig. 2. Internal consistency of event-related potentials (ERP). A: Average internal consistency values calculated using the Spearman-Brown Formula for all adult 

ERP peak amplitudes, all adult ERP mean amplitudes, adult P3 peak amplitudes, adult P3 mean amplitudes, all pediatric ERP peak amplitudes, all pediatric ERP 

mean amplitudes, pediatric ERN peak amplitudes, and pediatric ERN mean amplitudes. B: Average internal consistency values calculated using the Spearman-Brown 

Formula for all adult ERP latencies (to peak amplitudes) and all pediatric ERP latencies. 
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ot). For example, the precision of presentation timing may particu-

arly impact latency measurements, though recent hardware solutions

e.g., the Cedrus Stimtracker) may improve latency reliability mea-

urements relative to historical measurements. Further testing is re-

uired across the lifespan to evaluate the consistency of ERP latency
easurements. a  

13 
.2.2. Test-retest reliability of ERPs 

There is a robust test-retest reliability literature for ERPs across the

ifespan, so to compare and summarize across results, we focus here

n studies that calculated intraclass correlation coefficients (ICC) as

he measure of test-retest reliability for both peak amplitude and mean

mplitude (see Tables 9-12 ). Intraclass correlation coefficients are the
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Table 9 

Test-retest reliabilities of adult ERP peak amplitude and mean amplitude studies. 

Paper Age(s) at First Test Sample Size Time to Retest ERP Measure(s) 

Reliability 

(ICC) 

Taylor et al. (2016) 19–28 years N = 32 1–2 weeks CNV O-wave Component Mean 0.58 

CNV E-wave Component Mean 0.19 

Total CNV Mean 0.05 

N1 Baseline-to-Peak 0.41 

N1 Peak-to-Peak 0.26 

P2 Baseline-to-Peak 0.74 

P2 Peak-to-Peak 0.71 

N2 Baseline-to-Peak 0.65 

N2 Peak-to-Peak 0.47 

P3 Baseline-to-Peak 0.75 

P3 Peak-to-Peak 0.57 

Lin et al. (2020) 18–30 years N = 53 1–3 weeks ERN Peak-to-Peak 0.69 

Pe Peak-to-Peak 0.74 

Weinberg and 

Hajcak (2011) 

Mean age of 21.12 

years 

N = 26 1.5–2.5 years ERN Peak 0.62 

CRN Peak 0.55 

ΔERN Peak 0.60 

Area Under the ERN 0.62 

Area Under the CRN 0.72 

Area Difference ΔERN 0.66 

Area Under the Pe 0.68 

Area Around the ERN Peak 0.66 

Area Around the CRN Peak 0.66 

Area Around the Δpeak 0.56 

Levinson et al. 

(2017) 

Undergraduates N = 59 1 week RewP Mean 0.62 

FN Mean 0.81 

ΔRewP Mean 0.43 

Fallgatter et al. 

(2001) 

22–60 years N = 23 30 min P300 Go Peak 0.85 

P300 NoGo Peak 0.92 

Brunner et al. (2013) Median age 27.5 years N = 26 6–18 months P3 NoGo Wave Peak 0.81 

IC P3 NoGo Early Peak 0.85 

IC P3 NoGo Late Peak 0.80 

Hämmerer et al. 

(2012) 

Younger adults (mean 

age = 24.27 years) 

N = 47 2 weeks P2 Peak CPT Go Trials 0.83 

N2 Peak CPT Go Trials 0.79 

P3 Peak CPT Go Trials 0.56 

P2-N2 Peak CPT Go Trials 0.76 

P2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.59 

N2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.63 

P3 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.64 

P2-N2 Peak Reinforcement 

Learning Task (Avg Gain/Loss) 

0.67 

Older adults (mean 

age = 71.24 years) 

N = 47 2 weeks P2 Peak CPT Go Trials 0.75 

N2 Peak CPT Go Trials 0.76 

P3 Peak CPT Go Trials 0.77 

P2-N2 Peak CPT Go Trials 0.67 

P2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.83 

N2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.73 

P3 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.70 

P2-N2 Peak Reinforcement 

Learning Task (Avg Gain/Loss) 

0.78 

Cassidy et al. (2012) 19–35 years old N = 25 1 month P1 Peak 0.76 

N1 (P08) Peak 0.87 

N1 (P07) Peak 0.91 

P3a Peak 0.77 

P3a Difference Peak 0.64 

P3b Peak 0.77 

P3b Difference Peak 0.52 

ERN Peak 0.74 

ERN Difference Peak 0.87 

Pe Peak 0.71 

Pe Difference Peak 0.85 

P400 Peak 0.85 

N170 Peak 0.84 

ERN Peak-to-Peak 0.76 

ERN Difference Peak-to-Peak 0.56 

P3a Mean 0.78 

P3a Difference Mean 0.82 

P3b Mean 0.80 

( continued on next page ) 
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Table 9 ( continued ) 

Paper Age(s) at First Test Sample Size Time to Retest ERP Measure(s) Reliability 

(ICC) 

P3b Difference Mean 0.73 

Pe Mean 0.62 

Pe Difference Mean 0.74 

P400 Mean 0.85 

Area Under the P3a 0.78 

Area Difference P3a 0.82 

Area Under the P3b 0.83 

Area Difference P3b 0.59 

Area Under the Pe 0.54 

Area Difference Pe 0.78 

Area Under the P400 0.80 

Huffmeijer et al. 

(2014) 

18–22 years N = 10 4 weeks VPP Mean 0.95 

N170 Mean (Avg Left/Right) 0.91 

MFN Mean 0.09 

P3 Mean (Avg Left/Right) 0.63 

LPP Mean 0.85 

Segalowitz et al. 

(2010) 

Mean age of 28.2 years N = 11 20 min ERN (Fz) Peak-to-Peak 0.66 

ERN (FCz) Peak-to-Peak 0.79 

ERN (Cz) Peak-to-Peak 0.73 

Sinha et al. (1992) Mean age of 36.48 

years 

N = 44 14 months Visual N1 Peak (Avg Oz, Cz, Pz) 0.69 

Visual N2 Peak (Avg Oz, Cz, Pz) 0.66 

Visual P3 Peak (Avg Cz, Pz) 0.69 

Auditory N1 Peak (Cz) 0.66 

Auditory N2 Peak (Cz) 0.47 

Auditory P3 Peak (Avg Cz, Pz) 0.56 

Kinoshita et al. 

(1996) 

29–52 years N = 10 1 week P300 Baseline-to-Peak 0.49 

N100 Baseline-to-Peak 0.58 

N200 Baseline-to-Peak 0.51 

N100-P300 Peak-to-Peak 0.48 

N200-P300 Peak-to-Peak 0.54 

Rentzsch et al. 

(2008) 

19–51 years N = 41 4 weeks P50 Base-to-Peak 0.86 

N100 Base-to-Peak 0.71 

P200 Base-to-Peak 0.82 

P50 Peak-to-Peak 0.89 

N100 Peak-to-Peak 0.70 

P200 Peak-to-Peak 0.78 

Malcolm et al. 

(2019) 

Mean age of 24.2 years N = 12 Mean of 2.3 years Frontocentral N2 Mean 0.42 

Central N2 Mean 0.61 

Centroparietal N2 Mean 0.28 

Frontocentral P3 Mean 0.61 

Central P3 Mean 0.61 

Centroparietal P3 Mean 0.40 

Thesen and 

Murphy (2002) 

Younger adults and 

elderly 

N = 20 4 weeks N1 Baseline-to-Peak 0.51 

P2 Baseline-to-Peak 0.27 

P3 Baseline-to-Peak 0.50 

N1-P2 Peak-to-Peak 0.55 

N1-P3 Peak-to-Peak 0.52 

D.M. Olvet and 

Hajack (2009) 

Undergraduates N = 45 2 weeks CRN Peak 0.58 

ERN Peak 0.70 

ERN-CRN Difference Peak 0.51 

Area Under the CRN 0.78 

Area Under the ERN 0.70 

Area Difference ERN-CRN 0.47 

Area Under the Pe 0.75 

Larson et al. (2010) 19–29 years N = 20 2 weeks ERN Mean 0.66 

CRN Mean 0.75 

Pe Mean (Error Trials) 0.48 

Pe Mean (Correct Trials) 0.68 

Sandre et al. (2020) Mean age of 18.2 years N = 33 5 months ERN Peak (Cz) 0.67 

ERN Peak (FCavg) 0.57 

CRN Peak (Cz) 0.67 

CRN Peak (FCavg) 0.66 

ΔERN Peak (Cz) 0.47 

ΔERN Peak (FCavg) 0.39 

ERN Peak-to-Peak (Cz) 0.56 

ERN Peak-to-Peak (FCavg) 0.39 

CRN Peak-to-Peak (Cz) 0.54 

CRN Peak-to-Peak (FCavg) 0.21 

ΔERN Peak-to-Peak (Cz) 0.46 

ΔERN Peak-to-Peak (FCavg) 0.15 

ERN Mean (Cz) 0.62 

ERN Mean (FCavg) 0.59 

CRN Mean (Cz) 0.71 

CRN Mean (FCavg) 0.62 

ΔERN Mean (Cz) 0.46 

ΔERN Mean (FCavg) 0.26 

( continued on next page ) 
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Table 9 ( continued ) 

Paper Age(s) at First Test Sample Size Time to Retest ERP Measure(s) Reliability 

(ICC) 

Suchan et al. (2018) 20–28 years N = 14 28 days ERN Peak (Cz) 0.89 

CRN Peak (Cz) 0.74 

ERN-CRN Difference Peak (Cz) 0.63 

ERN Peak (FCz) 0.95 

CRN Peak (FCz) 0.75 

ERN-CRN Difference Peak (FCz) 0.79 

Area Under the ERN (Cz) 0.83 

Area Under the CRN (Cz) 0.80 

Area Difference ERN-CRN (Cz) 0.74 

Area Under the ERN (FCz) 0.81 

Area Under the CRN (FCz) 0.68 

Area Difference ERN-CRN (FCz) 0.59 

Hall et al. (2006) 19–55 years N = 19 Mean of 17.8 

days 

MMN Peak 0.67 

P300 Peak 0.86 

P50 Peak (Conditioning Paradigm) 0.56 

P50 Peak (Testing Paradigm) 0.57 

MMN Mean 0.66 

Wang et al. (2021) 18–25 years N = 16 3–4 days Duration-Related MMN Peak 0.70 

Frequency-Related MMN Peak 0.73 

Lew et al. (2007) 18–58 years 

(Healthy Control 

Group) 

N = 21 Median of 6.5 

days 

N1 Peak 0.66 

MMN Peak 0.60 

P3 Peak 0.84 

N4 Peak 0.63 

20–53 years 

(TBI Group) 

N = 7 Median of 6.5 

days 

N1 Peak 0.70 

MMN Peak 0.21 

P3 Peak -0.02 

N4 Peak 0.31 

Light and 

Braff (2005) 

Adults (Schizophrenia 

Group) 

N = 10 Mean of 578 days MMN Mean 0.77 

Chen et al. (2018) 20–26 years N = 20 7 hours MMN Mean (Happy Silent Movie 

Task) 

0.41 

MMN Mean (Happy 2-Back 

Working Memory Task) 

0.11 

MMN Mean (Angry Silent Movie 

Task) 

0.29 

MMN Mean (Angry 2-Back 

Working Memory Task) 

0.48 

2 weeks MMN Mean (Happy Silent Movie 

Task) 

0.40 

MMN Mean (Happy 2-Back 

Working Memory Task) 

0.54 

MMN Mean (Angry Silent Movie 

Task) 

0.49 

MMN Mean (Angry 2-Back 

Working Memory Task) 

0.24 

Jiao et al. (2022) Adults (Schizophrenia 

Group) 

N = 34 2 days Duration-Related MMN Peak > 0.60 

Frequency-Related MMN Peak < 0.40 
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2  
ost commonly used measure of reliability across ERP studies, provid-

ng the largest number of studies for direct comparison. Further, ICCs

ere the predominant measure used across more recent ERP reliabil-

ty studies, providing the most current reliability estimates in the liter-

ture . Across all adult papers that calculated ICCs for ERP peak am-

litude ( Brunner et al., 2013 ; Cassidy et al., 2012 ; Fallgatter et al.,

001 ; Hall et al., 2006 ; Hämmerer et al., 2012 ; Kinoshita et al.,

996 ; Lew et al., 2007 ; Lin et al., 2020 ; Olvet and Hajcak, 2009a ;

entzsch et al., 2008 ; Sandre et al., 2020 ; Segalowitz et al., 2010 ;

inha et al., 1992 ; Suchan et al., 2019 ; Taylor et al., 2016 ; Thesen and

urphy, 2002 ; Wang et al., 2021 ; Weinberg and Hajcak, 2011 ), reliabil-

ty was generally good ( ICC = 0.65, n = 109 measurements, SE = 0.02),

hough over a third of the studies did not report ICCs greater than

he commonly-used threshold of 0.6 for inclusion in individual differ-

nce studies (7/20 studies). The effect of time to retest across stud-

es with adults was also considered (range = 20 min – 2 years; see

ig. 3A ). Meanwhile, across all adult studies that calculated ICCs for

ean amplitude ( Cassidy et al., 2012 ; Chen et al., 2018 ; Hall et al.,

006 ; Huffmeijer et al., 2014 ; Larson et al., 2010 ; Levinson et al.,

017 ; Light and Braff, 2005 ; Malcolm et al., 2019 ; Sandre et al., 2020 ;
16 
aylor et al., 2016 ), reliability was only fair ( ICC = 0.56, n = 44

easurements, SE = 0.03), regardless of time to retest (range = 7

ours – 2.3 years; see Fig. 3B ). Further, the overall test-retest reliabil-

ty across ERP peak amplitude measurements in studies with pediatric

opulations ( Beker et al., 2021 ; Hämmerer et al., 2012 ; Jetha et al.,

021 ; Kompatsiari et al., 2016 ; Lin et al., 2020 ; Segalowitz et al.,

010 ; Taylor et al., 2016 ; Webb et al., 2022 ) achieved good relia-

ility ( ICC = 0.60, n = 73 measurements, SE = 0.02), without much

hange as a function of time to retest (range = 30 min – 1.15 years; see

ig. 3C ). Meanwhile, pediatric ERP mean amplitude studies ( Cremone-

aira et al., 2020 ; Kujawa et al., 2018 , 2013 ; Munsters et al., 2019 ;

aylor et al., 2016 ; Webb et al., 2022 ) only reached fair reliability

 ICC = 0.52, n = 29 measurements, SE = 0.04). Pediatric mean am-

litude reliability also did not demonstrate a specific trend as time to

etest increased (range = 1.5 weeks – 6 years; see Fig. 3D ). 

As with internal consistency, the test-retest reliability of ERP latency

easurements was lower than for ERP peak amplitude and mean am-

litude measurements in adults. Across the adult studies ( Brunner et al.,

013 ; Cassidy et al., 2012 ; Chen et al., 2018 ; Fallgatter et al.,

001 ; Hall et al., 2006 ; Huffmeijer et al., 2014 ; Jiao et al., 2022 ;
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Table 10 

Test-retest reliabilities of pediatric ERP peak amplitude and mean amplitude studies. 

Paper Age(s) at First Test Sample Size Time to Retest ERP Measure(s) 

Reliability 

(ICC) 

Munsters et al. (2019) 9–10 months N = 31 2 weeks N290 Mean 0.76 

P400 Mean 0.58 

Nc Mean 0.57 

Kompatsiari et al. 

(2016) 

Mean age 12.2 years 

(ADHD Group) 

N = 22 30 min P1 Peak Occipital 0.96 

N1 Peak Occipital 0.86 

P2 Peak NoGo Wave 0.94 

N2 Peak NoGo Wave 0.68 

P3 Peak Go Wave 0.85 

IC P3 Peak Go Wave 0.80 

P3 Peak NoGo Wave 0.81 

IC P3 Peak NoGo Wave Early 0.77 

IC P3 Peak NoGo Wave Late 0.78 

Cremone-Caira et al. 

(2020) 

7–11 years 

(ASD Group) 

N = 21 (Flanker) 3 months N2 Mean ’Congruent’ Flanker Task 0.54 

N2 Mean ’Incongruent’ Flanker 

Task 

0.63 

N = 14 

(Go/Nogo) 

3 months N2 Mean ’Go’ Go/Nogo Task 0.82 

N2 Mean ’Nogo’ Go/Nogo Task 0.58 

Taylor et al. (2016) 7–13 years N = 51 1–2 weeks CNV E-wave Component Mean 0.50 

Total CNV Mean 0.33 

N1 Baseline-to-Peak 0.51 

N1 Peak-to-Peak 0.24 

P2 Baseline-to-Peak 0.39 

P2 Peak-to-Peak 0.53 

N2 Baseline-to-Peak 0.53 

N2 Peak-to-Peak 0.59 

P3 Baseline-to-Peak 0.48 

P3 Peak-to-Peak 0.52 

Lin et al. (2020) 8–12 years N = 118 1–3 weeks ERN Peak-to-Peak 0.54 

Pe Peak-to-Peak 0.60 

Kujawa et al. (2013) 8–13 years N = 34 2 years Neutral Parietal LPP Mean 0.61 

Pleasant Parietal LPP Mean 0.73 

Unpleasant Parietal LPP Mean 0.66 

Neutral Occipital LPP Mean 0.55 

Pleasant Occipital LPP Mean 0.64 

Unpleasant Occipital LPP Mean 0.60 

Pleasant-Neutral Parietal LPP 

Mean 

0.11 

Unpleasant-Neutral Partietal LPP 

Mean 

0.46 

Pleasant-Neutral Occipital LPP 

Mean 

0.15 

Unpleasant-Neutral Occipital LPP 

Mean 

0.26 

Jetha et al. (2021) Kindergarten - 1st grade N = 110 0.8–1.5 years P1 Peak (O1) 0.49 

P1 Peak (O2) 0.62 

P1 Peak (Oz) 0.59 

N170 Peak (P7) 0.54 

N170 Peak (P8) 0.49 

VPP Peak (Fz) 0.48 

VPP Peak (FC1) 0.52 

VPP Peak (FC2) 0.52 

VPP Peak (Cz) 0.62 

Hämmerer et al. (2012) Children (mean 

age = 10.15 years) 

N = 45 2 weeks P2 Peak CPT Go Trials 0.72 

N2 Peak CPT Go Trials 0.40 

P3 Peak CPT Go Trials 0.61 

P2-N2 Peak CPT Go Trials 0.65 

P2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.61 

N2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.44 

P3 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.60 

P2-N2 Peak Reinforcement 

Learning Task (Avg Gain/Loss) 

0.54 

Adolescents (mean 

age = 14.38 years) 

N = 46 2 weeks P2 Peak CPT Go Trials 0.66 

N2 Peak CPT Go Trials 0.59 

P3 Peak CPT Go Trials 0.60 

P2-N2 Peak CPT Go Trials 0.69 

P2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.77 

N2 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.67 

P3 Peak Reinforcement Learning 

Task (Avg Gain/Loss) 

0.64 

P2-N2 Peak Reinforcement 

Learning Task (Avg Gain/Loss) 

0.66 

( continued on next page ) 17 
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Table 10 ( continued ) 

Paper Age(s) at First Test Sample Size Time to Retest ERP Measure(s) Reliability 

(ICC) 

Segalowitz et al. (2010) 15 years N = 28 3–6 weeks ERN (Fz) Peak-to-Peak Flanker 0.11 

ERN (FCz) Peak-to-Peak Flanker 0.40 

ERN (Cz) Peak-to-Peak Flanker 0.59 

ERN (Fz) Peak-to-Peak Go/NoGo 0.41 

ERN (FCz) Peak-to-Peak Go/NoGo 0.51 

ERN (Cz) Peak-to-Peak Go/NoGo 0.61 

Beker et al. (2021) 6–9.4 years 

(ASD Group) 

N = 33 Mean of 5.2 

months 

VEP N1 Peak 0.86 

VEP P1 Peak 0.79 

AEP N1 Peak Cue 0.79 

AEP P2 Peak Cue 0.75 

VEP P2 Peak 0.72 

AEP N1 Peak No-Cue 0.75 

AEP P1 Peak Cue 0.44 

AEP P1 Peak No-Cue 0.33 

AEP P2 Peak No-Cue 0.26 

Kujawa et al. (2018) 9 years N = 75 3 years RewP Gain Mean 0.62 

RewP Loss Mean 0.53 

13 years N = 75 3 years RewP Gain Mean 0.61 

RewP Loss Mean 0.57 

9 years N = 75 6 years RewP Gain Mean 0.51 

RewP Loss Mean 0.53 

Webb et al. (2022) 6–11.5 years 

(TD Group) 

N = 119 6 weeks VEP N1 Peak 0.68 

VEP P100 Peak 0.74 

P100 Peak Upright Faces 0.70 

N170 Peak Upright Faces 0.71 

N200 Peak Biological Motion 

Specificity Effect 

0.10 

P3 Mean Biological Motion 

Specificity Effect 

0.15 

P100 Peak Biological Motion 0.67 

N200 Peak Biological Motion 0.77 

P3 Mean Biological Motion 0.71 

6–11.5 years 

(ASD Group) 

N = 280 6 weeks VEP N1 Peak 0.73 

VEP P100 Peak 0.70 

P100 Peak Upright Faces 0.72 

N170 Peak Upright Faces 0.74 

N200 Peak Biological Motion 

Specificity Effect 

0.03 

P3 Mean Biological Motion 

Specificity Effect 

0.02 

P100 Peak Biological Motion 0.67 

N200 Peak Biological Motion 0.69 

P3 Mean Biological Motion 0.67 
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b  
inoshita et al., 1996 ; Larson et al., 2010 ; Lew et al., 2007 ; Lin et al.,

020 ; Malcolm et al., 2019 ; Olvet and Hajcak, 2009a ; Rentzsch et al.,

008 ; Sinha et al., 1992 ; Suchan et al., 2019 ; Taylor et al., 2016 ;

hesen and Murphy, 2002 ; Weinberg and Hajcak, 2011 ), latency test-

etest reliability was generally only fair ( ICC = 0.48, n = 83 measure-

ents, SE = 0.03) regardless of time to retest (range = 30 min – 2.3

ears, see Fig. 3E ). The average ERP latency reliability in pediatric pop-

lations was also only fair ( ICC = 0.54, n = 30 measurements, SE = 0.04;

etha et al., 2021 ; Kompatsiari et al., 2016 ; Lin et al., 2020 ; Taylor et al.,

016 ; Webb et al., 2022 ), although slightly higher than ERP latency reli-

bility in adult studies. There was no discernable trend as time to retest

ncreased in the pediatric reliability papers, and we draw no conclu-

ions from this pattern given the limited number of studies involved

see Fig. 3F ). 

.2.3. ERP measurement recommendations 

To summarize, the reliability profile of ERP measurements in ex-

ant studies depends on both the type of ERP measure (peak amplitude

s. mean amplitude vs. latency) and the population that is being stud-

ed (adult vs. pediatric). ERP peak amplitude and mean amplitude are

ar more consistent than ERP latency to peak amplitude in the papers

eviewed here across the lifespan. Further, while ERP peak and mean

mplitudes often achieved similar internal consistency levels in adults,

RP mean amplitude achieved far better levels of internal consistency
18 
han peak amplitude in pediatric samples, elevating internal consistency

stimates in pediatric samples to the same level as seen in adult studies.

e note that Luck et al. (2021) have recently raised important issues

ith respect to measuring internal consistency for peak (amplitude and

atency) ERP measures, as the average ERP waveform does not have the

ame peak properties as the average of the individual trial values. Re-

earchers can shift to bootstrapped estimates of internal consistency for

uch peak measures moving forward ( Boudewyn et al., 2018 ; Luck et al.,

021 ) (and indeed all software recommended for calculating internal

onsistency in this manuscript uses bootstrapped estimates of internal

onsistency). Test-retest reliability for ERP measures was highly variable

t all ages and requires further examination to optimize these measures

or most individual difference analyses. 

Given current evidence, we recommend the following: 1. In general,

reat care is needed when measuring ERP latencies to peak amplitude,

nd further studies should seek to optimize these measurements across

he lifespan, as well as the measurement of their internal consistency

hrough bootstrapped methods (see Luck et al., 2021 ). Still, evidence

o date suggests this type of measurement makes for poor candidate

ndividual difference markers across the lifespan. In addition to the

eed for bootstrapped approaches to adequately measure internal con-

istency for peak measures like latency to peak amplitude, as speculated

y Olvet and Hajcak (2009a) and Weinberg and Hajcak (2011) , relia-

ility may be poor for ERP latencies due to high variability in response



K.L. Lopez, A.D. Monachino, K.M. Vincent et al. NeuroImage 275 (2023) 120116 

Table 11 

Test-retest reliabilities of adult ERP latencies (to peak amplitudes) studies. 

Paper Age(s) at First Test Sample Size Time to Retest ERP Measure(s) 

Reliability 

(ICC) 

Taylor et al. 

(2016) 

19–28 years N = 32 1–2 weeks N1 0.51 

P2 0.59 

N2 0.64 

P3 0.30 

Lin et al. (2020) 18–30 years N = 53 1–3 weeks ERN 0.33 

Pe 0.52 

Weinberg and 

Hajcak (2011) 

Mean age of 21.12 

years 

N = 26 1.5–2.5 years ERN 0.29 

CRN -0.08 

ΔERN -0.14 

Fallgatter et al. 

(2001) 

22–60 years N = 23 30 min P300 Go 0.70 

P300 NoGo 0.75 

Brunner et al. 

(2013) 

Median age 27.5 years N = 26 6–18 months P3 NoGo Wave Peak 0.90 

IC P3 NoGo Early Peak 0.86 

IC P3 NoGo Late Peak 0.79 

Cassidy et al. 

(2012) 

19–35 years old N = 25 1 month P1 0.58 

N1 (P08) 0.53 

N1 (P07) 0.87 

P3a 0.38 

P3a Difference 0.88 

P3b 0.41 

P3b Difference 0.18 

ERN 0.45 

ERN Difference 0.30 

Pe 0.43 

Pe Difference 0.39 

P400 0.19 

N170 0.76 

Huffmeijer et al. 

(2014) 

18–22 years N = 10 4 weeks VPP 0.51 

N170 (Avg Left/Right) 0.49 

MFN 0.66 

P3 (Avg Left/Right) 0.32 

Sinha et al. 

(1992) 

Mean age of 36.48 N = 44 14 months Visual N1 (Avg Oz, Cz, Pz) 0.56 

Visual N2 (Avg Oz, Cz, Pz) 0.40 

Visual P3 (Avg Cz, Pz) 0.24 

Auditory N1 (Cz) 0.73 

Auditory N2 (Cz) 0.54 

Auditory P3 (Avg Cz, Pz) 0.23 

Kinoshita et al. 

(1996) 

29–52 years N = 10 1 week P300 0.38 

N100 0.53 

N200 0.22 

Rentzsch et al. 

(2008) 

19–51 years N = 41 4 weeks P50 0.73 

N100 0.54 

P200 0.55 

Malcolm et al. 

(2019) 

Mean age of 24.2 years N = 12 Mean of 2.3 years Frontocentral N2 0.68 

Central N2 0.69 

Centroparietal N2 0.68 

Frontocentral P3 0.51 

Central P3 0.55 

Centroparietal P3 0.68 

Thesen and 

Murphy (2002) 

Younger adults and 

elderly 

N = 20 4 weeks N1 0.50 

P2 0.82 

P3 0.73 

D.M. Olvet and 

Hajack (2009) 

Undergraduates N = 45 2 weeks CRN -0.02 

ERN 0.42 

ERN-CRN Difference 0.24 

Larson et al. 

(2010) 

19–29 years N = 20 2 weeks ERN 0.33 

CRN 0.63 

Suchan et al. 

(2018) 

20–28 years N = 14 28 days ERN (Cz) 0.57 

CRN (Cz) 0.57 

ERN-CRN Difference (Cz) 0.53 

ERN (FCz) 0.35 

CRN (FCz) 0.14 

ERN-CRN Difference (FCz) 0.69 

Hall et al. (2006) 19–55 years N = 19 Mean of 17.8 

days 

MMN 0.34 

P300 0.88 

Lew et al. (2007) 18–58 years 

(Healthy Control 

Group) 

N = 21 Median of 6.5 

days 

N1 0.61 

MMN 0.70 

P3 0.64 

N4 -0.08 

20–53 years 

(TBI Group) 

N = 7 Median of 6.5 

days 

N1 0.80 

MMN 0.50 

P3 -0.17 

N4 -0.75 

( continued on next page ) 
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Table 11 ( continued ) 

Paper Age(s) at First Test Sample Size Time to Retest ERP Measure(s) Reliability 

(ICC) 

Chen et al. 

(2018) 

20–26 years N = 20 7 hours MMN (Happy Silent Movie Task) 0.51 

MMN (Happy 2-Back Working 

Memory Task) 

0.54 

MMN (Angry Silent Movie Task) 0.67 

MMN (Angry 2-Back Working 

Memory Task) 

0.68 

2 weeks MMN (Happy Silent Movie Task) 0.37 

MMN (Happy 2-Back Working 

Memory Task) 

0.41 

MMN (Angry Silent Movie Task) 0.65 

MMN (Angry 2-Back Working 

Memory Task) 

0.61 

Jiao et al. (2022) Adults (Schizophrenia 

Group) 

N = 34 2 days Duration-Related MMN 0.34 

Frequency-Related MMN 0.02 

Table 12 

Test-retest reliabilities of pediatric ERP latencies (to peak amplitudes) studies. 

Paper 

Age(s) at First 

Test Sample Size Time to Retest ERP Measure(s) 

Reliability 

(ICC) 

Kompatsiari et al. 

(2016) 

Mean age 12.2 

years 

(ADHD Group) 

N = 22 30 min P1 Occipital 0.89 

N1 Occipital 0.75 

P2 NoGo Wave 0.90 

N2 NoGo Wave 0.70 

P3 Go Wave 0.31 

IC P3 Go Wave 0.72 

P3 NoGo Wave 0.69 

IC P3 NoGo Wave Early 0.83 

IC P3 NoGo Wave Late 0.78 

Taylor et al. 

(2016) 

7–13 years N = 51 1–2 weeks N1 0.21 

P2 0.31 

N2 0.21 

P3 0.29 

Lin et al. (2020) 8–12 years N = 118 1–3 weeks ERN 0.16 

Pe 0.18 

Jetha et al. 

(2021) 

Kindergarten - 

1st grade 

N = 110 0.8–1.5 years P1 (O1) 0.47 

P1 (O2) 0.30 

P1 (Oz) 0.30 

N170 (P7) 0.49 

N170 (P8) 0.60 

VPP (Fz) 0.52 

VPP (FC1) 0.54 

VPP (FC2) 0.45 

VPP (Cz) 0.48 

Webb et al. 

(2022) 

6–11.5 years 

(TD Group) 

N = 119 6 weeks VEP P100 0.59 

P100 Upright Faces 0.69 

N170 Upright Faces 0.75 

6–11.5 years 

(ASD Group) 

N = 280 6 weeks VEP P100 0.70 

P100 Upright Faces 0.68 

N170 Upright Faces 0.66 
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imes on the individual level. There may also be error contributed by

hanging or imperfect equipment’s stimulus presentation timing preci-

ion over the course of the experiment that increases error in latency

easurements relative to amplitude measurement. 2. Though ERP peak

mplitudes generally provide adequate reliability, they may not reflect

he optimal way to index ERPs for individual differences analyses, espe-

ially for pediatric samples. That is, mean amplitude for a given compo-

ent has been shown to be a more robust ERP measure in these regards

 Clayson et al., 2013 ), and we encourage researchers to consider this

lternative measurement moving forward (to that end, our open-source

oftware for calculating ERPs, HAPPE + ER ( Monachino et al., 2022 ), pro-

ides mean amplitudes as standard calculated measures in the Genera-

eERPs function). 3. We note that the papers included here mainly used

ognitive tasks to measure ERPs, so less is known about how reliable

hese measurements are across a wider range of paradigms (e.g., per-

eptual or affective tasks). Future research should assess the generaliza-

ion of these reliability patterns. 4. Importantly, there is also a startling
20 
ack of work evaluating ERP internal consistency or test-retest reliabil-

ty in infancy, with only one study found at the time of this review

 Munsters et al., 2019 ). It is critical that the field conducts reliability

ssessments before middle childhood. 

.3. Nonlinear measures 

A rapidly growing literature quantifies EEG signal dynamics by mea-

uring nonlinear time series characteristics. Though originally applied

o EEG data in 1985 ( Babloyantz et al., 1985 ), nonlinear measures have

nly recently begun to gain traction in EEG analyses, in part because

echnological advances can now more readily handle their computa-

ional burden. These nonlinear measurements most commonly capture

he variability and/or predictability of the EEG signal across different

imescales and/or frequencies ( Stam, 2005 ). Importantly, there is not

et consensus about their optimal measurement parameters, including

he segment lengths over which they are calculated, which impacts the
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Fig. 3. Internal consistency and test-retest reliability of event-related potentials (ERP). A: Average internal consistency values calculated using the Spearman-Brown 

Formula for all adult ERP peak amplitudes, adult P3 peak amplitudes, all pediatric ERP peak amplitudes, and pediatric ERN peak amplitudes. B: Average internal 

consistency values calculated using the Spearman-Brown Formula for all adult ERP latencies (to peak amplitudes) and all pediatric ERP latencies. C: Test-retest values 

calculated using intra-class correlations for each adult ERP amplitude study based on time between testing sessions (in months). D: Test-retest values calculated 

using intra-class correlations for each adult ERP latency study based on time between testing sessions (in months). E: Test-retest values calculated using intra-class 

correlations for each pediatric ERP amplitude study based on time between testing sessions (in months). F: Test-retest values calculated using intra-class correlations 

for each pediatric ERP latency study based on time between testing sessions (in months). Green markers denote same-day time to retest. 

21 
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Table 13 

Test-retest reliabilities of adult nonlinear measures studies. 

Paper 

Age(s) at First 

Test Sample Size Time to Retest 

Reliability 

Measure(s) 

Nonlinear 

Measure(s) Reliability (ICC) 

Gudmundssen 

et al. (2007) 

Mean age of 71.7 

years 

N = 15 2 months ICC Hjorth: Activity 0.76 

Hjorth: Mobility 0.66 

Hjorth: 

Complexity 

0.68 

Sample entropy 0.69 

SVD entropy 0.71 

Permutation 

entropy 

0.66 

Lempel-Ziv 

Complexity 

0.70 

Pold et al. (2020) Mean age of 42.3 

years 

N = 17 3 years ICC Higuchi Fractal 

Dimension 

0.81 

Detrended 

Flucation 

Analysis 

0.84 

Dunki et al. 

(2000) 

Mean age of 28 

years 

N = 30 14 days Pearson’s r Correlation 

dimension 

0.39 

5 years Correlation 

dimension 

0.55 
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eliability of their measurement. It is also important to note that some

easures, like entropy, reflect different dynamics over short vs. long

imescales (i.e., local circuit dynamics over short segment length vs.

arge-scale/long-range dynamics over longer segment lengths). Given

he lack of methodological consensus for extracting these features, be-

ow we provide the parameterization details for each study to guide

nterpretation and parameter choices for future studies based on these

eliability results. A variety of nonlinear measures have recently been

sed in efforts to predict autism spectrum disorder outcomes ( Bosl et al.,

011 , 2018 ; Peck et al., 2021 ), to account for individual differences in

nfant social behavior ( Puglia et al., 2020 ), and to track changes in brain

ynamics with age or with different clinical populations ( Catarino et al.,

011 ; Namazi and Jafari, 2019 ; van Noordt and Willoughby, 2021 ;

hang et al., 2009 ). Though there is burgeoning interest in the func-

ional significance of these features, there is unfortunately very little

iterature on their consistency, optimization, or reliability. 

.3.1. Reliability of nonlinear measures 

The limited research to date suggests nonlinear features may be

romising candidates for individual difference analyses. To the best of

ur knowledge, there is only one assessment of the internal consistency

f nonlinear measures to date. Kuntzelman et al. (2018) found all in-

ernal consistency values to be > 0.80 for a number of entropy metrics

valuated across the whole scalp for the total EEG signal (split into eight

0 second segments to compute Cronbach’s alpha). Moreover, only a

ew studies have assessed the test-retest reliability of nonlinear base-

ine EEG measures across time, all in adult populations (see Table 13 ).

irst, Kuntzelman et al. (2018) found good-excellent test-retest relia-

ility over a week for multiple entropy measures taken on very short

imescales (up to 100 milliseconds) for most scalp locations and fre-

uency bands (though noted lower occipital reliability, lower reliability

or permutation entropy, and sometimes lower delta and gamma band

eliability). Similarly, Gudmundsson et al. (2007) report good whole-

rain test-retest reliability ( ICC = 0.69) of Hjorth parameters, sample

ntropy, singular value decomposition (SVD) entropy, and permutation

ntropy when considering measure averages from 5-second segments

ith 50% overlapping windows. Second, Põld et al. (2021) report excel-

ent whole- brain test-retest reliability ( ICC = 0.83) of the Higuchi fractal

imension and detrended fluctuation analysis based on the median value

rom 20.48-second EEG segments. However, Dünki et al. (2000) found

nly fair correlations over 14 days (r = 0.59) and 5 years (r = 0.39)

or the Grassberger-Procaccia correlation dimension in adults. Together

hese studies indicate at least some nonlinear measures demonstrate
22 
dequate reliability in adult populations and merit further exploration

 Fig. 4 ). 

.3.2. Nonlinear measurement recommendations 

Broadly speaking, there is a pressing need to optimize and assess

oth the internal consistency and test- retest reliability of nonlinear

ime series measures across the lifespan given that the application of

hese methodologies is relatively new for the field. Early investigations

how great promise for this class of measures that facilitate character-

zing the nonlinear dynamics of the brain, a fundamentally nonlinear

ystem. Understanding the parameter settings that produce the most re-

iable estimates of these nonlinear dynamics can lead to standardized

ethodology for extracting nonlinear features for individual difference

nalyses. Further, to our knowledge no one has yet reported nonlinear

easure internal or test-retest reliability in pediatric populations, which

ust change before these features are used further in individual differ-

nce analyses. 

.4. Functional connectivity measures 

Functional connectivity measures in EEG data examine the relation

f brain activity across different physical regions of the brain or scalp

o characterize neural network function. 

Functional connectivity can be measured both in source space (the

reas of the brain from which the signals originate) and scalp space (the

reas on the scalp where the signal is detected by the EEG sensors), and

ay include all frequencies within the EEG signal or calculations within

pecific frequency bands (e.g., delta, alpha). Common approaches to

easure functional connectivity include both amplitude and phase-

ased methods, like amplitude envelope coupling ( Bruns et al., 2000 ),

hase lag index (PLI; Stam, 2005 ), and variants (e.g., debiased weighted

hase lag index), to study synchronization between sensors/brain re-

ions. Methods like graph theoretical methods can extract additional

eatures to describe both local and global scalp/brain network charac-

eristics using the functional connectivity estimates (e.g., average clus-

ering coefficient, path length, and the small-world index (SWI), etc.).

uch EEG measures have been used in the context of understanding lan-

uage ( Gaudet et al., 2020 ), dyslexia ( Dushanova et al., 2020 ), epilepsy

 Sargolzaei et al., 2015 ), autism ( Catarino et al., 2013 ; Haartsen et al.,

019 ; O’Reilly et al., 2017 ; Righi et al., 2014 ), and physical develop-

ent ( Grieve et al., 2008 ; Xie et al., 2019 ). Unfortunately, and likely

ue to the recency of their adoption, there is very little existing litera-

ure that examines the reliability of functional connectivity measures,

specially in studies with pediatric samples. 
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Fig. 4. Test-retest values calculated using both 

intra-class correlations and Pearson’s r for each 

adult nonlinear measure study based on time 

between testing sessions (in months). 

Table 14 

Internal consistency of adult functional connectivity studies. 

Paper Age(s) Sample Size Paradigm Consistency Measure 

Functional 

Connectivity 

Measure(s) 

Frequency 

Band Consistency 

Miskovic and Keil 

(2014) 

Mean age 19.14 

years 

N = 14 Steady-state 

VEP 

Spearman Rho Coherence 14 Hz 0.80 

Phase Synchrony 14 Hz 0.73 

Table 15 

Internal consistency of pediatric functional connectivity studies. 

Paper Age(s) Sample Size Paradigm Consistency Measure 

Functional 

Connectivity 

Measure(s) 

Frequency 

Band Consistency 

Morales et al. (2022) 4–9 years N = 326 Task-related 

(Go/No-Go) 

Spearman-Brown Phase Synchrony Delta 0.64 

Phase Synchrony Theta 0.57 
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.4.1. Internal consistency of functional connectivity measures 

To our current knowledge, there are only two studies examining the

nternal consistency of functional connectivity measures at any age, both

ithin task contexts ( Miskovic and Keil, 2015 ; Morales et al., 2022 ; see

ables 14 and 15 ). In adults, Miskovic and Keil (2015) examined coher-

nce and phase synchrony in a visual-evoked potential task paradigm,

hile Morales et al. (2022) examined phase synchrony in delta and theta

ands in children participating in a cognitive Go/No-Go paradigm. The

dult functional connectivity measures demonstrated excellent internal

onsistency ( 𝜌 = 0 .76, n = 2 measurements, SE = 0.04) across all mea-

ures using Spearman rank order correlations ( Miskovic and Keil, 2015 ),

hile in childhood the measures produced good internal consistency

 rSB = 0 .60, n = 2 measurements, SE = 0.04) using Spearman Brown

ethods ( Morales et al., 2022 ; Fig. 5A ). However, there are too few

tudies to draw conclusions yet about what measurement parameters

nd kinds of functional connectivity measures provide adequate inter-

al consistency for individual difference analyses. 

.4.2. Test-retest reliability of functional connectivity measures 

Test-retest reliability of EEG functional connectivity measures has

een investigated more often than internal consistency, largely in base-

ine EEG data ( Büchel et al., 2021 ; Cannon et al., 2012 ; Haartsen et al.,

019 ; Hardmeier et al., 2014 ; Hatz et al., 2016 ; Knyazev et al., 2019 ;

untzelman and Miskovic, 2017 ; Velde et al., 2019 ; see Tables 16

nd 17 ). Looking across connectivity measures in adult studies,
23 
hese features broadly have shown inadequate test-retest reliability

o date, demonstrating only fair reliability across the available evi-

ence (ICC = 0 .56, n = 52 measurements, SE = 0.03; Büchel et al.,

021 ; Cannon et al., 2012 ; Hardmeier et al., 2014 ; Hatz et al., 2016 ;

untzelman and Miskovic, 2017 ; Fig. 5B ). However, there also appear

o be notable differences in measured reliability between the most com-

only assessed functional connectivity measures in adult studies, coher-

nce and phase lag index (PLI). Available evidence suggests that coher-

nce demonstrates good reliability while phase lag index only exhibits

air reliability (coherence: ICC = 0 .67, n = 14 measurements, SE = 0.08;

LI: ICC = 0 .54, n = 17 measurements, SE = 0.05; Büchel et al.,

021 ; Cannon et al., 2012 ; Hardmeier et al., 2014 ; Kuntzelman and

iskovic, 2017 ). Several papers have examined reliability in pediatric

opulations and find that across measures, overall reliability is consid-

red good ( ICC = 0 .62, n = 29 measurements, SE = 0.04; Haartsen et al.,

019 ; Knyazev et al., 2019 ; Velde et al., 2019 ; Fig. 5C ). Unfortunately,

n this sample of seven papers, there is very little overlap in the exact

unctional connectivity measures included or in the frequency bands ex-

mined. Thus, there is insufficient evidence to date to draw conclusions

bout how to optimize functional connectivity measurements for indi-

idual difference analyses. 

.4.3. Functional connectivity measure recommendations 

Though early studies indicate some functional connectivity ap-

roaches may be promising candidates for individual difference anal-
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Fig. 5. Internal consistency and test-retest reliability of functional connectivity measures. A: Average internal consistency values calculated using the Spearman- 

Brown Formula for all adult and pediatric studies. B: Test-retest values calculated using intra-class correlations for each adult functional connectivity study based on 

time between testing sessions (in months). C: Test-retest values calculated using intra-class correlations for each pediatric connectivity study based on time between 

testing sessions (in months). 
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ses, we must further assess reliability for functional connectivity mea-

urements across the lifespan. There remain a variety of functional con-

ectivity measures without any test of internal consistency or test-retest

eliability at any age. Furthermore, both studies testing internal consis-

ency of functional connectivity features have examined task paradigms,

o studies should look at the internal consistency of resting-state func-

ional connectivity measurements as well. 

.4.4. Individual actions to implement reliability recommendations 

Looking across the internal consistency and test-retest reliability re-

ults of the EEG measures summarized above, we offer several actions

hat individual researchers can perform to improve current research

ractices for individual difference analyses. We also note that this em-

irical information is complementary to other factors, including topical

heory, in research design (e.g., which ages, time-windows between test-

ng, measures of interest). Researchers may integrate this information

bout reliability of EEG measures along with theoretical and practical

otivations and constraints to ultimately inform their design and anal-

ses. We make the following recommendations: 

1) Calculate internal consistency values for each study measure in

individual-difference analyses. Given that reliability is a property

of the measurement (including hardware, acquisition settings, pre-

processing, extraction parameters and methods) which continues to

vary across sites and studies, routine internal consistency assess-

ments are necessary for researchers seeking to conduct individual

difference analyses for a project. Fortunately, if a researcher can ex-

tract multiple measurements of the feature(s) of interest (e.g., mul-

tiple trials of task-related functional connectivity), they have the

data to report internal consistency for measures in studies exam-

ining individual differences moving forward. We join others (e.g.,

Parsons et al., 2019 ) in making this call to action, and we recom-

mend using any of the following freely-available packages to do so.

The freely-available R-based package ‘splithalf’ includes a variety of

tools, including multiverse reliability assessments to assist with these

calculations ( Parsons, 2021 ). Multiverse assessments evaluate how

changing multiple parameters within the pre-processing and feature

parameterization process each influence feature reliability, and they
24 
may be especially useful when optimizing pipelines and features.

Our own MATLAB-based software, HAPPE ( Gabard-Durnam et al.,

2018 ; Lopez et al., 2022 ; Monachino et al., 2022 ), includes scripts

that facilitate bootstrapped split-half internal consistency measure-

ments within the HAPPE pipeline flow. Finally, the excellent ERP

Reliability Analysis (ERA) Toolbox from Peter Clayson and col-

leagues ( Carbine et al., 2021 ; Clayson et al., 2021b ; Clayson and

Miller, 2017a ) is a MATLAB-based software that uses generalizabil-

ity theory to assess internal consistency and estimate test-retest reli-

ability for EEG measures (including non-ERP EEG measures despite

the software name). Researchers may choose between these options

depending on code fluency, study need, and these differences in func-

tionality. 

2) Evaluate test-retest reliability of EEG measures. Assessments of test-

retest reliability (both in the short- and long-term) for measures in

infancy and early childhood form a particularly stark gap for the

field that individuals must step up to address or restrict the types

of individual difference analyses performed with these ages. This is

especially problematic given the great interest in these measures as

potential early biomarkers for developmental disorders and emerg-

ing individual behavioral phenotypes. Though challenging to bal-

ance the temporal profiles of measurement reliability against the

pace of developmental change in early life, it is critical that we pri-

oritize addressing this gap in the field’s knowledge in order to ex-

plore these types of individuating analyses before middle childhood.

Though not designed for this purpose, reporting test-retest reliability

metrics for extant longitudinal study designs can help populate this

knowledge gap without undue burden on the field. Individuals may

return to their longitudinal studies to conduct test-retest analyses or

make data publicly-available to support others’ efforts. Understand-

ing the timescale of reliability and developmental change through

these longitudinal studies can also inform subsequent study designs

targeting test-retest reliability explicitly. 

3) Calculate and report trial minimums to achieve the level of inter-

nal consistency used in individual difference analyses. Differences

in internal consistency and reliability were observed when compar-

ing adult literature with pediatric literature for several measures.

However, it is presently unclear if those differences may be due to
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Table 16 

Test-retest reliability of adult functional connectivity studies. 

Paper 

Age(s) at First 

Test Sample Size Paradigm Time to Retest 

Functional 

Connectivity 

Measure(s) 

Frequency 

Band 

Reliability 

(ICC) 

Cannon et al. (2012) Mean age of 20.7 

years 

N = 19 Resting-state 30 days Coherence Delta 0.88 

Theta 0.91 

Alpha 0.93 

Beta 0.94 

Phase Lag Index Delta 0.09 

Theta 0.35 

Alpha 0.57 

Beta 0.49 

Hardmeier et al. 

(2014) 

20–49.5 years N = 35 Resting-state follow up at 1 and 2 years Phase Lag Index Theta 0.75 

Alpha 0.77 

Beta 0.69 

Clustering 

Coefficient 

Theta 0.61 

Alpha 0.51 

Beta 0.56 

Path Length Theta 0.60 

Alpha 0.42 

Beta 0.45 

Small-World 

Index 

Theta 0.53 

Alpha 0.45 

Beta 0.54 

Hatz et al. (2016) 20–68 years N = 40 Resting-state follow up at 1 and 2 years Clustering 

Coefficient 

Theta 0.80 

Alpha 0.70 

Beta 0.44 

Path Length Theta 0.62 

Alpha 0.66 

Beta 0.43 

Degree 

Correlation 

Theta 0.20 

Alpha 0.21 

Beta 0.07 

Degree Diversity Theta 0.79 

Alpha 0.76 

Beta 0.42 

Kuntzelman and 

Miskovic (2017) 

18–22 years N = 15 Resting-state 1 week Coherence Delta 0.51 

Theta 0.66 

Alpha 0.30 

Beta 0.09 

Gamma 0.02 

Phase Lag Index Delta 0.18 

Theta 0.47 

Alpha 0.59 

Beta 0.59 

Gamma 0.21 

Büchel et al. (2021) Mean age of 24.5 

years 

N = 15 Resting-state 1 week Weighted Phase 

Lag Index 

Theta 0.52 

Alpha-1 

(8–10.5 Hz) 

0.90 

Alpha-2 

(10.5–

13 Hz) 

0.73 

Beta-1 

(13–20 Hz) 

0.72 

Beta-2 

(20–30 Hz) 

0.52 

Coherence Theta 0.73 

Alpha-1 

(8–10.5 Hz) 

0.88 

Alpha-2 

(10.5–

13 Hz) 

0.87 

Beta-1 

(13–20 Hz) 

0.84 

Beta-2 

(20–30 Hz) 

0.82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

developmental variability or to differences in task design or data

retention across ages. Reporting trial thresholds will help the field

disentangle these potential explanations and then optimize data col-

lection and analysis moving forward ( Boudewyn et al., 2018 ). Prior

literature has demonstrated that internal consistency and test-retest

reliability estimates are affected by the number of trials used to cal-

culate the EEG measure (e.g., Boudewyn et al., 2018 ; Fischer et al.,
25 
2017 ; Huffmeijer et al., 2014 ; Larson et al., 2010 ; Meyer et al.,

2013 ; Olvet and Hajcak, 2009b ; Pontifex et al., 2010 ). For exam-

ple, Meyer et al. (2013) found differences in the number of trials

needed for the ERN to reach good internal consistency based on the

task used, with Flanker and Go/No-Go tasks necessitating at least

10 error trials but the Stroop task requiring over 20 error trials.

Pediatric and clinical populations often require briefer paradigms
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Table 17 

Test-retest reliability of pediatric functional connectivity studies. 

Paper Age at First Test Sample Size Paradigm Time to Retest 

Functional 

Connectivity 

Measure(s) 

Frequency 

Band 

Reliability 

(ICC) 

van der Velde et al. 

(2019) 

10 months N = 60 Task-related 1 week Phase Lag Index Delta 0.16 

Theta 0.87 

Alpha 0.84 

Beta 0.73 

Gamma 0.55 

Clustering 

Coefficient 

Delta 0.59 

Theta 0.91 

Alpha 0.86 

Beta 0.73 

Gamma 0.62 

Path Length Delta 0.53 

Theta 0.89 

Alpha 0.84 

Beta 0.72 

Gamma 0.59 

Small-World 

Index 

Delta 0.25 

Theta 0.56 

Alpha 0.44 

Beta 0.14 

Gamma 0.13 

Knyazev et al. 

(2019) 

6–11.5 years N = 68 Resting-state 4 consecutive years (4 

waves) 

Slow-Fast Wave 

Coupling 

Delta-Alpha 0.76 

Delta-Beta 0.75 

Theta-Alpha 0.75 

Theta-Beta 0.78 

N/A 0.79 

Haartsen et al. 

(2020) 

10 month olds N = 64 Task-related 1 week Phase Lag Index Alpha 0.86 

Clustering 

Coefficient 

Alpha 0.57 

Path Length Alpha 0.44 

Small-World 

Index 

Alpha 0.40 
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c  

t  
than healthy adult populations, leaving fewer trials to attain ade-

quate consistency. EEG from these populations also frequently ex-

hibit greater levels of artifact, which can result in fewer usable trials

retained for analysis. The internal consistency calculating software

described above in action item 1 can provide this trial threshold in-

formation (e.g., 17 trials per person is required to achieve Chron-

bach’s alpha of 0.75 for this sample and EEG measure). Moreover,

such testing would help inform future robust study design and analy-

sis (though as Boudewyn et al. (2018) note, there are multiple other

factors that must be considered to determine the number of trials to

sufficiently power EEG designs, including sample size, effect magni-

tude, anticipated noise level in the signal, and these factors’ inter-

actions). Individual researchers should calculate trial numbers re-

quired for reliable estimates in their sample, remove participants

with insufficient trials, and report the retention minimum trial num-

ber in manuscripts. In addition to these steps, the following section

details another approach individuals can take to positively impact

trial retention and reliability assessments across the lifespan. 

. Standardized, automated EEG pre-processing practices for 

ndividual difference analyses 

Robustly-pre-processed EEG data is a critical prerequisite for extract-

ng reliable EEG measures for individual difference analyses. Artifact

ignal amplitudes can be orders of magnitude larger than signals of neu-

al origin, so they can dramatically skew EEG measure estimates for an

ndividual. Thus, there is a real risk in reporting individual differences

hat reflect degree of artifact contamination across the sample instead of

ifferences in neural phenomena if pre-processing does not effectively

arse artifact from neural data. Until recently, the gold standard for

enoising EEG data for analysis involved removing artifact-laden time-

oints through subjective manual-editing (i.e., detecting and removing

rtifacts by visual inspection). Indeed, the overwhelming majority of
26 
nternal consistency and test-retest results reported above have been

enerated with manual editing practices. However, the manual-editing

pproach has multiple disadvantages with respect to individual differ-

nce analyses. First, because entire time segments are removed if any

hannels of interest are determined to have artifact, the process often

esults in significant data loss for each EEG file (especially for high-

ensity EEG files with many potentially-contaminated channels). This

ata loss can contribute to less reliable estimates of an individual’s EEG

easure, especially in pediatric and clinical samples with limited data

ollected. Second, the subjective nature of manual-editing leads to vari-

nce both between and within scientists with respect to how artifact in

ata is handled. In the case where “double coding ” editing decisions are

sed as an attempt to mitigate the effects of variance between individu-

ls, reliability between coders is rarely reported. Given that inter-rater

eliability is one of the few quantifiable aspects of manual artifact re-

oval addressing the issue of subjectivity, it is helpful that those who

o continue to use manual editing at least report this metric. However,

eporting inter-rater reliability does not completely remove the subjec-

ivity of manual-editing and still does not offer any quantifiable infor-

ation about the quality of the data retained. Third, manual-editing is

ime-intensive and extremely difficult to scale as sample sizes increase

o better power individual difference analyses. Below we discuss two al-

ernative strategies to improve individual differences analyses with EEG

easures by using: 1) standardized, automated pre-processing pipelines

or EEG denoising, and 2) empirical measures of data quality. We then

rovide recommendations for implementing these strategies moving for-

ard. 

.1. Automated EEG denoising 

The first strategy to address the setbacks of manual editing and fa-

ilitate more robust individual difference analyses across the lifespan is

he use of standardized, automated pre-processing software to reduce
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i  
nd remove artifacts. This is a nascent but rapidly growing focus for

EG research ( Dien, 2010 ; Gabard-Durnam et al., 2018 ; Haresign et al.,

021 ; Lawhern et al., 2013 ; Leach et al., 2020 ; Lopez et al., 2022 ;

ognon et al., 2011 ; Monachino et al., 2022 ; Nolan et al., 2010 ;

uyang et al., 2022 ; Winkler et al., 2011 ). With the breadth of available

ools comes a range of approaches to EEG data pre-processing, span-

ing fully-automated pipelines, individual scripts, and toolboxes built

o aid in different stages ( Andersen, 2018 ; PREP, Bigdely-Shamlo et al.,

015 ; Cassani et al., 2017 ; SASICA, Chaumon et al., 2015 ; APP, da Cruz

t al., 2018 ; MADE, Debnath et al., 2020 ; EEG-IP-L, Desjardins et al.,

021 ; ERP PCA Toolkit, Dien, 2010 ; APICE, Fló et al., 2022 ; HAPPE 1.0,

abard-Durnam et al., 2018 ; MNE, Gramfort et al., 2014 ; Hatz et al.,

015 ; Adjusted- ADJUST, Leach et al., 2020 ; HAPPILEE, Lopez et al.,

022 ; HAPPE + ER, Monachino et al., 2022 ; ASR, Mullen et al., 2013 ;

ASTER, Nolan et al., 2010 ; FieldTrip, Oostenveld et al., 2011 ; Au-

omagic, Pedroni et al., 2019 ; APPLESEED, Puglia et al., 2021 ; EPOS,

odrigues et al., 2021 ; Brainstorm, Tadel et al., 2011 ; miniMADE,

roller-Renfree et al., 2021 ; MARA, Winkler et al., 2014 ). Importantly,

any of these software implement automated artifact correction ap-

roaches that do not sacrifice timepoints, like wavelet-thresholding and

ndependent component analysis, that outperform manual-editing (ei-

her timepoint removal or independent component rejection) in suc-

essful artifact removal and in the degree of data retained (e.g., MADE,

ebnath et al., 2020 ; HAPPE 1.0, Gabard-Durnam et al., 2018 ; HAP-

ILEE, Lopez et al., 2021 ; HAPPE + ER, Monachino et al., 2021 ; MARA,

inkler et al., 2014 ). Thus, standardized, automated pipelines are not

nly more efficient and consistent in their treatment of artifact across

ndividuals, they may also improve data quality and increase analysis

ower through both greater participant and data retention rates. There

re no issues in scaling this software for large datasets either. The stan-

ardized, automated software approach for EEG denoising can in prin-

iple address all three primary concerns about manual editing practices

ith respect to individual difference analyses. However, as with any

ool, they may also be used inappropriately and lead to poor perfor-

ance if care isn’t taken in software selection. 

While having a broad range of automated EEG software to pick from

an seem daunting, each software solution is validated for use in a lim-

ted set of contexts, so several factors may guide user choice. First, what

ind of populations are involved? The vast majority of existing software

ptions are validated using data only from healthy adults, while few oth-

rs are validated only with healthy pediatric samples at one or two ages

though see HAPPE + ER ( Monachino et al., 2022 ), which has been vali-

ated on adult and pediatric data). Unfortunately, software that is only

alidated on adult data is often not generalizable to the nature of data

nd artifacts from pediatric EEG studies. Researchers should select soft-

are validated for the same ages or at least the same part of the lifespan

s their sample. Second, how many channels of EEG data were collected?

he majority of software are only compatible and validated with high-

ensity channel layouts, and often use pre-processing approaches like

ndependent component analysis that are not suitable for some lower-

ensity layouts (though see Cassani et al., 2017 ; Hajra et al., 2020 ; HAP-

ILEE, Lopez et al., 2022 ; miniMADE, Troller-Renfree et al., 2021 ). To

etter support comparisons across studies from a lifespan perspective,

oncerted effort is needed to develop and validate software across multi-

le ages, populations, and acquisition setups to overcome these barriers.

If multiple standardized pipelines have been validated for the popu-

ation(s) and types of EEG data at hand, how might they be compared

o guide choice? Researchers have few empirical or conceptual compar-

sons in the literature currently to inform decisions (but see a recent dis-

ussion by Buzzell et al. (2023) on a subset of available pipeline options).

nfortunately, pipelines also vary in the output metrics they provide

bout what changes have occurred to the data during denoising. This

akes it difficult for individual researchers to compare performance

cross software with such metrics. Publicly-available EEG datasets that

ould be used across software validation efforts would facilitate com-
 s  
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arisons, but there is a dearth of such data from prior software devel-

pment (note, to this end, we and others have begun releasing valida-

ion datasets: Levin et al., 2017 ; Lopez et al., 2021 ; Monachino et al.,

021 ). Researchers may compare software performance on their own

ample through visualizations and empirical comparisons. Automated

re-processing does not exempt any researcher from examining and un-

erstanding their data. We also recommend researchers use of ground-

ruth signals (e.g., simulated EEG signals) for comparing software per-

ormance. For example, to facilitate such software comparisons more

idely, HAPPE software now includes realistic simulated ERP signals

e.g., visual evoked potential, oddball P3 potential, etc.) and executable

cripts to insert these signals into resting-state EEG data. These signals

an be used to decide which software or preprocessing parameters best

ecover the known signal while also removing artifact. 

.2. Reporting empirical measures of data quality 

The second strategy to facilitate more robust individual difference

nalyses across the lifespan is the generation and evaluation of individ-

al empirical measures of data quality with respect to denoising dur-

ng pre-processing. Given that manual editing does not produce such

mpirical measures, until very recently as a field, we have been un-

ble to verify that data included in analyses (almost always unavailable

o reviewers or readers) were free of artifact, or whether effects of in-

erest were influenced by artifact levels across individuals. A subset of

tandardized, automated software do offer such empirical quality mea-

ures following denoising ( Bigdely-Shamlo et al., 2015 ; Debnath et al.,

020 ; Desjardins et al., 2021 ; Gabard-Durnam et al., 2018 ; Lopez et al.,

022 ; Monachino et al., 2022 ; Pedroni et al., 2019 ). However, the ex-

ct data quality measures available varies by software. We have advo-

ated strongly for these measures’ generation and use since our first

teration of HAPPE software ( Gabard-Durnam, 2018 ). However, EEG

esearch is well behind other human neuroscience modalities that have

hifted normative practice to include 1) reporting empirical data quality

etrics in manuscripts, and 2) evaluating artifact-related measures’ im-

acts on brain measure variables of interest (e.g., Fishburn et al., 2019 ;

ratton et al., 2020 ; Parkes et al., 2018 ; Power et al., 2015 ; Tak and

e, 2014 ). Though many EEG manuscripts report the number of artifact-

ree segments included in analyses, few studies report testing whether

egment retention impacts their EEG measure estimates or include any

nformation about data quality within those retained segments. For ex-

mple, does the degree of retained data variance across individuals

ffect a feature’s estimate (e.g., power in canonical frequency bands

 Gabard-Durnam et al., 2018 ), functional connectivity values calculated

ith fMRI ( Power et al., 2015 ; Pruim et al., 2015 ), structural MRI fea-

ures ( Gilmore et al., 2021 ))? We surely do not want to report individ-

al differences that are driven by differences in data quality or artifact

ontamination instead of true neural differences. Data quality metrics

ay also be included in analyses as covariates (e.g., like framewise mo-

ion covariates in fMRI analyses of individual differences ( Marek et al.,

019 )). That is, one could include the degree of data retained in al-

ha frequencies after pre-processing in statistical models linking alpha

ower to behavior (though researchers should always evaluate poten-

ial statistical models for multicollinearity issues; see Miller and Chap-

an, 2001 for issues in group-difference designs with covariates that

ignificantly differ between experimental groups). 

We have far to go before there are standardized data quality mea-

ures of denoising that can regularly be evaluated and expected in EEG-

ased manuscripts (e.g., in the way that framewise motion data quality

easures can be evaluated across MRI-based manuscripts). We offer the

ollowing suggestions to spark discussion and hopefully momentum in

his direction, though. Specifically, we advocate for a minimum set of

easures to be reported in methods sections and evaluated in terms of

mpact on EEG measure estimates reported in results: data quality mea-

ures that indicate data retention in terms of time (e.g., percent and
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Fig. 6. Individual actions recommended in (Lopez et al. 

2023) to improve individual difference analyses with EEG 

data. 
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umber of retained trials), frequency (e.g., cross-correlation between

ata prior to denoising and following artifact denoising for a given set

f frequencies or frequency band), and space (e.g., percent channels that

ere bad within a region of interest, or total percent bad channels for

hole-head analyses). We focus on these signal properties because they

ffer orthogonal information about the EEG signal’s quality and are rel-

vant for the vast majority of EEG features (e.g., ERPs averaged over tri-

ls in time for a subset of frequencies in the signal, frontal alpha power

alculated over specific frequencies of interest over a region of interest

n the scalp). Empirical indices of data quality may therefore facilitate

ore rigorous testing and evaluation of individual difference effects. 

.3. Recommendations to improve EEG analyses for individual difference 

esting 

We hope to see EEG researchers pivot from subjective methods of

re-processing and denoising our EEG data to more widespread adop-

ion of standardized denoising pipelines and empirical measures of data

uality to ensure robust individual difference analyses. There are cur-

ently (different) standardized, automated pipeline options that fit every

ype of data/analysis, though there is work to be done in determining

hich standardized pipelines will best serve the EEG community. To fa-

ilitate this shift in pre-processing practice, we offer the following rec-

mmendations for researchers. For those who implement new software:

1) Validate broadly across populations and ages and use or make freely

available EEG datasets to facilitate comparisons with other pipelines.

2) Software should include quantitative measures of data quality and

pre-processing-related changes. For those who use EEG in research:

1) Choose standardized, automated software whenever possible that

is validated in your populations, ages, and EEG acquisition setup that

provides empirical data quality outputs. Assess the performance of

this software in your own data. 2) Report empirical measures of data

and pre-processing quality for your samples in manuscript methods.

3) Analyze and report in manuscripts how the data quality measures

impact EEG measures of interest and when appropriate, use qual-

ity metrics as covariates in analyses to more rigorously evaluate the

robustness of individual difference results. 

. Conclusion 

The potential for EEG research to inform our understanding of cog-

ition, mental health, and behavior across the lifespan through individ-

al differences research is greater than ever with the recent explosion

f new technology, computational power, and types of extractable mea-

ures. This innovation and change also provides a key moment to reflect

n how we might use this momentum to shift our scientific practices to

romote robust individual differences research moving forward. Here

e have focused on the role that psychometric reliability plays in EEG-

ased individual differences research. We have taken a developmen-

al perspective to detail how reliability can be conceptualized across

he lifespan, how it has been measured and reported across a variety

f EEG-derived measures, and how several pre-processing factors may

elp optimize reliability across the lifespan. We see both opportunity

nd means for improving reliability of EEG measures at the level of in-

ividual researcher behavior. To aid individual researchers in adopting

ur recommendations throughout the research process, we have pro-

ided a summary checklist of actions discussed so far ( Fig. 6 ). We can

ach implement these changes to make significant strides together in

sing EEG to understand and predict human conditions with individual

ifference analyses. 
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