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Aims Elevated blood pressure (BP) is a prevalent modifiable risk factor for cardiovascular diseases and contributes to cognitive 
decline in late life. Despite the fact that functional changes may precede irreversible structural damage and emerge in an 
ongoing manner, studies have been predominantly informed by brain structure and group-level inferences. Here, we aim 
to delineate neurobiological correlates of BP at an individual level using machine learning and functional connectivity.

Methods 
and results

Based on whole-brain functional connectivity from the UK Biobank, we built a machine learning model to identify neural 
representations for individuals’ past (∼8.9 years before scanning, N = 35 882), current (N = 31 367), and future (∼2.4 
years follow-up, N = 3 138) BP levels within a repeated cross-validation framework. We examined the impact of multiple 
potential covariates, as well as assessed these models’ generalizability across various contexts.

The predictive models achieved significant correlations between predicted and actual systolic/diastolic BP and pulse 
pressure while controlling for multiple confounders. Predictions for participants not on antihypertensive medication 
were more accurate than for currently medicated patients. Moreover, the models demonstrated robust generalizability 
across contexts in terms of ethnicities, imaging centres, medication status, participant visits, gender, age, and body mass 
index. The identified connectivity patterns primarily involved the cerebellum, prefrontal, anterior insula, anterior cingulate 
cortex, supramarginal gyrus, and precuneus, which are key regions of the central autonomic network, and involved in 
cognition processing and susceptible to neurodegeneration in Alzheimer’s disease. Results also showed more involve
ment of default mode and frontoparietal networks in predicting future BP levels and in medicated participants.

Conclusion This study, based on the largest neuroimaging sample currently available and using machine learning, identifies brain sig
natures underlying BP, providing evidence for meaningful BP-associated neural representations in connectivity profiles.
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1. Introduction
Elevated blood pressure (BP) is a prevalent modifiable risk factor for car
diovascular diseases and a leading contributor to morbidity and mortal
ity worldwide.1 The pathophysiology of hypertension is intricate, 
spanning a wide variety of genetic factors and lifestyle, environmental, 
and health-related exposures.2 Cumulative evidence suggests that mid
life hypertension can exert a cascade of deleterious effects on brain 
structure and function, which can manifest later in life as cognitive im
pairment, dementia, and Alzheimer’s disease (AD).3,4 Thus, better un
derstanding the neurobiological underpinnings of elevated BP may 
hold promise in revealing brain targets for early interventions.

Several studies have established the link between elevated BP and 
changes in brain structure.5 Specifically, white matter hyperintensities, 
alongside microscale grey and white matter atrophy,6–8 are established 
hallmarks of hypertension. Nevertheless, the emergence of these 
macroscopic signs of brain damage frequently signifies a final stage of 
widespread structural degeneration, which is considered irreversible.9

Accordingly, antihypertensive therapies fail to reverse cognitive decline 
and protect the brain from microstructural damage, putatively since BP 
has progressed to clinical levels.4 Further, a recent UK Biobank study of 
over 30 000 subjects reveals that white matter hyperintensities are 
more strongly associated with previous than concurrent BP, especially 
before the age of 50, implying the subtle, early changes associated 
with elevated BP may be undetectable from brain structure.7

Furthermore, another study observes that the past rather than the cur
rent vascular risk factor burden is most strongly associated with lower 
brain volume.10 Evidence from recent studies indicates that changes in 
brain function likely precede any irreversible structural damage.11–13 In 
this regard, functional neuroimaging data, such as functional connectiv
ity—or the temporal statistical dependencies between neural activity 
across spatially distinct but functionally coherent brain regions—may 
be better at detecting these subtle brain correlates of elevated BP. 
For example, Thaddeus et al. found that mean cerebrovascular reactivity 
was significantly reduced in the default mode network for subjects with 
pre-hypertension/hypertension and suggested that this functional meas
urement can serve as a preclinical marker for brain dysfunction in later 

life.14 Another study suggests that the reduced hippocampal connectiv
ity was associated in a graded way with increased BP and mediated the 
association between hypertension history and impaired memory in 19 
507 participants from the UK biobank.15 In this sense, a primary aim 
of this study is to examine the neuroimaging correlates of BP utilizing 
functional connectivity.

Increasing in popularity to analyze neuroimaging data, machine learning 
is a powerful means to dissect individual differences in whole-brain func
tional connectivity profiles, known as a connectome.16,17 Such data-driven 
analyses have catalyzed neuroimaging research shifting from group-level in
ferences towards individual-level characterizations,18–20 allowing for the in
vestigation of brain correlates across the entire BP spectrum.21 However, 
neural signatures of systolic BP (SBP)/diastolic BP (DBP) and pulse pressure 
(PP) are lacking, impeding efforts to pinpoint robust early changes in brain 
function associated with BP. Therefore, our second aim is to identify a 
connectome-based brain signature that is predictive of BP at the individual 
level, and test to what extent the signature can generalize across different 
contexts, especially between participants on or off antihypertensives.

To this end, we leveraged the UK Biobank, which provides a very large 
sample of neuroimaging data as well as cardiovascular risk factors,22,23 to 
identify BP-associated brain changes in functional connectivity using ma
chine learning. First, using partial least squares regression (PLSR), we de
fine a neural signature predictive of novel individuals’ past (mean 8.91 
years before scanning, N = 35 882), concurrent (N = 31 367), and future 
(mean 2.40 years follow-up, N = 3 138) BP levels separately within a 
repeated cross-validation framework. We examined the impact of mul
tiple potential covariates, as well as assess these models’ generalizability 
across various ethnic/racial groups. Second, we extracted the most pre
dictive brain patterns from each model, quantified their similarities, and 
identified brain regions contributing differently to prediction across the 
three time points. Finally, we compared the brain signatures of partici
pants based on medication status. Based on currently available evidence, 
our hypothesis is twofold. First, we hypothesize that we can identify a 
generalizable brain signature using functional connectivity that is predict
ive of individuals’ BP levels. Our second hypothesis is that the predictive 
connectivity patterns may primarily involve brain regions associated with 
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high-order cognitive processing,24 AD-related pathologies,25 and central 
autonomic network.26

2. Methods
2.1 Cohort and participants
The UK Biobank project is an ongoing large-scale, longitudinal cohort 
study of participants recruited from across the UK. Between 2006 
and 2010, baseline data was collected including deep genetic and a 
rich variety of phenotypic and health-related information (including life
style indicators, cognitive tests, physical measures, and biomarkers in 
blood and urine, but not brain imaging scans) from over half a million 
participants aged 40∼69 years from 22 dedicated centres (the ‘baseline 
assessment visit’).23 Since 2014, a subsample of participants has been in
vited back to four assessment centres for brain imaging scanning (the 
‘first imaging visit’). Another follow-up imaging session started in 2019 
(the ‘repeat imaging visit’). BP readings were taken during each of the 
three visits.

The studies adhered to the Declaration of Helsinki. Written informed 
consent was obtained from all participants, and the study was approved 
by the North West Multicenter Research Ethics Committee (No. 11/ 
NW/0382). This research was conducted using the UK Biobank re
source under application number34 175.

We selected participants based on the availability of usable resting-state 
fMRI and BP data. Additional exclusion criteria included excessive head mo
tion [defined as a mean framewise displacement (FD)>0.25 mm], and self- 
reported non-white racial background (see supplementary material online, 
Figure S1). In total, the current study comprised a sample of 35 882, 31 367, 
and 3 138 participants for the baseline assessment visit, the first imaging visit, 
and the repeated imaging visit, respectively (Figure 1A). The time intervals 
between the first two and last two visits were 8.91 ± 1.79 years (median 
= 9 years) and 2.40 ± 0.85 years (median = 2 years) respectively. Broadly, 
at the first imaging visit, participants were 53.42% females, aged 63.94 ± 
7.65 years (range: 45∼82), and had a mean education of 13.78 ± 4.33 years 
(see supplementary material online, Table S1). Table 1 summarizes the 
demographic characteristics of participants from three visits relevant to 
this study.

2.2 BP measurement
After the participant had been at rest for at least 5 min in the seated pos
ition, BP was collected twice, moments apart, by trained nurses using an 
Omron digital HEM-705IT monitor automatedly (taken using the left 
upper arm only unless this was not practical). The two sets of measure
ments demonstrated high test-retest reliability for all three data visits 
(intra-class correlation ranged from 0.83 to 0.87, see Supplementary 
material online, Figure S2). SBP and DBP were derived as the average 
across the two readings, or as a single reading if only one was available 
(Fields ID: 4079, 4080). PP was calculated as the difference between 
mean SBP and DBP. BP levels between different data visits were signifi
cantly correlated (range: 0.53–0.68, see Supplementary material online, 
Figure S3).

2.3 Data acquisition and preprocessing
Resting-state fMRI data were acquired in 3T Siemens Skyra scanners 
from each imaging centre using a standard 32-channel head coil (see 
Supplementary material online). The whole-brain functional connec
tomes used in this study were derived from the image-derived pheno
types, which were preprocessed, quality controlled, and made publicly 

available by the UK Biobank imaging team. An extensive overview of 
the data acquisition protocols and preprocessing carried out on behalf 
of UK Biobank can be found in https://biobank.ctsu.ox.ac.uk/crystal/ 
crystal/docs/brain_mri.pdf and elsewhere.22,28

Data preprocessing, group independent component analysis (ICA) 
parcellation, and connectivity estimation were carried out using FSL. 
Briefly, this included motion correction using MCFLIRT, grand mean in
tensity normalization, high-pass temporal filtering, echo-planar image 
unwarping, gradient distortion correction unwarping, and removal of 
structured artefacts via ICA + FIX (16). Based on the preprocessed 
fMRI data, group ICA using FSL’s MELODIC was performed to estimate 
100 components that can be considered as ‘parcellations’ of cortical and 
subcortical grey matter. Forty-five ICA components that were clearly 
identifiable as artefactual were discarded, leaving 55 components for 
network modelling (Figure 1B; see Supplementary material online, 
Figure S4). The set of ICA spatial maps was mapped onto each subject’s 
rs-fMRI time-series using dual-regression to derive subject-specific rep
resentative time-series per component (each component can be seen as 
a network ‘node’).28

Finally, partial correlations were estimated between time-series 
across 490 time points for each possible pair of nodes using FSLNets 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), resulting in a 55× 55 sym
metric network matrices for each subject. Network matrix values 
were L2 regularized and normalized by Fisher’s r-to-z transformation, 
as described in.27,29 Overall, these connectomes consist of 1485 unique 
connections (edges) for further analyses.

2.4 Developing connectome-based 
signatures of SBP and DBP
Within a 10-fold cross-validation framework, we implemented a 
data-driven, machine learning approach to predict individuals’ past, con
current, and future BP levels separately based on whole-brain connec
tomes. The dataset was randomly split into 10 non-overlapping 
subsets. We first characterized the relationship between connectivity 
patterns and BP levels based on 9-fold training data using PLSR.30 The 
PLSR has a good resilience to multicollinearity data (as it transforms 
high-dimensional features into a compact set of latent variables) 
and has been widely used for predicting multiple phenotypic mea
sures.31–33 Second, we calculated the predicted BP values for the left-out 
fold testing data using the dot product of the learned weight map with 
vectorized connectome strength. By designating each fold data as the 
testing set once, we can derive the predicted BP for all participants. 
To account for the influence of data split, we repeated the entire pro
cess 200 times on randomly partitioned data.32,34.

Model performance was quantified as the mean Pearson’s correlation 
(r) between model-predicted and actual BP levels, cross-validation R2, 
and root mean squared error (RMSE), averaged across 200 repetitions. 
We employed a permutation test to determine the significance of the 
prediction correlation, by first randomly shuffling the BP values 10 000 
times and then rerunning the prediction analysis, generating a null distri
bution of r values.18 The P-value was determined by calculating the fre
quency with which the true model’s r value exceeds the 
permutation-derived r values.31

2.5 Examining the influence of potential 
confounds on prediction
Multiple factors are hypothesized to be associated with SBP/DBP/ 
PP.35,36 To determine whether our models are robust to potential 

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
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https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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confounds and which factor impacts the prediction most, we controlled 
for the following covariates in the prediction: age, gender, body mass in
dex (BMI), imaging acquisition centres, education attainment, smoking 
status (ever vs. never), socioeconomic status (measured by the 
Townsend Deprivation Index), and head motion.

To further control for head motion, we identified a subset of partici
pants with a liberal (FD < 0.5 mm, N = 32 459) or a stringent threshold 
(FD < 0.15 mm, N = 25 179), and then reran the cross-validated predic
tion procedure 200 times.

2.6 Generalizing models across different 
contexts
Having established the neurophysiological plausibility of the 
BP-predictive models, we then turned to examine their generalizability 
across different contexts. We first tested the model’s sensitivity to het
erogeneity in imaging acquisition sites by implementing a 
leave-one-site-out cross-validation, where data from one of the four 
sites served as the testing set and data from the other three sites served 
as the training set.37

Since our main prediction was performed on participants of white 
origin, we next examined whether the brain signature can generalize 

to non-White populations. We defined the predictive models on the 
full set of White participants and then applied them directly to 1003 
non-White validation samples. Finally, we tested whether our models 
can generalize to predict BP scores for participants whose fMRI data 
were independently collected from the repeat imaging visit. Rather 
than defining the brain signatures on the full set of 31 367 participants, 
we restricted model building to participants who only have fMRI data 
in the first imaging visit (N = 29 453) and tested on participants who 
have fMRI data in the repeated imaging visit (N = 2554).

2.7 Determining the functional 
neuroanatomical basis of the brain 
signatures and comparing weight patterns 
among different models
Since our approach was implemented within a 10-fold cross-validation 
framework with 200 repetitions, 2000 different models were built in to
tal, for which the weight pattern of the brain signatures can differ slightly 
from fold to fold.38,39 To characterize the neurobiological basis of the 
brain signatures, we averaged feature weights across all 2000 models, 
yielding a connectivity-level weight map with larger absolute values indi
cating greater contributions to prediction.34,38 To facilitate the 

Figure 1 Population characteristics and the ICA-derived 55 components in the UK Biobank cohort. (A) The current study includes a respective of 35 882, 
31 367, and 3 138 participants for the initial assessment visit, the first imaging visit, and the repeated imaging visit from the UK Biobank. (B) Each of the 55 
non-artificial group-level components generated from group ICA were visualized in axial views and grouped into nine typical large functional networks.27

DMNa, default mode network anterior; DMNp, default mode network posterior; SMN, somatomotor network; Sub&Cereb, subcortical and cerebellar 
network; TempPar, temporoparietal network; VAN, ventral attention network; VIS, visual network.
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interpretation of the predictive model, we further summarized these 
connectivity-level weight maps to component-wise representations. 
Specifically, we characterized a component’s importance in prediction 
by adding up the absolute weight averages of its 54 connected edges.

We next quantified the similarity of weight patterns across different 
models. Specifically, we examined the edgewise and component-wise 
correlations of weight maps between SBP and DBP, as well as between 
different time points.20 Significance of correlations was assessed by per
muting the weight maps 10 000 times. Based on components having the 
top 10% (N = 6) absolute contribution weights, we further ascertained 
which components consistently had high predictive power for SBP, DBP 
or PP across all three time points, as well as which components uniquely 
had high predictive power for SBP/DBP/PP at one time point but not for 
the other two.

2.8 Comparing brain signatures of 
participants on or off antihypertensive 
medication
At the time of the first imaging visit, 6499 participants reported taking 
antihypertensives, while 22 642 participants reported not. To investigate 
whether brain connectivity can predict BP values for participants taking 

antihypertensives and whether their brain signatures differed from those 
not on antihypertensive treatment, we separately built a predictive mod
el for each group using PLSR and evaluated its performance within a re
peated cross-validation framework. Additionally, we evaluated the 
similarity of predictive brain patterns at the connectivity and component 
levels and examined which brain regions, among the most predictive 
ones, contributed differently between these two groups.

3. Results
3.1 Connectome-based signatures of BP 
across different time points
Within a machine learning framework, we separately identified a whole- 
brain, connectome-based signature that was predictive of individuals’ 
past, concurrent, and future SBP/DBP/PP using ICA-derived functional 
network connectivity. As expected, significant correlations between 
predicted and actual BP levels were observed (Figure 2A; see 
Supplementary material online, Figure S5 and Table S2). Specifically, the 
highest prediction accuracy was achieved for current SBP, with a 
mean correlation reaching r = 0.445 ± 0.0007 (cross-validation R2 = 
19.6%, RMSE = 16.81 ± 0.0072), averaged across 200 cross-validation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Demographic information of participants relevant to this study

Variable Baseline assessment visit First imaging visit Repeated imaging visit

N 35 882 31 367 3138

Age 
(mean ± SD, range)

55.05 ± 7.51 
40∼70

63.94 ± 7.65 
45∼82

64.63 ± 7.23 
50∼82

Sex, N/%

Female 19 221/53.57 16 756/53.42 1650/52.58
Male 16 661/46.43 14 611/46.58 1488/47.42

SBP (mmHg, mean ± SD) 134.82 ± 17.75 138.62 ± 18.75 140.89 ± 18.64

DBP (mmHg, mean ± SD) 81.20 ± 9.87 78.57 ± 10.04 79.40 ± 9.95
BMI (kg/m2, mean ± sd) 26.33 ± 4.01 26.25 ± 4.10 26.28 ± 4.09

Socioeconomic status (mean ± SD) −1.94 ± 2.68 −1.99 ± 2.66 −2.08 ± 2.60

Data acquisition date 
(range)

03/16/2006 
10/01/2010

05/08/2014 
03/13/2020

05/22/2019 
04/25/2021

FD (mm, mean ± SD) 0.12 ± 0.04 0.12 ± 0.04 0.11 ± 0.04

Imaging centres, N/%
Cheadle 21 742/60.59 19 958/63.63 1788/56.98

Reading 5698/15.88 4125/13.15 90/2.87

Newcastle 8392/23.39 7244/23.09 1260/40.15
Bristol 50/0.14 40/0.13 0/0

Smoking status, N/%

Never 14 778/42.94 13 998/46.45 1436/47.49
Ever 19 639/57.06 16 137/53.55 1588/52.51

Education levels, N/%

College/University 16 630/46.35 15 297/48.77 1519/48.41
A/AS levels 2080/5.80 1848/5.89 193/6.15

O/GCSE levels 3837/10.69 3276/10.44 348/11.09

CSEs 930/2.59 788/2.51 95/3.03
NVQ/HND/HNC 5367/14.96 4505/14.36 480/15.30

Nursing/teaching 4492/12.52 3536/11.27 319/10.17

None of the above 2207/6.15 1867/5.97 166/5.29
Unknown 339/0.94 250/0.80 18/0.57

AS, Advanced Subsidiary; CSE, Certificate of Secondary Education; GCSE, General Certificate of Secondary Education; HNC, Higher National Certificate; HND, Higher National Diploma; 
NVQ, National Vocational Qualification.

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
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repetitions. The prediction performance was slightly attenuated for pre
vious (r = 0.398 ± 0.0008, R2 = 15.5%, RMSE = 16.34 ± 0.0068) and fu
ture SBP (r = 0.374 ± 0.003, R2 = 11.9%, RMSE= 17.49 ± 0.033). For 
DBP, the brain signature achieved comparable prediction accuracies 
for previous (r = 0.317 ± 0.0009, R2 = 9.6%, RMSE = 9.41 ± 0.0038) 
and current (r = 0.315 ± 0.0009, R2 = 9.4%, RMSE= 9.55 ± 0.0038) mea
sures, followed by a slightly lower accuracy for future measure (r = 0.282 
± 0.004, R2 = 4.2%, RMSE= 9.74 ± 0.019). The prediction accuracies 
were r = 0.359 ± 0.0007 (R2 = 12.6%, RMSE = 11.61 ± 0.0040), r = 
0.418 ± 0.0009 (R2 = 17.3%, RMSE = 13.37 ± 0.0051), and r = 0.344 ± 
0.0036 (R2 = 9.1%, RMSE= 13.86 ± 0.028) for previous, current and fu
ture PP, respectively. All predictions were statistically significant at P < 
10−4 under permutation tests (see Supplementary material online, 
Figure S6). Prediction using an alternative machine learning approach 

(connectome-based predictive modelling) was also significant albeit 
with a lower accuracy (see Supplementary material online, Figure S7). 
In comparison, when building models using connectivity data from the 
repeated imaging visit, we observed reduced prediction accuracies com
pared, which can be attributed to a largely reduced sample size (see 
Supplementary material online, Figure S8).

3.2 Influence of potential confounds on 
model performance
After controlling for a set of covariates, the prediction correlations re
mained significant (P < 10−4, Bonferroni corrected, Table S2), suggesting 
robustness of the predictive models to these confounds (Figure 2A). 
Among all confounding variables, age exerted the greatest impact on 

Figure 2 Patterns of whole-brain connectivity predicted BP levels and generalized across contexts. (A) Within a repeated cross-validation framework, 
connectome-based machine learning models successfully predicted past, current, and future BP levels, and prediction correlations remained significant after 
adjusting for a set of covariates including age, gender, education attainment, socioeconomic status, smoking history, imaging centres, and FD. Darker cell 
colors indicate higher predictive accuracy. (B) Predictive models showed strong generalizability across different contexts in terms of ethnicities (from whites 
to non-whites), data acquisition sites (n = 4), imaging visits (from the first imaging visit to the repeated imaging visit of UK Biobank cohort), and medication 
status (from unmedicated participants to those taking antihypertensives).

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac116#supplementary-data
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the prediction of SBP and PP but minimal impact on DBP, hinting at the 
possibility that SBP and DBP may follow distinct aging trajectories. In 
comparison, the most significant factor affecting DBP was BMI.

When restricting prediction analyses to only subjects with either a lib
eral or conservative head motion threshold, we observed nearly identi
cal results in terms of prediction accuracies and the weight profile 
(correlations between weight patterns r > 0.96, P < 10−4; see 
Supplementary material online, Figure S9).

3.3 Models are generalizable across 
contexts
When running the prediction procedure using a leave-one-site-out 
cross-validation, we observed significant correlations between 
predicted and actual values (r[SBP] = 0.400, r[DBP] = 0.272, r[PP] = 
0.362, P < 10−4, Figure 2B). Likewise, models defined on the full set of 
31 367 participants of European White ancestry successfully generalized 
to 1003 non-Whites (r[SBP] = 0.460, r[DBP] = 0.327, r[PP] = 0.408, P < 
10−4). Furthermore, these models also predicted BP values for 2554 
participants whose fMRI data were independently acquired from the 
UK Biobank’s repeated imaging visit (r[SBP] = 0.442, r[DBP] = 0.314, 
r[PP] = 0.440, P < 10−4). Moreover, the models also showed strong gen
eralizability across gender, age, and BMI (see Supplementary material 
online, Figure S10). Taken together, these results provide evidence for 
the generalizability of the connectome-based brain signatures.

3.4 Functional neuroanatomical basis of 
the predictive brain signatures and the 
overlap
Figure 3 depicts the raw predictive weights averaged across all 200 cross- 
validation loops for previous, present, and future SBP/DBP. Considering 
the high similarity of weight maps between SBP and PP, we only show 
the predictive brain signatures for SBP here, and detailed results for 
PP can be found in Supplementary material online, Figure S11. 
Notably, weight maps across 2000 models demonstrated remarkably 
high correlations with each other, evidencing the stability of the brain 
signatures (see Supplementary material online, Figure S12). To aid in 
characterization, we demonstrate the top 60 connections according 
to their magnitude of contributing weights. The most predictive patterns 
were prominent in connections among cerebellar network, frontoparie
tal network (FPN), dorsal attention network (DAN) and ventral atten
tion networks, and posterior default mode network. Among the top 60 
edges, the SBP-current model shared 61.67% connections with the 
SBP-past model, and 31.67% connections with the SBP-future model 
while, the DBP-current model had 41.67 and 20% connections in com
mon with DBP-past and DBP-future models (P < 10−4, determined using 
the hypergeometric cumulative function).

As expected, predictive models of SBP and DBP demonstrated a high 
degree of edge-level similarity at each time point (r = 0.640–0.679, P < 
10−4 via permutation test; see Supplementary material online, 
Figure S13). The brain signature of current BP was also highly correlated 
with that of previous and future BP (r = 0.474–0.794, P < 10−4).

Figure 4A shows component-level representations of mean absolute 
weights for all 6 models (SBP and DBP across 3 times). Results of sep
arately summing the positive and negative predictive weights for each 
component can be found in Supplementary material online, Figure S14. 
In line with connectivity-wise similarities between these models, we ob
served even stronger correlations (r = 0.507–0.850, P < 10−4; see 
Supplementary material online, Figure 4C). Further, the top 6 most 

predictive components were also highly overlapped (Figure 4B; see 
Supplementary material online, Table S3). Specifically, IC-17 (cerebel
lum), IC-2 (anterior insula and supramarginal gyrus), IC-27 (precentral 
gyrus and dorsolateral prefrontal cortex), and IC-15 [insula and anterior 
cingulate cortex (ACC)] were congruently highly predictive of SBP at all 
three time points (Figure 4C). In contrast, IC-36 (precuneus), IC-18 (in
ferior parietal and postcentral gyrus), and IC-39 (precuneus and super
ior parietal gyrus) demonstrated high predictive power for future SBP 
but not current SBP. IC-38 (putamen and caudate) and IC-23 (cerebel
lum and vermis) showed greater contributions to past SBP than current 
SBP. For DBP, IC-17 also emerged as the most predictive component. 
IC-23 (cerebellum vermis) and IC-2 had a greater predictive ability for 
previous and current DBP than for future DBP, whereas IC-15 and 
IC-25 (inferior frontal gyrus) had a greater predictive ability for previous 
DBP. IC-36 and IC-49 (angular gyrus) showed prominent contributions 
to predict future DBP but not for current or previous DBP.

3.5 Influence of taking antihypertensives on 
prediction
Overall, the repeated cross-validation in individuals taking antihyperten
sive medication generated significant predictions, but at a lower accuracy 
than models built on the entire sample. Notably, predictions for partici
pants not on antihypertensive medication (r[SBP]= 0.441 ± 0.0009, 
RMSE[SBP] = 16.52 ± 0.0091; r[DBP] = 0.324 ± 0.0012, RMSE[DBP] = 
9.48 ± 0.0054, P < 10−4) were more accurate than predictions for cur
rently medicated participants (r[SBP] = 0.243 ± 0.0027, RMSE[SBP]= 
17.46 ± 0.0202; r[DBP] = 0.186 ± 0.0041, RMSE[DBP] = 10.01 ± 
0.0169; P < 10−4). After controlling for a set of covariates, the prediction 
correlations remained significant (see Supplementary material online, 
Table S4). Moreover, the predictive models showed comparable accur
acies across different antihypertensive medications (Figure 5A), and mod
els defined on unmedicated participants also generalized to participants 
taking antihypertensives (Figure 2B). When adjusting BP values by adding 
15 and 10 mm Hg to SBP and DBP, respectively, for individuals reported 
to be taking antihypertensive medication, we observed nearly un
changed results in terms of the prediction accuracies and the predictive 
features (see Supplementary material online, Figure S15).

The brain weight maps from participants not on antihypertensives 
showed a high degree of correlation with those defined on the full sam
ple, implying that including these subjects has only a weak influence on 
the identified brain signatures (see Supplementary material online, 
Figure S16). Moreover, the whole-brain weight maps and the most pre
dictive components also showed high similarities between participants 
taking or not taking antihypertensives (Figure 5; see Supplementary 
material online, Figure S17 and Table S5). Nevertheless, certain brain 
components contributed differentially to these two groups. 
Specifically, IC-18 (inferior parietal and postcentral gyrus), IC-36 (precu
neus), and IC-37 (middle frontal gyrus) demonstrated greater predictive 
power for medicated than unmediated participants in predicting SBP, 
whereas, IC-31 (middle frontal gyrus), IC-49 (angular gyrus), and 
IC-18 contributed more to medicated than unmediated participants in 
predicting DBP.

4. Discussion
In this study, using the largest imaging sample currently available, we de
lineate BP-related brain signatures using whole-brain connectomes and 
machine learning with relatively high effect sizes and robust 
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generalizability. Our identified brain signatures show prominent con
nectivity patterns among cerebellum, PFC, anterior insula, ACC, supra
marginal gyrus, and precuneus, which are key regions of the central 
autonomic network, and involved in cognition processing and suscep
tible to neurodegeneration in AD.40 Moreover, we revealed overlapping 
and distinct brain patterns in predicting BP levels between participants 
on and off antihypertensive medication (Figure 6). Taken together, we 
identify neural signatures underlying BP, providing evidence for meaning
ful BP-associated neural representations in connectivity profiles.

Our models provide evidence that BP involves a distributed set of 
neural processes. Among all predictors, the cerebellum demonstrates 
the highest contribution across all three time points, underscoring the 
importance of functional connectivity between the cerebellum and 
other brain regions in regulating BP. This finding is supported by experi
mental and epidemiological studies suggesting the existence of a cerebel
lar adrenomedullinergic system, which is crucial in body fluid 

homeostasis and BP regulation .41 During hypertension, the adrenome
dullin and its receptor components in the cerebellum would be altered. 
Oral administration of valsartan, on the other hand, can effectively re
duce BP, and reverse the altered expression of adrenomedullin and its 
receptor components.42 Moreover, one case report described a 
60 mmHg rise in SBP and a fivefold increase in plasma noradrenaline fol
lowing partial cerebellar resection for a 20-year-old man.43 These find
ings, together with ours, suggested the crucial role of cerebellum plays in 
BP regulation.

Apart from the cerebellum, other brain regions whose connectivity 
patterns play a prominent role in explaining the success of 
BP-predictive models involve the anterior insula, ACC, PFC, supramar
ginal gyrus, and precuneus, which primarily implicate in functional net
works of default model, salience, and FPNs. As a sympathetic 
regulatory centre, the insula is reported to have dense connections to 
autonomic nuclei via the brainstem and mesencephalon,44 constituting 

Figure 3 Distributions of predictive weights and the most predictive connections. Cell plots depict the raw weights map averaged across 200 
cross-validation loops in predicting (A) previous, (B) current and (C) future SBP/DBP. Circle plots illustrate the top 60 edges having the highest predictive 
contributions. Among the top 60 edges, the SBP-current model shared 61.67% connections with the SBP-past model, and 31.67% connections with the 
SBP-future model, while, the DBP-current model had 41.67 and 20% connections in common with DBP-past and DBP-future models. Similar visualizations 
for PP can be found in Supplementary material online, Figure S11.
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the primary site of viscerosensory integration and homeostasis modula
tion via baroafferents from amygdala and thalamus and afferents to 
brainstem.45 Supporting the role of insula in BP regulation, a recent 
fMRI study found that intrinsic connectivity between insula and 
midbrain-brainstem-cerebellar network could be used to differentiate 
hypertensives from normotensives.46 Also supportive of our results 
was the demonstration that acupuncture treatment increased functional 
connectivity between hypothalamus and brainstem, cerebellum, insula, 
ACC, and PFC.47,48 Moreover, lesion studies revealed that damages to 
the left insula in stroke were associated with elevated SBP.49

Consistently, Feng et al.15 also found that connectivity patterns of hippo
campal and PFC were linked to a history of hypertension, and mediated 
its relationship with cognition function.

Moreover, some studies suggested a network overlap between pa
tients with hypertension and depression. Specifically, Maaike et al.50

identified a set of brain regions including cerebellum, insula, ACC, and 
PFC that exhibit overlapping abnormalities in depression and hyperten
sion, possibly due to the shared risk factor of stress. These results may 
suggest the involvement of these functional regions in emotional and 
cognitive processing, as well as autonomic modulation.

A recent review51 identified 23 regions commonly associated with 
both cardiovascular risk factors (hypertension and Type 2 diabetes) 
and Alzheimer’s dementia. Interestingly, all brain components identified 
from our prediction analysis were included in these 23 regions. These 
results imply a potential pathophysiologic link between hypertension 
and AD. Specifically, according to the two-hit vascular hypothesis of 
AD, cardiovascular risk factors including hypertension first impact the 
cerebral blood flow and blood-brain barrier, followed by an increase 
in beta-amyloid accumulation, resulting in neurodegeneration and dis
eases.52,53 Consequently, it is speculated that BP-related brain damage 
may occur predominantly in functional networks targeted by AD path
ology, which include DMN, FPN and the salience network. These func
tional networks are important sites of pathology accumulation in AD 
and are more susceptible to vascular risk burdens.13 Specifically, the 
DMN and FPN participate in a series of high-order cognitive tasks, 
and thus have the highest metabolic demands, rendering them particu
larly vulnerable to neurovascular damages.25,54 The reductions in cere
brovascular reactivity,55 cerebral blood flow,56 and metabolism57

following elevated BP may disrupt the internal balance and integrity of 
DMN and FPN. Growing evidence implies that changes in brain 

Figure 4 Functional neuroanatomical basis of the predictive brain signatures and the overlap between models from different time points. (A) 
Component-level representations of mean absolute weights in predicting past, current, and future SBP/DBP. Darker cell colors indicate greater predictive 
contribution. (B) For each model, the top six components with the highest predictive power are overlaid on a glass brain. (C ) Correlations of 
component-level weight maps between SBP and DBP at each time point, as well as between different time points. DMNa, default mode network anterior; 
DMNp, default mode network posterior; SMN, somatomotor network; Sub&Cereb, subcortical and cerebellar network; TempPar, temporoparietal net
work; VAN, ventral attention network; VIS, visual network.
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connectomes of DMN and FPN have a close affinity to the development 
of cognitive impairment.24,55,58 In this regard, we speculated the involve
ment of more DMN and FPN regions in predicting future BP may indi
cate that they act as a compensatory mechanism to allow better 
preservation of cognitive functions,24 when vascular damages are 
more evident and cognitive dysfunctions are severe. This may also ac
count for the more involvement of these networks in medicated parti
cipants, since taking mediation per se implies a longer exposure to 
hypertension and a greater degree of cognitive impairment.

While we interpret our models based on neural functions, an alterna
tive explanation is that these signatures represent individual differences 
in hemodynamics. For example, the cerebellum is irrorated from the 

basilar artery, while the cortex is mainly irrorated from vessels down
stream of the Willis’ circle. Individual differences in BP levels may be as
sociated with individual differences in hemodynamics between these 
regions, which could then lead to changes in functional connectivity 
that do not reflect individual differences in neural functioning. 
Unfortunately, with only resting-state fMRI data, it is not possible to dis
tinguish between these two explanations. Thus, caution is warranted for 
the interpretations above. Indeed, a combination of neural and hemo
dynamic factors likely best explains our observed connectivity patterns.

This work builds upon a spate of research documenting the associa
tions of BP levels with multimodal brain MRI indices,4,6,24,40,59 and ex
tends them in several ways. First, prior studies in cardiovascular risk 

Figure 5 Functional neuroanatomical basis of the predictive brain signatures for participants on or off antihypertensive medication. (A). Distributions of 
prediction accuracies on participants grouped by the type of antihypertensive treatment. These results were only reported for antihypertensive medica
tions taken by more than 100 patients. (B) Component-level representations of mean absolute weights in predicting SBP/DBP. Darker cell colors indicate 
greater predictive contribution. (C ) For each model, the top 6 components with the highest predictive power are overlaid on a glass brain. (D) Correlations 
of edge- and component-level weight maps between participants on or off BP-lowering medication for SBP/DBP. SBP, DMNa, default mode network an
terior; DMNp, default mode network posterior; SMN, somatomotor network; Sub&Cereb, subcortical and cerebellar network; TempPar, temporoparietal 
network; VAN, ventral attention network; VIS, visual network.
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factors including hypertension have been predominantly informed by 
brain structure, with a particular emphasis on WMH.60 In comparison, 
we leveraged functional connectivity, which is based on the mechanism 
of neurovascular coupling to quantify neural communications among 
brain regions, to delineate the neurobiological correlates of BP. This is 
motivated by increasing neuroimaging evidence that resting-state func
tional connectivity is more sensitive to subtle abnormalities related to 
aging and brain diseases,13,14 and more importantly, changes in brain 
function appear earlier than structural alterations.11,61 As such, it may 
take years for BP-related changes to become evident and detectable 
in brain structure, supporting the finding that the past instead of current 
vascular risk factor burden is a superior predictor of brain volume10 and 
WMH.7 In contrast, we revealed comparable prediction accuracies for 
current and past BP, which can be attributed to the high sensitivity of 
functional connectome in detecting brain-phenotype relationships. 
Promisingly, our current use of functional connectivity may afford us 
more opportunities to identify early biomarkers related to elevated BP.

Second, previous studies primarily focused on detecting brain features 
that either significantly differ between hypertensives and controls, or 
correlate with BP values. For example, based on the same UK 
Biobank cohort, Feng et al.15 identified a set of functional links that sig
nificantly differ between participants with a history of hypertension and 
those without. In contrast we attempted to identify a brain signature 
capable of accurately predicting BP level from an individual’s unique con
nectivity profiles, which places the implications of current findings in a 
quantitative perspective. Further, instead of focusing on current BP le
vels, we also examined the predictability of past and future BP levels 
from brain connectivity, which has never been examined by other stud
ies.15 Indeed, recent studies have also shown that BP-related brain 
changes occur in an ongoing manner,6 and can commence approximate
ly ten years before clinically evident symptoms of hypertension,56 during 
which brain injury and cognitive decline are no longer reversible.

Third, the large sample size is a prominent strength. Previous investi
gations examining brain-BP associations have generally been small or 
moderate, which significantly limited the strength of inferences. In com
parison, the current use of the large sample of population-based parti
cipants enables the identification of subtle effects that may not be 
statistically detectable in smaller groups, as well as the establishment 
of reliable estimates of neurobiological correlates of BP.29,62

Additionally, the multivariate nature of machine learning approaches en
ables us to account adequately for the regional heterogeneity in 
BP-related brain changes by aggregating the weak effects of individual 
brain connections into an integrated brain index, which has a large effect 
size.

Fourth, the BP-predictive brain signatures showed strong generaliz
ability across contexts, corroborating our model’s robustness in captur
ing reliable brain-BP relationships rather than sample-specific 
idiosyncrasies.16,21 The identification of this brain signature may poten
tially (i) increase confidence in using the developed model to identify 
sensitive neuromarkers of elevated BP at an early stage related diseases 
and (ii) facilitate targeted therapies to preserve brain function and pre
vent cognitive decline in late life,63 although more clinical trials are 
needed. Further, among all potential covariates, we found age has the 
greatest impact on the prediction of SBP but minimal impact on DBP. 
This could be attributable to the temporally distinct trajectories of 
SBP and DBP. This hypothesis gains support from recent evidence 
that SBP increased linearly with age, while DBP showed a nonlinear aging 
trajectory.60,64 Consistently, additional analysis in our data revealed a 
similar result (see Supplementary material online, Figure S18). These 
findings necessitate future examination of the intricate interplay and 
combined effects of multiple cardiovascular risk factors on brain struc
ture and function.36

Overall, our study provided an imaging-based brain signature for BP at 
the individual level. The use of functional connectivity may afford us 

Figure 6 Summary of the analytical procedure and key predictive brain regions of BP values. (A) Within a 10-fold cross-validation framework, we im
plemented a data-driven, machine learning approach to predict individuals’ BP levels based on whole-brain connectomes, and then examined the gener
alizability across multiple contexts. (B) The predictive models identified a set of brain regions including the cerebellum, PFC, anterior insula, ACC, 
supramarginal gyrus, and precuneus, which are key regions of the central autonomic network, and involved in cognition processing and susceptible to neu
rodegeneration in AD. The DMN and FPN revealed more involvement in participants taking antihypertensive medication. ACC, anterior cingulate cortex; 
DMN, default mode network; FC, functional connectivity; IC, independent component; PFC, prefrontal cortex.
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more opportunities to identify early biomarkers to improve prevention 
and diagnosis of hypertension prior to the clinical onset of overt symp
toms. Moreover, the current practice of predicting BP value on a con
tinuum spanning from health to disorder, rather than the simple 
presence or absence of hypertension, opens a promising window for 
monitoring the progression of brain alterations associated with BP, 
which accords with the concept of personalized treatment in precision 
medicine.65 In addition, the findings represent a critical step in informing 
our understanding of the associations between BP and brain function. 
The identified imaging signatures may also serve as a target for novel 
therapeutics, especially given the absence of prior evidence showing 
the beneficial effects of BP-lowering on cardiovascular diseases and cog
nitive deficits.66,67

Notwithstanding strengths in terms of large sample size and multiple 
validations, several limitations should be acknowledged. First, the cross- 
sectional nature of our current analysis does not allow disentangling the 
causality between BP and brain signatures identified here. That is, we 
cannot make any conclusions about whether the identified brain con
nectivity induces elevated BP, or is simply a result of elevated BP. As 
more data are being acquired by UK Biobank sequentially, longitudinal 
progression of BP-related brain indices merits further inquiry. Second, 
the interval between the first and repeated imaging visits was relatively 
short. Consequently, the extent to which the constructed models can 
be applied to predict BP levels with a longer follow-up remains to be de
termined in future studies. Further, in light of the short time interval, it is 
possible that the predictability of future BP levels may be driven by the 
high correlations of BP values between the two imaging visits. Our add
itional analyses indicated that predictions for participants with stable BP 
values across time were more accurate than those showing variable BP 
levels, yet predictions in both groups were significant (see 
Supplementary material online, Figure S19). However, the weight 
maps between these two groups were highly similar, suggesting that 
the predictive models identified reliable brain signatures underlying indi
vidual differences in BP levels. In subsequent waves of UK Biobank data, 
studies should further examine the predictability of future BP values with 
greater variability. Third, although we highlighted and discussed a set of 
brain regions that may play important roles in the regulation of BP levels, 
it should be noted that it was not the pattern activity of these regions 
that contributed to the prediction, but their functional connectivity 
with other regions. Our further analyses suggested that the component 
amplitudes and functional connectivity may contain overlapping infor
mation that is crucial for BP prediction (see Supplementary material 
online, Figure S20 and S21). Specifically, we found that the components 
whose amplitude showed the highest correlation with BP levels were 
largely overlapped with those showing the highest predictive weights, 
suggesting that activity amplitude and connectivity patterns may be high
ly correlated. Forth, participants in the UK Biobank cohort have lower 
death rates and show a proclivity to live in less deprived areas,2 poten
tially limiting the predictive model’s generalizability. Nevertheless, this 
may not be a problem in light of our control analysis demonstrating a 
negligible effect of socioeconomic status on predictions. Fifth, the pre
diction accuracy was relatively low after controlling for numerous cov
ariates, and thus, there is still plenty of room for improving. Sixth, 
although the use of UK Biobank data enables us to investigate the impact 
of a large range of potential confounders, it is possible that some unrec
ognized confounders may affect the results. Finally, cognitive data were 
not analyzed in this study. Further studies can elaborate on how func
tional network patterns mediate the association between BP and core 
cognitive abilities.24

5. Summary
In sum, we developed, based on the largest sample currently available, a 
robust and generalizable connectome-based brain signature that is able 
to predict individuals’ past, current, and future BP levels. We revealed a 
set of brain regions whose connectivity patterns underlie BP regulation 
including cerebellum, insula, ACC, supramarginal gyrus, and PFC. 
Overall, our current study sheds light on how individual differences in 
BP are represented in the brain connectivity patterns, and may promis
ingly facilitate the identification of biomarkers to preserve brain function 
and prevent cognitive decline.
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Translational perspective
Using machine learning approach, this study predicted individual differences in blood pressure from whole-brain functional connectivity at the in
dividual level. The identified brain signature, which primarily involves the cerebellum, prefrontal, anterior insula, anterior cingulate cortex, supra
marginal gyrus, and precuneus, may afford us more opportunities to identify early biomarkers to improve prevention and diagnosis of hypertension 
prior to the clinical onset of overt symptoms. Moreover, the imaging signatures may also serve as a potential target for novel therapeutics, which can 
promisingly facilitate the preservation of brain function and cognitive function.
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