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Abstract 

Research into sleep–wake behaviors relies on scoring sleep states, normally done by manual inspection of electroencephalogram 
(EEG) and electromyogram (EMG) recordings. This is a highly time-consuming process prone to inter-rater variability. When studying 
relationships between sleep and motor function, analyzing arousal states under a four-state system of active wake (AW), quiet wake 
(QW), nonrapid-eye-movement (NREM) sleep, and rapid-eye-movement (REM) sleep provides greater precision in behavioral analysis 
but is a more complex model for classification than the traditional three-state identification (wake, NREM, and REM sleep) usually 
used in rodent models. Characteristic features between sleep–wake states provide potential for the use of machine learning to auto-
mate classification. Here, we devised SleepEns, which uses a novel ensemble architecture, the time-series ensemble. SleepEns achieved 
90% accuracy to the source expert, which was statistically similar to the performance of two other human experts. Considering the 
capacity for classification disagreements that are still physiologically reasonable, SleepEns had an acceptable performance of 99% 
accuracy, as determined blindly by the source expert. Classifications given by SleepEns also maintained similar sleep–wake character-
istics compared to expert classifications, some of which were essential for sleep–wake identification. Hence, our approach achieves 
results comparable to human ability in a fraction of the time. This new machine-learning ensemble will significantly impact the 
ability of sleep researcher to detect and study sleep–wake behaviors in mice and potentially in humans.
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Graphical Abstract 

Statement of Significance

Here, we describe a new machine-learning approach that uses time-series ensemble to automatically score hours of sleep–wake 
states in a matter of seconds. Manual scoring is a highly time-consuming process prone to inter-rater variability. Hence, an 
easy-to-implement automated system, which scores rapidly and with great accuracy, is of interest to the sleep research communi-
ty. Our automated system reaches 99% accuracy. This automated system can easily be implemented by a great number of labs, and 
in this spirit, we make our algorithm fully open-source and available at https://github.com/paradoxysm/SleepEns.

https://github.com/paradoxysm/SleepEns
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Introduction
Research into sleep, its regulation, and its relation to other behav-
iors is important for understanding brain physiology in health 
and disease [1–5]. To study sleep, sleep–wake states must be char-
acterized and distinguished from one another. This is traditionally 
done by manual classification of sleep–wake states in segmented 
epochs, usually around 5 s in length [1, 6–9]. Researchers man-
ually identify arousal states through visual inspection of elec-
troencephalogram (EEG) and electromyogram (EMG) recordings. 
However, this is a laborious exercise that is time-consuming [10–
12]. Furthermore, manual classification is subject to inter-rater 
variability with agreement rates of 90% in mice [10] and 82% in 
humans [13, 14]. The extent of subjectivity in sleep–wake state 
classification is thus a major limitation, especially when combin-
ing data across sleep studies.

Sleep–wake states are typically differentiated by several fea-
tures found in EEG/EMG signals. REM sleep is characterized 
by dominant theta (θ: 6–9 Hz) EEG activity and muscle atonia, 
NREM by predominant delta (δ: 0.1–4 Hz) EEG activity and little 
to no muscle activity, and waking states are generally identified 
by higher frequency signals in EEG with variable EMG activity 
[1, 6, 10, 12, 15]. There is usually an extensive range of muscle 
activity that can occur in waking states and thus can be further 
subcategorized into active wake (i.e. high level of muscle activ-
ity and complex movement) and quiet wake (i.e. lower level of 
muscle activity) substates [1, 6, 16]. This is particularly useful 
in understanding relationships between sleep and motor func-
tion in pathological states such as REM sleep behavior disorder 
[3, 5, 17–21], narcolepsy [4, 22–24], Parkinson’s disease [25–27], or 
periodic leg movements [28], which are characterized by unusual 
motor behavior during sleep–wake states. This four-state delin-
eation of sleep–wake states increases precision, gives us a more 
detailed view of both healthy and diseased states, which makes 
it an increasingly essential approach to evaluating sleep–wake 
behaviors.

Because sleep–wake states have defining characteristics, 
they are well suited to undergo classification by an automated 
algorithm. Current simple automated techniques use handpicked 
features extracted from EEG/EMG signals with researcher-defined 
logic and thresholds to identify sleep–wake states [29]. Various 
machine-learning algorithms have also been applied with prom-
ising results. These include support vector machines [30], naïve 
Bayes classifiers [31, 32], ensemble methods [33], unsupervised 
learning [34], and deep learning approaches [10, 11, 35–37]. These 
automated approaches have met with varied success with the 
most successful approach reaching around 92% accuracy in cat-
egorizing three states of sleep–wake behavior [38]. However, no 
automated approach to date classifies sleep–wake behavior into 
four states, i.e. active wake, quiet wake, NREM sleep, and REM 
sleep.

Here, we (1) describe a novel ensemble learning approach, 
the Time Series Ensemble, that incorporates temporal information 
and is based on an ensemble approach to classification/predic-
tion of time series data; (2) detail SleepEns built on the Time Series 
Ensemble that is accessible to train and detect sleep–wake states 
with speed and accuracy; (3) demonstrate the performance of 
SleepEns through extensive statistical analyses and comparisons 
to human expert performance evaluated in a blinded trial to 
assess acceptable performance—the extent to which a researcher 
could reasonably trust the classifications given by a scorer; (4) 
characterize the sleep–wake architecture that emerges from 
SleepEns classifications and show they are statistically similar to 

those produced by human expert classifications; and (5) deter-
mine further insight into signal markers characteristic of states 
of consciousness through an understanding of how SleepEns 
determines the most probable sleep–wake state.

Methods
Animals and data acquisition
Data from 19 male and nine female 5–8-week-old wild type mice 
(C57BL/6 background, average weight 22 ± 2 g). Animals were 
housed individually and maintained on a 12-hour light/dark cycle 
(lights on at 7:00 a.m.). Both food and water were available ad libi-
tum. All procedures and experimental protocols were approved 
by the University of Toronto Animal Care Committee and were in 
accordance with the Canadian Council on Animal Care.

Sterile surgery was performed to implant EEG and EMG 
electrodes [1, 2, 6]. In brief, general anesthesia was induced 
and maintained via inhalation (isoflurane, 0.5%–2%). Two insu-
lated, multistranded stainless-steel wire EMG electrodes were 
implanted into the right masseter muscles, and two EMG elec-
trodes were inserted into the nuchal muscles. Four stainless-steel 
screws attached to multistranded stainless-steel insulated 
34-gauge wire were implanted in the skull for recording cortical 
EEG activity; their coordinates were +1 mm AP, ±1 mm ML from 
bregma, and −2 mm AP, ±3 mm ML from bregma.

EEG and EMG activities were recorded by attaching a light-
weight tether cable to the head of the mouse and connecting it to 
a Physiodata amplifier system (Grass 15LT, Astro Med, Brossard, 
QC). The EEG signal was bandpass filtered between 0.3 and 100 
Hz. EMG signals were bandpass filtered between 30 and 30 kHz. 
A 60 Hz notch filter was applied when necessary. All electrophys-
iological signals were sampled at 1–2 kHz, digitized (Spike2 soft-
ware, 1401 interface; Cambridge Electronic Design, Cambridge, 
UK), monitored and stored on a computer.

Each recording collected from different mice, averaged around 
3 h in length and was subdivided into 5-s epochs. This sleep 
recording data was manually analyzed and labeled as Active 
Wake (AW), Quiet Wake (QW), NREM sleep (NR), and REM sleep (R) 
(Figure 1a) by a source expert (i.e. Expert 0) and these labels were 
used as the archetype [1, 2, 6]. A subset of 14 recordings totaling 
30 245 epochs was used to train and validate the machine-learn-
ing algorithm. The remaining five recordings totaling 10 180 
epochs were used to test the automated algorithm and analyze 
its performance. These were also independently analyzed and 
scored manually by three human experts (i.e. Experts 0-2). Expert 0 
has 20 years of experience, while Experts 1 and 2 both have 6 years 
of experience. To test whether the algorithm could also classify 
sleep–wake states in female mice, we re-trained the algorithm 
with 14 recordings from male mice and the addition of recordings 
from four female mice for a total of 38 912 epochs, and tested it 
with five male and five female recordings totaling 21 009 epochs.

Data preprocessing and feature extraction
Each recording was preprocessed in the following manner:

1.	 Each channel is detrended by subtracting the mean for 
each channel across the recording.

2.	 For each 5-s epoch, 16 features of EEG and EMG signals 
were extracted (Table 1).

3.	 Each feature was log transformed with the median as 
the base. This was done to maximally spread the feature 
data to help identify and separate individual states. A 
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Figure 1.  Characterizing key EEG and EMG features for sleep–wake identification over time. (a) Representative EEG and nuchal EMG (EMGN) during 
Active Wake (AW), Quiet Wake (QW), Rapid Eye Movement (REM) sleep, and Non-REM (NREM) sleep. (b)–(i) Distribution of EEG and EMG parameters 
density used to identify sleep-wake states (i.e. AW-red, QW-yellow, NR-green: NREM and R-blue: REM) by SleepEns. Parameters are as follows: (b) EEG 
root-mean square (EEG RMS); (c) Top 5% EMG activity (EMG 95%ile Mean); (d) EEG spectral entropy; (e) EEG θ/δ power; (f) EEG δ power; (g) EEG θ power; 
(h) EEG σ power; and (i) EEG β power. The x-axes of all plots represent the feature values after processing. Distributions are drawn from 10 180 epochs 
in the test dataset. (j) A three-dimensional plot of three features (EMG 95th Percentile Mean, EEG Entropy, and EEG RMS) demonstrates a degree of 
separability between sleep-wake states. Axes represent the feature values after processing and data is drawn from a sample of 5090 epochs in the test 
dataset. (k) Eight features over the course of 30 epochs (150 s) illustrating changes in features as the animal progresses over each sleep–wake state.
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per-recording median was used as data in different record-
ings tended to occupy different ranges relative to each 
other. Using a per-recording median helps translate feature 
data and align across recordings but assumes the data dis-
tribution, and therefore distribution of sleep–wake states, 
is similar across recordings. This is in fact the case for our 
3-hr long recordings (p > .99, n = 14).

4.	 Each feature is scaled to fit within an interval of −5 and 5 
and then subsequently detrended by the mean to center 
every recording.

We extracted the following 16 features from the EEG and EMG 
signals: Four EEG frequency bands (delta δ: 0.5–4 Hz; theta θ: 
7–10 Hz; sigma σ: 11–15 Hz; beta β: 15–40 Hz) and their ratios 
were selected as being distinct markers across sleep–wake states. 
Root mean squares (RMS) of signals were included as some states 
exhibit higher overall signal power (e.g. NREM sleep). Spectral EEG 
and EMG entropy measures the distribution of power across fre-
quencies; desynchronized and disordered signals contain more 
constituent frequency components and yield higher spectral 
entropies. This was used to help differentiate Wake and REM 
sleep from NREM sleep episodes. The 95th percentile EMG mean 
and twitch measures were used as indicators of muscle activity. 
We can examine these features as they differ between sleep–
wake states and over time (Figure 1b–k). Looking at density distri-
butions of the four EEG frequency bands, as well as EEG entropy, 
EEG RMS, EEG θ/δ and EMG 95%ile, we can see there is appreciable 
separability of states in many features (Figure 1b–i). For exam-
ple, EEG entropy effectively distinguishes Active Wake from other 
states (Figure 1d) while each of the frequency bands fairly sepa-
rates sleep-wake states into 2-3 clusters in various combinations 
(Figure 1f-g). Taken together, the various separations of states in 
each feature can be combined to better identify states from each 
other. It is important to note that there is substantial overlap even 

using three features in combination (Figure 1j), thus a good clas-
sification model requires greater dimensionality. Examining these 
eight features over time across all four sleep–wake states shows 
how each feature contributes to the identification of different 
states (Figure 1k).

Classification
SleepEns utilizes ensemble learning where many small base esti-
mators are used in combination to obtain better predictive per-
formance than any one estimator might be able to achieve. A 
common base estimator is a decision tree, which is conceptually 
a flow-chart that successively tests various input features (i.e. 
features of EEG/EMG signals) to eventually determine the most 
likely class (i.e. sleep–wake states) (Figure 2a). One well known 
ensemble technique is gradient boosting where successive deci-
sion trees, h(x)</mathgraphic>, are trained in a stage wise manner to 
form the following final function:

F (x) =
M∑
i=1

γihi(x)
(1)

where F (x) represents the overall Gradient Boosting Classifier 
(GBC), comprised of the weighted sum of M base estimators (i.e. 
number of decision trees), h (x) (i.e. the decision trees), and x 
is the input. γ represents the weight for each estimator and is 
determined in the learning process. In this manner, each succes-
sive base estimator attempts to correct the errors of its prede-
cessor. By summating the outputs of these base estimators, we 
arrive at the overall classification output produced by the GBC 
(i.e. Probabilities of each sleep-wake states) (Figure 2a). For more 
details on what shapes the complexity of GBCs see previously 
described work [39]. There are several manually tunable hyper-pa-
rameters for GBCs: the number of base estimators to train, the 
fraction of features to subsample from for each estimator, the 
fraction of training data for each estimator, the maximum depth 
of the estimator decision trees, and a learning rate, which decays 
the contribution of each successive estimator. For SleepEns, these 
parameters were determined through cross-validation (see sec-
tion below for full details), and optimal parameters were found 
to be 250 base estimators (i.e. M) each receiving a random subset 
of input features limited to the square root of the total number 
of features (i.e. four features randomly selected from the 16 input 
features for each estimator) and trained on a random 75% of the 
training data (Figure 2a).

Time series ensemble
There are multiple ways to incorporate temporal information. 
One method is for a GBC to receive input from a window of 
epochs (i.e. w1, w2, . . . , wn) and predict the central epoch. The 
ensemble is thus receiving as input n sets of 16 features at once. 
The drawback of this sliding window is that it consequently can-
not provide predictions for the first and last n2 epochs in a given 
time series recording. To avoid this, we arrange n GBCs, Fi (x), such 
that each member GBC received the same window as input but 
the first provides a prediction for epoch w1, the second for w2, and 
so on (Figure 2b). As the entire apparatus slides forward across 
the time series recording, each epoch will have predictions from 
each of the n GBCs. We can take the average of these outputs as 
the final output of the apparatus for a given epoch. We termed 
this overall model a Time Series Ensemble. This allows the model to 
retain the inclusion of temporal context given by sliding windows 
while avoiding truncation of the sequence: the first epoch in a 
time series is only classified by F0 (x) and using the first n epochs 

Table 1.  Description of features.

Feature Description

Delta (δ) Power of 0.5–4 Hz band in EEG calculated 
from Welch periodogram

Theta (θ) Power of 7–10 Hz band in EEG

Sigma (σ) Power of 11–15 Hz band in EEG

Beta (β) Power of 15–40 Hz band in EEG

Theta/Delta Ratio of Theta to Delta

Sigma/Delta Ratio of Sigma to Delta

Beta/Delta Ratio of Beta to Delta

Sigma/Theta Ratio of Sigma to Theta

Beta/Theta Ratio of Beta to Theta

Beta/Sigma Ratio of Beta to Sigma

EEG RMS Root mean square (RMS) of EEG

EMG RMS Mean of RMS of Neck and Mass. EMG

EEG Entropy Spectral entropy of EEG

EMG Entropy Mean of spectral entropies of Neck and 
Masseter EMG

EMG 95%ile Mean Mean of the top 5% samples in Neck and 
Masseter EMG

EMG Twitch Sum of variances above the median in Neck 
and Massester EMG. Epochs are subdivided 
into 10 subepochs to calculate variances.
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Figure 2.  Model architecture of SleepEns, physiological state transition graph, and training protocol. (a) Representation of a gradient boosting 
classifier (GBC) architecture, receiving inputs from 16 features of EEGs and EMGs signals (X1,…, X16). GBC is an ensemble of successive decision trees 
and can be express as a mathematic function: F (x) =

M∑
i=1

γihi (x); where F(x) is the overall GBC, comprised of the weighted sum of M base estimators 
(i.e. number of decision trees), h(x) represent each decision tree, x is the input, and γ the weight of each estimators. For SleepEns, we found through 
cross-validation that optimal parameters were 250 base estimators (i.e. M) each receiving a random subset of input features limited to the square 
root of the total number of features (i.e. four features randomly selected from the 16 input features for each estimator) and trained on a random 
75% of the training data. (b) Demonstration of how a small-scale Time Series Ensemble, composed of only two GBCs, operates over a 5 epoch time-
series data as it moves its window along the sequence. The first epoch, T, is determined only by one gradient boosting classifier (GBC 1) as there is no 
prior epoch for GBC 2 to operate on. The second epoch, T + 1, is determined by combining the output of GBC 2 using T to T + 1 with the output of GBC 
1 (of the following time step) using T + 1 to T + 2. This continues until the final epoch, T + 4, which is solely determined by GBC 2. (c) Architectural 
details of the SleepEns model, consisting of two layers of Time Series Ensembles, each with a window size of 10, totaling to 20 GBCs, each with 250 
constituent estimators (M). The model operates in a greedy fashion, using the first layer to produce intermediate probabilities of active wake (PAW), 
quiet wake (PQW), NREM sleep (PNR), and REM sleep (PR), across the sequence and then feeding this to the second layer to produce the final output. (d) 
State transition graph illustrating the feasible transitions that can occur in 4-states (top) and 3-states (bottom). In particular, Wake states can inter-
transition, REM must always be preceded by NREM and can only transition into waking states. (e) Training SleepEns requires layer-by-layer training. 
To train a subsequent Time Series Ensembles (TSEns) layer, cross-validation is used to produce out-of-bag values to avoid over-fitting. (f) Nine epochs 
covering 45s were taken from one of the test recordings to demonstrate an example of a postprocessing correction, in this case the utility of Valid 
Transitions to improve the predictions by implementing the most probably physiological state transition sequence. The two bottom traces represent 
the EEG and EMG input signals. The top three traces depict hypnograms by Expert 0, a SleepEns without postprocessing, and the final post-processed 
SleepEns. Note that without postprocessing, SleepEns could identify a direct wake to REM sleep transition.
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as input, followed by the second epoch determined by the average 
of F0 (x) (using the 2nd to (n + 1)th epochs) and F1 (x) (using the 
first n epochs), and so on (Figure 2b). Thus, the output for the n
th epoch onwards is an average of all n classifiers, each having 
used a different window (Figure 2b). In this respect, the Time Series 
Ensemble aggregates features in both temporal directions. Again, 
through cross-validation (see section below for full details), it was 
determined that a window size of 10 classifiers was ideal.

Successive Time Series Ensembles to form 
SleepEns
Because the output is never truncated with a Time Series Ensemble, 
it is feasible to chain Time Series Ensembles, where the output of 
the first acts as the input for a second (Figure 2c). This allows the 
second ensemble to improve upon the predications of the first. 
The first layer Time Series Ensemble trains on the training data-
set (i.e. 16 features of EEG/EMG signals) to provide probabilities 
of the four sleep–wake states. This acts as intermediate latent 
input for the second layer to train. The second layer uses only 
these intermediate state probabilities as input. A third layer could 
potentially be added, but the input and output spaces would be 
identical to that of the second layer. This is in contrast to hidden 
layers in deep learning (where the layers do not input or output 
into the same spaces) or multilayer stacked classifiers (where 
intermediate layers contain a diverse collection of estimators as 
opposed to the same solitary classifier). Consequently, the possi-
ble optimization that could be added by this third layer should be 
possible to be gained in the second layer, though this remains an 
assumption. In addition, a third layer would exponentially add 
to the computational cost to train and run the overall ensemble.

Corrective post-processing
The core classification process using the Time Series Ensemble 
achieves a strong performance but does not guarantee certain 
traits regarding sleep-wake states. Some post-processing passes 
were implemented to reduce or eliminate such errors (Table 2). 
All of these post-processing passes relate to improving the algo-
rithm’s performance at state transitions. This is a result of both 
the artificial division of 5-s epochs which could contain a transi-
tion within the epoch as well as the physiological transition itself 
can take some time to manifest fully in EEG/EMG signals.

The post-process Wake vs. Sleep was implemented to improve 
the sensitivity of waking states and the specificity of NREM sleep. 

Machine learning algorithms are not explicitly aware that Active 
Wake and Quiet Wake are interrelated as subcategories of Wake. 
The post-process Wake to REM is intended to repair the predic-
tions when the model erroneously predicts REM instead of a 
Wake state. Because an Active Wake episode can often last many 
epochs, should such a confusion occur, the resulting mistaken 
REM episode can be quite long. The later Valid Transitions post-pro-
cess would otherwise attempt to transition the Active Wake into 
a brief NREM and move to REM. The post-process Wake to REM 
overrides this error.

Finally, in normal sleep–wake behavior, certain states may fol-
low other states while other transitions are not physiologically 
possible (Figure 2d). The training data contained only physiologi-
cal state transitions for the model to learn; however, this does not 
guarantee valid transitions. Such errors are incredibly rare occur-
ring once in the 10 180 epochs of the test dataset. To ensure such 
errors do not occur, a post-processing pass called Valid Transitions 
is completed. When an invalid transition is determined, a for-
ward pass and a backward pass determine two candidate valid 
sequences and the most probable sequence is selected based on 
the prediction probabilities given by the Time Series Ensemble. This 
corrective post-processing ensures physiologically feasible state 
transitions (Figure 2d). For example, it ensures that REM sleep is 
always preceded by NREM sleep (Figure 2d,f). Post-processing cor-
rections are rare, accounting for less than 0.5% change in perfor-
mance but provides greater security in state classification.

Training, crossvalidation, and testing
Training SleepEns involves a few steps (Figure 2e). The Time Series 
Ensemble layers must be trained one step at a time as the model is 
not end-to-end differentiable. The first Time Series Ensemble layer 
can be trained on the entire training dataset. However, to avoid 
bias, the second layer requires output from the first layer that 
was not seen during training, called out-of-bag predictions. We 
employed cross-validation to produce these out-of-bag predic-
tions. In cross-validation, the input data (e.g. for the second layer 
the input data would be the outputs of the first layer) was split 
into a number of folds, or chunks. Here, we used five folds. It is 
important to note that these folds consist of continuous record-
ings; we avoid mixing epochs from different recordings for each 
fold as this effectively introduces information from all recordings 
into training, leading to overfitting of the model and skewing the 
cross-validation results. An instance of the first layer was trained 
on four of these folds then predicted on the fifth fold; this was 
repeated with separate instances of the first layer until every fold 
had been predicted once. This yielded out-of-bag predictions for 
the entire training dataset, which was then used as input to train 
the second layer. Predictions from the SleepEns model involves the 
first layer predicting using input features, followed by the second 
layer using those predictions as input to produce the final overall 
predictions (Figure 2c).

Selecting the best SleepEns model, along with a specific set of 
manually tuned hyperparameters, requires comparing candidate 
models on new data. This model selection process is vulnerable 
to bias as the specific hyperparameters are being tuned to opti-
mize the performance on the testing data. To avoid introducing 
this bias, we again used cross-validation and added a final test-
ing dataset. We used five-fold cross-validation using each fold as 
a validation set and evaluated candidate models by the average 
performance across the five folds. We evaluated over different 
hyperparameters: learning rates of 0.05 or 0.01; 10 or 20 GBCs 
per Time Series Ensemble; 100, 250, or 500 base estimators for each 

Table 2.  Description of corrective post-processing

Postprocess Purpose

Wake vs. 
Sleep

Increase sensitivity to wake states by 
combining the probability of Active and 
Quiet Wake to determine wake vs. sleep, 
then determining most probable wake state.

Wake to 
REM

Ablate REM episode when an invalid Wake 
to REM transition occurs.

End of REM End a REM episode if the probability of REM 
declines past a moving average.

Minimum 
REM 
Duration

Force REM episodes to be a minimum 
duration via a backwards pass.

Valid 
Transitions

Repair a sequence of states to the most 
probable physiologically possible sequence 
of states (Fig. 6).
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constituent GBC; limiting each base estimator to the square root 
of the number of features or no limitation; max depth of base 
estimators at 3, 5, or 7; limiting each base estimator to 70%, 75%, 
80%, 85%, 90%, or 100% of the training data. The model and set 
of hyperparameters that yielded the best cross-validated per-
formance was selected for testing and performance analysis. 
In doing so, the performance observed on the testing dataset is 
closer to true real-world performance.

Through cross-validation model selection, the architecture 
presented was chosen for SleepEns. Furthermore, the hyperparam-
eters were selected as 10 GBCs per Time Series Ensemble layer, 250 
estimators (M) for each constituent GBC, limiting each estimator 
to the square root of the number of features and to 75% of the 
training data, constraining estimators to a depth of 5, and learn-
ing rate of 0.05.

Run-time evaluations were conducted on a computer with 
the following specifications: Ryzen 5 3600 (6-core 3.6 GHz), 16GB 
DDR4 3200MHz RAM, all code was run single-threaded with the 
exception of individual GBCs which were parallelized.

Statistical analysis
The statistical tests used for analyses are included in the Results 
section. All statistical analyses were conducted using two Python 
libraries, pingouin 0.50 [40] and scipy 1.7.2 [41], and applied a crit-
ical two-tailed α value of p < .05. Repeated measures analysis of 
variance (ANOVA) was followed by Bonferroni post hoc compar-
isons. All data are presented as average ± standard error of the 
mean (SEM) unless otherwise indicated.

Results
In our study, we had a source expert, Expert 0, who scored all 
data. Fourteen 3-hr recordings were selected as training data 
for SleepEns. Another five 3-hr recordings were used for testing. 
These five recordings were also independently scored by Expert 1 
and Expert 2. All performances were measured against the source 
expert.

Traditionally, state classification is done over epochs of some 
reasonable duration for the animal studied. For mice, it is usu-
ally 5 s as sleep-wake states rapidly transition in these species. 
However, the underlying sleep process is not bound to these 
epochs and can transition within an epoch. Thus, the epoch 
at which an expert can pinpoint a new arousal state can vary 
between experts. In a 4-state classification problem, there is 
added variability in what is deemed Active Wake vs. Quiet Wake 
or Quiet Wake vs. NREM sleep. Simple accuracy measures there-
fore are an underestimation of what is actually acceptable and 
reasonable for classification agreement. In our study, we had 
Expert 0 blindly assess all predictions from experts and SleepEns 
for acceptable classifications. This formed an acceptable perfor-
mance, where a researcher could reasonably trust the classifica-
tions given by a scorer.

SleepEns accurately detects 4 sleep–wake states
SleepEns performed comparably to humans, achieving 89.97 ± 
1.4% accuracy compared to Expert 0 (Figure 3). Expert 1 and Expert 
2 achieved 92.14 ± 0.4% and 94.03 ± 0.4% accuracy with Expert 0, 
respectively (Figure 3). SleepEns demonstrated similarity with at 
least one human expert (SleepEns vs. Expert 1: p = .3592, Figure 3a). 
Evaluating acceptable performance showed SleepEns at 98.79 ± 
0.3%, Expert 1 at 99.40 ± 0.2%, and Expert 2 at 99.50 ± 0.2% (Figure 
3). Importantly, we found that SleepEns and both human experts 

show no differences when evaluating for acceptable performance 
(SleepEns vs. Expert 1: p = .1561, SleepEns vs. Expert 2: p = .1400, Figure 
3b) demonstrating that one can have as much practical confidence 
in the abilities of SleepEns as one would with human experts.

By examining SleepEns performance for each of the four sleep–
wake states, we found that the main source of error came from 
confusion between Quiet Wake and other states (Figure 3d). 
SleepEns tended to mischaracterize Quiet Wake as either NREM 
sleep or Active Wake. This was within expectation as Quiet Wake 
is difficult to distinguish between early stages of NREM sleep 
and “quieter” Active Wake. This was evident in the acceptable 
performance demonstrating that much of the differing predic-
tions on Quiet Wake epochs were still reasonable classifications 
(Figure 3e). These acceptable errors related to slight differences 
in exact state transition timing were to be expected given the 
artificial delineation caused by dividing recordings into epochs 
(Figures 6 and 7).

SleepEns was also statistically similar to both experts in every 
state (AW Expert 1: p = .16, AW Expert 2: p = 1.00, QW Expert 1: p = 
.82, QW Expert 2: p = .8, NR Expert 1: p = .36, NR Expert 2: p = .46, R 
Expert 1: p = .213, R Expert 2: p = .225). In fact, the only significant 
difference observed was between Expert 1 and Expert 2 for Quiet 
Wake (p < .05, Figure 3f). Moreover, no differences existed among 
the three scorers when considering acceptable performance (p > 
.05 for all comparisons, Figure 3g).

SleepEns identifies 3 hours of sleep–wake states 
in a few seconds
Sleep classification done by manual inspection is a laborious task. 
Improving the efficiency of sleep classification is an incredibly 
valuable aspect of automated algorithms. Testing with 3-hour 
long recordings, SleepEns was able to extract, process, classify, and 
export predictions in an average time of 6.26 ± 0.14 s (Figure 3c). 
This is in stark contrast with human experts taking an average 
of 74 min (4461.43 ± 654.56 s) to classify the same recordings (p < 
.001, n = 5). Training time of SleepEns is also very reasonable, tak-
ing 9012 s (about 2.5 hours) to train with 30 245 epochs of training 
data (42 hours of recording).

SleepEns accurately detects 3 sleep–wake states
While distinguishing two states of Wake (i.e. Active and Quiet) 
is useful particularly when examining the relationship between 
sleep and motor functions, the most common sleep-wake state 
classification system in mice is with three states: Wake, NREM 
sleep, and REM sleep. SleepEns was primarily designed for the four-
state system but we also evaluated our algorithm with the usual 
three-state system. By merging all classifications of Active Wake 
and Quiet Wake into a single Wake state, we found excellent pre-
dictions given by SleepEns with 92.25 ± 1.1% accuracy (Figure 4a,c). 
Expert 1 and Expert 2 achieved 94.88 ± 0.5% and 95.58 ± 0.3% accu-
racy with Expert 0, respectively (Figure 4a,c). Evaluating acceptable 
performance showed SleepEns at 98.85 ± 0.2%, Expert 1 at 99.47 ± 
0.1%, and Expert 2 at 99.54 ± 0.2% (Figure 4b,d). SleepEns contin-
ues to be similar to Expert 1 (p = .1271) and had no significant 
difference with either human expert when evaluating acceptable 
performance (SleepEns vs. Expert 1: p = .1841, SleepEns vs. Expert 2: 
p = .1493, Figure 4b,d). By inspecting the confusion matrices for 
three-state classification (Figure 4e-f), we found much improved 
distinction between Wake and NREM sleep with minimal confu-
sion due to the underlying transitions from Wake to sleep. This 
highlights that SleepEns is a suitable automated classifier for the 
usual three-state system as well.
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SleepEns identify sleep–wake states with a 
similar efficiency in both male and female mice
To ensure the tractability of our approach and ensure that we 
could identify sleep–wake states in both male and female mice for 
future experiments, we re-trained the algorithm with the original 
14 recordings from male mice and the addition of recordings from 
four female mice, and tested it with five male and five female 
recordings. We found similar accuracy (p = .8636) and acceptable 
performance (p =.5622) when comparing male and female mice 

(Figure 5a,b). After re-training with this extended data set (i.e. 19 
recordings used for training), the accuracy of SleepEns to identify 
sleep–wake states reached 90.04 ± 1.1% for male mice and 89.74 
± 1.3% for female mice (Figure 5a). Evaluating acceptable perfor-
mance, SleepEns reached accuracy of 98.54 ± 0.5% for male mice 
and 98.05 ± 0.5% for female mice (Figure 5b). Finally, by inspecting 
the confusion matrices for four-state classification in female mice 
(Figure 5c,d), we found SleepEns tended to mischaracterize Quiet 
Wake as either NREM sleep or Active Wake similarly to what we 

Figure 3.  SleepEns accurately detects 4 sleep–wake states. Comparison of accuracies between human experts and SleepEns (see Table 3). (a) Absolute 
accuracy in relation to Expert 0. (b) Acceptable accuracy as determined by Expert 0. (c) Execution time comparison between human experts and 
SleepEns. Note that SleepEns identify sleep-wake state in a 3-hr recording in ~6s. (d) and (e) Confusion matrices between SleepEns and Expert 0 for 
absolute accuracy (d) and acceptable accuracy (e). (f) Absolute accuracy comparison for each state. (g) Acceptable accuracy comparison for each state. 
AW: Active Wake, QW: Quiet Wake, NR: NREM Sleep, R: REM sleep, GBC: Gradient Boosting Classifier, TSEns: Time Series Ensemble. *p < .05, **p < .01 
and ***p < .001 indicates significant differences.
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found when only considering the sleep–wake architecture of male 
mice (Figure 4). These differences were resolved when acceptable 
performance was evaluated. This suggests that SleepEns is able to 
efficiently identify sleep–wake states regardless of sex.

Sleep–wake characteristics are similar when 
detected by either SleepEns or Experts
We compared the sleep–wake architecture predicted by SleepEns 
with that of each of the Experts. First, we found that SleepEns 
and human experts had similar hypnograms (Figure 6a). 
Disagreements with human experts only occurred around state 
transitions, but this was also the case between human experts 
(Figures 6a and 7a,b). SleepEns had a smoothing effect, prioritizing 
state stability, when Expert 0 identified alternating epochs of Quiet 
Wake during either NREM sleep or Active Wake (Figure 6). Finally, 
SleepEns tended to transition its predictions into REM sleep earlier 
than human experts, suggesting a higher sensitivity to REM sleep 
transition (Figures 6 and 7a). A longer comparison of SleepEns to 
human experts across 10 850 s was made (Figure 6b), demonstrat-
ing the similarity in performance across sleep–wake states over 
time. Differences in classifications deemed acceptable were typi-
cally related to slight differences in exact state transition timing, 
which is expected given the artificial delineation caused by divid-
ing recordings into epochs (Figures 6b and 7a-c). Other acceptable 
differences related to the existence of brief Quiet Wake periods 

between NREM sleep (Figures 6b and 7a–c). The only few true 
errors were due to confusion between REM sleep and other states, 
or between Quiet and Active wake episodes (Figures 6b and 7b,c); 
however, these represented less than 2% of the recordings and 
were also present between human scorers.

Next, we quantitatively evaluated the characteristics of sleep–
wake states using several parameters often used in sleep-wake 
architecture analysis (i.e. number of episodes per hour, distribu-
tion of episodes in a 3-hr recording, and episode duration; Figure 
8a–c). We found that the only significant difference noted between 
SleepEns and each of the human experts was in the number of 
NREM sleep episodes per hour with Expert 2 (NREM: p < .05, n = 
5, Figure 8a). Importantly, SleepEns’s predictions were statistically 
similar to at least one expert in every comparison (Figure 8a–c). 
The main discrepancies we found were between human experts, 
highlighting the efficiency of SleepEns. Expert 1 differed from Expert 
2 in the number of Active Wake (p < .001, n = 5) as well as Quiet 
Wake (p < .05, n = 5) episodes per hour (Figure 8a,c). The number 
of Active Wake episodes identified by Expert 1 was also different 
from both other human experts (Expert 0: p < .001; Expert 2: p < .05, 
n = 5, Figure 8a). Finally, Quiet Wake episodes identified by Expert 2 
were also of shorter duration compared to Expert 0 (p < .05, n = 5, 
Figure 8b). This clearly demonstrates the comparability of scoring 
produced by SleepEns in sleep–wake classification when evaluated 
to human experts.

Figure 4.  SleepEns accurately detects 3 sleep–wake states. Comparison of accuracies between human experts and SleepEns. (a) Absolute accuracy 
in relation to Expert 0. (b) Acceptable accuracy as determined by Expert 0. (c) Absolute accuracy comparison for Wake (W). (d) Acceptable accuracy 
comparison for Wake (W). (e) and (f) Confusion matrices between SleepEns and Expert 0 for absolute accuracy (e) and acceptable accuracy (f). *p < .05, 
indicates significant differences.
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Finally, we also examine the EEG spectral profiles for each state 
identified by SleepEns and human experts to compare electro-
physiological signal characteristics (Figure 8d–g). By pooling each 
state’s EEG signals in accordance to the classifications made by 
SleepEns or the human experts, we found the spectral profiles for 
each state to be similar between SleepEns and at least one human 
expert (AW: p = .9419, QW: p = .2051, NR: p = .9988, R: p = .1191). 
For example, REM sleep was characterized by a peak in the theta 
band (θ: 7–10 Hz) and NREM sleep by a peak in the delta band (δ: 
0.5–4 Hz). Therefore, SleepEns’s state detection had identical signal 
characterization as the one defined by human experts.

Temporal context is critical for SleepEns 
performance
SleepEns is a novel arrangement of GBCs that was designed to lev-
erage past and future temporal information. In comparison, GBCs 
that only utilized a single epoch, performed significantly worse 
(p < .001). We trained a number of variations of epoch-by-epoch 
GBCs with 250 estimators to match the model size of SleepEns; 
however, testing performance only yielded 82.58 ± 0.018% accu-
racy for 4 states. A single layer Time Series Ensemble was also eval-
uated as well, with window length (i.e. number of GBCs) of 10 and 
showed significant improvement over the epoch-by-epoch GBC 

Figure 5.   SleepEns identify sleep-wake states with a similar efficiency in both male and female mice. Comparison of accuracies between human 
experts and SleepEns for recordings of male and female mice. (a) Absolute accuracy in relation to Expert 0 showing no significant sex differences. (b) 
Acceptable accuracy as determined by Expert 0 showing no significant sex differences. Confusion matrices between SleepEns and Expert 0 for absolute 
accuracy (c) and acceptable accuracy (d) of female mice recordings.
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with accuracy of 88.57 ± 2.9% (p < .01) but still significantly worse 
than SleepEns (p < .05) (Figure 3).

Specific EEG and EMG features are essential for 
the performance of SleepEns
An advantage to using tree-based algorithms with feature 
engineering is that this enables clearer explanation of predic-
tions, as well as identification of important markers for sleep–
wake states. To determine which EEG and EMG characteristics 
were essential for SleepEns detection of behavioral states, we 
examined the importance of each of the 16 features extracted 
from EEG and EMG signals by SleepEns and applied permuta-
tion feature importance analysis. With this technique, for each 

feature, we used a pre-trained SleepEns and compared its per-
formance to when we randomly shuffle, or permute, the data 
of a particular feature across all epochs. This shuffling breaks 
down any relationship that feature may have with the sleep–
wake state. The change in performance between the original 
data and the data with the feature shuffled indicates how 
much SleepEns depends on that specific feature to make pre-
dictions. In this manner, a greater reduction in performance 
due to the shuffling suggests that particular features greatly 
contributed to the ability for SleepEns to predict sleep–wake 
states. We compared performances using a log transformed 
mean square error normalized to the unpermuted data. Thus, 
a ratio greater than 0 represents a feature that improves the 

Figure 6.  Example analysis of SleepEns in comparison to human scorers. (a) 100 epochs covering 500 s were taken from one of the test recordings to 
assess the predictions made by SleepEns with the classifications of all three human experts. The top panel represents the EEG input signal while the 
second represents the Neck EMG signal. The third panel depicts a spectrogram of the EEG to illustrate a time–frequency representation. The bottom 
four panels are hypnograms of Expert 0, Expert 1, Expert 2, and SleepEns. Note the scoring similarities between SleepEns and human scorers. (b) A 
longer comparison of human expert and SleepEns agreement with Expert 0. 2170 epochs covering 10 850 s were taken from one of the test recordings 
to demonstrate variations in prediction accuracy made by SleepEns and human experts. The first panel depicts a hypnogram scored by Expert 0, while 
the remaining three panels show accuracies of Expert 1, Expert 2, and SleepEns in comparison to Expert 0.
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model and a ratio less than 0 indicates a feature that degrades 
performance. We computed these importance ratios for both 
the training and testing datasets. Using the training dataset 
reveals features SleepEns relies on to make predictions, while 
using the testing dataset reveals features that contribute to its 
actual performance on unseen data. We found that the EMG 
means, the EEG entropy and specific EEG frequency bands (i.e. 
δ and σ) had the strongest effect on the ability of SleepEns to 
identify correctly all sleep–wake states, while β/δ, σ/θ and β/θ 
EEG ratios were the least effective (Table 3).

However, it is important to place these ratios in the context of 
individual sleep–wake state distribution. NREM sleep comprised 
a significant bulk of the data; hence, features important for clas-
sifying NREM sleep naturally appeared to be more important for 
the overall algorithm (e.g. δ EEG frequency band). Therefore, we 
calculated the importance ratios for each individual sleep–wake 
state (Figure 9). We found that muscle activity (i.e. EMG) related 
features were very important for identifying Active Wake. Overall 
EEG power and θ power were the most important features for 
Quiet Wake. However, these features show significant overlap 

Figure 7.  Examples of agreement, acceptable performance and true errors generated by SleepEns. (a) Example of a NREM to REM sleep transition 
showing the sensitivity of SleepEns to REM sleep transition. SleepEns detected the transition earlier than human scorers did, most likely due to the 
increased proportion of theta (θ) frequency in the EEG. The difference was estimated to be an acceptable performance (grey bar). Traces from top to 
bottom are Expert 0 scoring, SleepEns scoring, EMG and EEG signals. (b) Example of transition between NREM sleep and wake showing both a true error 
(red bar) and an acceptable performance (grey bar) of SleepEns. Note that SleepEns wrongly identified an active wake (AW) epoch that was scored as 
quiet wake (QW) by human scorers. This was likely due to the abrupt change in EEG frequencies and the context of the following epoch of AW. The 
epoch marked as acceptable performance was an epoch comprised of both NREM sleep and quiet wake characteristics in equal manner. (c) A 95s 
example showing a true error (red bar) and an acceptable difference (grey bar) in classification as the animal transition from REM sleep, wake and 
NREM sleep. Note that in this example SleepEns identified a REM sleep to wake transition earlier than Expert 0. Importantly in this instance, both Expert 
1 & 2 made a similar identification as SleepEns (data not shown).
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between Quiet Wake and other states, making Quiet Wake distin-
guishable from some states at times but not uniquely identifiable 
(Figures 1b,g and 9). A number of features aided in identification 
of NREM sleep, including δ power, σ power, β power, overall EEG 
power, EEG entropy, and EEG 95th percentile mean. These features 
are also important for other states, and thus indicate that NREM 
sleep is identified by not matching any defining characteristics 

of other states. The θ/δ EEG ratio was important for distinguish-
ing REM sleep, but surprisingly, decreased δ power had the most 
predictive power for REM sleep. This appears to be because NREM 
and REM sleep states exhibit similar θ powers and differ more in 
the δ power band. Finally, we also tested removal of least predic-
tive features in various combinations finding that performance 
was always degraded (data not shown).

Discussion
We described a novel automated machine-learning approach to 
quickly and accurately classify sleep–wake states from both male 
and female mice using EEG/EMG recordings. We rigorously tested 
and compared sleep-wake classifications given by our algorithm, 
SleepEns, to conclude that the performance of our approach is 
identical to the one of human expert and identify sleep–wake 
characteristics in a fraction of the time it takes for manual/visual 
classification.

SleepEns is the first data processing architecture to classify four 
states of sleep–wake—dividing Wake into Active and Quiet along-
side the traditional NREM and REM sleep states. This specification 
of active vs. quiet waking periods gives greater precisions into 
sleep-wake patterns [16, 42–44]. This degree of details improves 
our ability to research the relationship between sleep–wake 
behaviors and motor function, as well as improve our under-
standing of consciousness [1, 5, 16, 17, 45–47].

Our study evaluated acceptable performance to yield a more 
accurate real-world applicability of sleep–wake classification 
algorithms. Typically, simple epoch-to-epoch accuracy is used 
to evaluate the performance of a model to the source expert(s) 
who labeled the dataset. However, it is well known that there is 
significant inter-rater variability even amongst humans [10, 13, 
14]. Any given human classification has no guarantee to being 
the true classification. Accuracy to a source expert neglects this 

Figure 8.  Similarities of sleep–wake characteristics between SleepEns and human experts’ classifications. Comparison of sleep–wake episode 
characteristics between SleepEns and human experts show that identified sleep-wake states are similar. (a) Number of episodes per hour for Active 
Wake (AW), Quiet Wake (QW), NREM (NR) sleep, and REM (R) sleep as identified by Expert 0 (red), Expert 1 (dark grey), Expert 2 (light grey) and SleepEns 
(blue). (b) Amount of each states (%) per recording file. (c) Average episode duration (s). (d)–(g) A comparison of the EEG spectral profiles for each of 
the three human experts and SleepEns across each of the four sleep–wake states, demonstrating close similarity. *p < .05 and ***p < .001 indicates 
significant differences.

Table 3.  Feature importances

Feature Train Loss Ratio Test Loss Ratio

EMG 95%ile Mean 1.703 ± 0.005 1.270 ± 0.005

EEG Entropy 1.366 ± 0.003 1.405 ± 0.005

EMG RMS 1.188 ± 0.017 1.149 ± 0.003

Delta 1.152 ± 0.003 1.106 ± 0.005

Sigma 1.087 ± 0.002 1.070 ± 0.002

EEG RMS 1.086 ± 0.002 1.111 ± 0.002

Beta 1.072 ± 0.001 1.036 ± 0.001

EMG Twitch 1.069 ± 0.001 1.058 ± 0.001

Theta/Delta 1.058 ± 0.002 1.023 ± 0.002

Theta 1.043 ± 0.001 1.037 ± 0.001

EMG Entropy 1.043 ± 0.001 1.005 ± 0.001

Sigma/Delta 1.040 ± 0.001 1.005 ± 0.001

Beta/Sigma 1.032 ± 0.001 1.011 ± 0.001

Beta/Delta 1.026 ± 0.001 0.999 ± 0.001

Sigma/Theta 1.026 ± 0.000 1.000 ± 0.001

Beta/Theta 1.023 ± 0.001 1.000 ± 0.001

*Loss ratios are calculated as mean square error (MSE) normalized to the MSE 
of the original data. Losses are averaged across 30 repetitions. Intervals are 
reported as the standard error of the mean.
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important fact. This is particularly true when considering that 
transition periods between states in mice can happen in a smaller 
time window than the pre-determined epoch, here 5 s [1, 6, 7]. 
Therefore, we also evaluated classifications as being acceptable 
(i.e. a researcher would be comfortable using the given scoring 
for their own research) and compare this acceptable performance 
with those of other human experts. In this regard, virtually all of 
the classifications provided by SleepEns were deemed acceptable.

Another aspect of our approach, which closely resemble the 
process done by human scorer, is that our division of training, 
validation, and testing datasets are segregated on a per-record-
ing basis as opposed to per-epoch basis that has been used by 
other studies [11]. Epochs within the same recording (or from 
the same animal) are more similar to each other in behavior 
and signal patterns [18]. Therefore, a per-epoch division of data 
results in information bleeding across the training and test-
ing datasets and leading to bias [48]. A per-recording approach 
to dataset construction provides a more accurate indication 
of real-world performance on recordings of different ani-
mals. Furthermore, we developed and optimized SleepEns with 
cross-validation and by selecting the best architecture before 
evaluating it on the testing dataset. This ensures we are not 
introducing selection bias by choosing a model that would per-
form best on the testing dataset [49].

With SleepEns, we defined a novel ensemble learning architec-
ture specifically designed for classifying time series data where 
past and future information (i.e. context) are relevant to the time 
point of interest. We described the Time Series Ensemble as an 

approach to incorporating temporal context that worked well in 
our particular application of sleep–wake classification. SleepEns 
is derived from a particularly arranged ensemble of Gradient 
Boosting Classifiers (GBCs). We chose to use GBCs for several key 
reasons. As an architecture that uses decision trees, GBCs are 
more interpretable when explaining their decision-making pro-
cesses [10–12]. We believe this to be an integral aspect for any 
sleep–wake classification approach as conclusions arising from 
unexplained classifications are more difficult to validate and 
verify. Another reason for the use of GBCs is that deep learn-
ing architectures such as convolutional neural networks and 
recurrent neural networks, both of which also incorporate tem-
poral information, tend to classify three sleep–wake states with 
roughly similar accuracy but are more complex and more com-
putationally expensive algorithms (by a factor of ~103 to 104) than 
the method used in our study [10, 35, 50–52]. In addition, GBCs are 
significantly easier to train than neural networks [10–12]. SleepEns 
was designed with the idea to be easy and accessible to train. This 
is a critical factor in a model’s usability as other researchers may 
use different recording protocols and, thus yield slightly different 
signal and noise characteristics. By deriving our approach from 
GBCs, SleepEns is significantly less expensive than deep learning 
approaches [10, 35] to train on different data and therefore will be 
more accessible to others.

Finally, our study adds to our understanding of the signal 
characteristics that define sleep–wake states. We analyzed the 
features used by SleepEns to determine which of them were inte-
gral to identifying particular states of consciousness and activity. 

Figure 9.  Feature importance identified by SleepEns for each sleep–wake states. Importance ratios were taken for each sleep and arousal state (i.e. 
AW: Active Wake, QW: Quiet Wake, NR: NREM sleep, and R: REM sleep) from 30 repetitions in the test dataset. Importance ratios are log transformed 
so that 0 indicates no change in predictive power compared to non-shuffled features, ratio greater than 0 represents feature that improve sleep 
identification, and negative ratio represents feature that degrade performance of SleepEns. Delta: EEG δ power, Theta: EEG θ power, Sigma: EEG σ 
power, Beta: EEG β power, Theta/Delta: EEG θ/δ power, Sigma/Delta: EEG σ/δ power, Beta/Delta: EEG β/δ power, Sigma/Theta: EEG σ/θ power, Beta/
Theta: EEG β/θ power, Beta/Sigma: EEG β/σ power, EEG RMS: EEG root-mean square.
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We found, in line with current understanding, that the θ/δ EEG 
ratio along with minimal muscle activity characterized REM sleep 
[12, 29, 53]. However, REM sleep was best identified by a decrease 
in power in the δ EEG frequency band. On closer inspection, it 
appears that this was merely because the δ EEG frequency band 
contains a greater degree of separation between REM and NREM 
sleep states. NREM sleep was interestingly best identified by an 
elevated overall EEG signal power and low muscle activity. θ EEG 
frequency band tended to actually be elevated in NREM sleep 
compared to REM sleep, but not to the extent of the δ EEG band 
that predominate this state. Active Wake was efficiently well 
defined by the presence of muscle activity, increased EEG spectral 
entropy, and to an extent a decreased power in σ EEG band. Quiet 
Wake was found to be a more difficult state to identify, because 
at time it is a quick intermediary state between Active Wake and 
NREM sleep. It may be worth further exploring the transition 
between Active Wake and NREM sleep. Quiet Wake may be bet-
ter represented as two states, one that is closer to a calm wak-
ing state while another closer to a drowsy state (i.e. transition 
between Active Wake and NREM sleep).

In the near future, we aim to further refine the SleepEns approach 
and, in particular, explore better data pre-processing approaches. 
The current approach is susceptible to inter-recording variations 
and relies on the assumption of a similar distributions of sleep-
wake states within each recording. Thus, a limitation of SleepEns is 
that the approach likely only performs well with sufficiently long 
recordings to maintain this assumption. As always, feature engi-
neering and selection plays a significant role in machine learning 
processes. It would be of interest to continue exploring other pos-
sible features that might further improve SleepEns, such as higher 
frequency EEG ranges (e.g. γ: 30–100 Hz). It will also be of inter-
est to further explore the decision-making processes of SleepEns 
to possibly elucidate elements in electrophysiology signals that 
are indicative of sleep–wake states and finer transitions between 
states. We will also aim to test whether SleepEns can easily iden-
tify sleep-wake states in disease models [5] such as REM sleep 
behavior disorder [3, 20, 21] or narcolepsy [4, 22–24].
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