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Abstract

Motivation: Most protein-structure superimposition tools consider only Cartesian coordinates. Yet, much of biology
happens on the surface of proteins, which is why proteins with shared ancestry and similar function often have com-
parable surface shapes. Superposition of proteins based on surface shape can enable comparison of highly diver-
gent proteins, identify convergent evolution and enable detailed comparison of surface features and binding sites.

Results: We present ZEAL, an interactive tool to superpose global and local protein structures based on their shape
resemblance using 3D (Zernike-Canterakis) functions to represent the molecular surface. In a benchmark study of
structures with the same fold, we show that ZEAL outperforms two other methods for shape-based superposition. In
addition, alignments from ZEAL were of comparable quality to the coordinate-based superpositions provided by
TM-align. For comparisons of proteins with limited sequence and backbone-fold similarity, where coordinate-based
methods typically fail, ZEAL can often find alignments with substantial surface-shape correspondence. In combin-
ation with shape-based matching, ZEAL can be used as a general tool to study relationships between shape and pro-
tein function. We identify several categories of protein functions where global shape similarity is significantly more
likely than expected by random chance, when comparing proteins with little similarity on the fold level. In particular,
we find that global surface shape similarity is particular common among DNA binding proteins.

Availability and implementation: ZEAL can be used online at https://andrelab.org/zeal or as a standalone program
with command line or graphical user interface. Source files and installers are available at https://github.com/Andre-
lab/ZEAL.

Contact: filip.persson@gmail.com or ingemar.andre@biochemistry.lu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein structure evolves substantially slower than sequence,
which means that functionally related proteins can adopt similar
structures despite low sequence identity. Comparison of protein
structure through superposition is therefore a powerful comple-
ment to sequence alignments in studying evolutionary relatedness
between highly divergent protein sequences. However, in the pres-
ence of mutations, insertions, deletions and topological permuta-
tions it can be challenging to identify optimal superpositions. On
the other hand, the geometrical shape of proteins is often con-
served under such rearrangements. This can be rationalized by the
fact that much of biology happens on the surface of proteins, such
as catalysis and binding. Aligning proteins using surface shape can
consequently provide an alternative approach to standard coordin-
ate-based superposition. Additionally, shape-based alignment may
also be used to find examples of evolutionary unrelated proteins
where functional constraints results in similar global shapes or

local similarity due to the presence of functional sites on the
surface.

The detection of shape equivalence is often carried out by com-
parison of shape descriptors. Shape descriptors are low-dimensional
representations of geometric shape that are invariant to transforma-
tions such as rotation and translation. For proteins, Zernike-
Canterakis shape descriptors (ZCDs) (Canterakis, 1999; Novotni
and Klein, 2003) has been used to compare protein shapes
(Grandison et al., 2009; Sael et al., 2008) and electron-density maps
(Sael and Kihara, 2010) combined with protein docking (Esquivel-
Rodrı́guez and Kihara, 2012), as well as shape comparisons of
ligands (Gunasekaran et al., 2009) and binding pockets (Chikhi
et al., 2010). Recently, a less compressed descriptor based on
Zernike-Canterkis (ZC)functions was presented with impressive
results in a shape retrieval benchmark of protein structures
(Guzenko et al., 2020). The Kihara lab has pioneered the use of
ZCDs to identify proteins with similar surface shape and have
shown how this approach can be used to identify protein pairs with
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low sequence and structural similarity but matching molecular sur-
faces (Han et al., 2019; Sael et al., 2008). For instance, both the
human and E.coli DNA topoisomerase I were found to have similar
global shape despite low sequence and backbone conformation
similarity.

While shape descriptors like ZCDs can detect the shape equiva-
lence between functionally related—but non-homologous—proteins,
it does not provide the superposition between them. Due to the low
sequence and structural similarity, coordinate-based superposition
methods such as CE (Shindyalov and Bourne, 1998), DALI (Holm
and Sander, 1993) and TM-align (Zhang and Skolnick, 2005) fails
to provide a meaningful solution in such cases and may not identify
the functional and evolutionary link between the proteins.

Several methods have been developed for alignment of molecular
surfaces in the context of binding pocket analysis (Angaran et al.,
2009; Konc and Janezic, 2012), virtual screening (Hawkins et al.,
2007; Hofbauer et al., 2004; Sastry et al., 2011), molecular docking
(Macindoe et al., 2010; Pierce et al., 2014; Schneidman-Duhovny
et al., 2005). But no general tool has been presented for local or glo-
bal shape-based superposition of proteins per se. In this work, we
present with zeal an interactive graphical software for shape-based
alignment of proteins that we refer to as ZEAL (short for ZErnike-
based protein shape ALignment). ZEAL uses ZC functions to para-
metrically describe the shape of the molecular surface as a series ex-
pansion, and provides an optimal superposition between two
proteins by maximizing the correlation between the expansion coef-
ficients (ZC moments). In conjunction with shape matching from
ZCDs, ZEAL provides an approach for interactive protein shape
comparison and analysis.

In order to benchmark ZEAL we repurposed two methods for
surface-based shape alignment developed for small molecule align-
ment and protein-protein docking, and applied them to superpos-
ition of homologous structures. Comparisons show that ZEAL
outperforms these alternative methods. Furthermore, alignments
from ZEAL were of comparable quality to the coordinate-based
superpositions provided by TM-align. When protein pairs with low
sequence and structural identity are analyzed, ZEAL still provides
high quality superposition while coordinate-based methods fail.

Shape-based matching and alignment can be used as a general
tool to study relationships between shape and protein function. In
this study, we develop a statistical approach to identify global
shapes that are significantly linked with certain functions. With this
methodology we show that many DNA-binding proteins share com-
mon global shapes while having completely different folds. ZEAL
enables a detailed comparison of shape equivalence for these types
of shape matches.

Coordinate-based alignment methods are often blazingly fast,
which makes them the method of choice in superposition of close
structural homologs. Shape-based alignment on the other hand pro-
vide unique opportunities for comparison of remote homologs with
divergent structure and topological permutations, and proteins
resulting from convergent evolution and functional surfaces. We
also demonstrate here that shape-based alignment can be used as a
method for studying the relationship between global shape and pro-
tein function and to identify building blocks in the design of protein
assemblies.

2 Materials and methods

2.1 Representing the protein shape
The concept of shape is not well defined at the molecular level, but
can be described as a density in space (approximating the electron
density) or, typically, as the shell of the surface (the molecular skin)
constructed using van der Waals (vdW) radii of atoms and a spheric-
al probe that traces out a surface of the regions accessible or
excluded to solvent. The later, solvent-excluded surface is also
known as the molecular or Conolly surface. Because proteins have
evolved in the presence of water, the solvent-probe has a radius of
1.4 Å to approximate the size of a water molecule. In ZEAL, all of
these shape representation types are available. The density

representation is achieved using Gaussian atoms as described in
Grant et al. (1996), and the surfaces (vdW, solvent accessible/
excluded) are obtained using an Euclidean distance transform (EDT)
approach as implemented in EDTsurf (Xu and Zhang, 2010).
However, in this work, we only present results using the molecular
(solvent-excluded) surface. Because our algorithm for generating the
molecular surfaces differs slightly from that of EDTsurf, we outline
the main steps in Supplementary Section S1. For reasons that will
become clear below, the EDT method integrates naturally with the
algorithm for ZC moment computations as the molecular surface is
mapped to a grid directly. The sampling resolution and thickness of
the surface, both affecting the shape representation in ZC space, can
easily be controlled by specifying the grid size L (resolution) and the
interval of isovalues (Euclidean distances)that should define the sur-
face and its thickness . In the work presented here, we use a 643 grid
and a thickness of 2 grid units for the molecular surface.

2.1.1 Parameterization

The protein shape can be described through a series expansion as

f ðxÞ ¼
X1

n

Xn

l

Xl

m¼�l

Xm
nlZ

m
nlðxÞ (1)

where f ðxÞ is the shape function of the protein (the molecular sur-
face for instance), scaled to fit inside the unit sphere (jxj � 1) where
the ZC functions (also called 3D Zernike functions) Zm

nlðxÞ lives
(Canterakis, 1999). These are defined as

Zm
nlðxÞ � RnlðrÞYm

l ðh;/Þ (2)

where RnlðrÞ is a radial function and Ym
l ðh;/Þ is an angular function,

the spherical harmonics that live on the surface of the unit sphere.
The integers n, l, m are labels for the members of the collection of
ZC functions that form the basis set in Equation 1, and the functions
themself are restricted so that l � n and ðn� lÞ be an even number.
The expansion coefficients Xm

nl in Equation 1 are called moments be-
cause they are the projections of the protein shape f ðxÞ onto the
basis set. The (complex) moments encode non-redundant informa-
tion about the shape (ZC functions are orthogonal) and are obtained
by integrating the ZC functions Zm

nlðxÞ over the shape f ðxÞ inside the
unit sphere

Xm
nl �

3

4p

ð
jxj � 1

f ðxÞZm
nlðxÞdx (3)

where the bar is the complex conjugate of Zm
nlðxÞ.

In practice, the moments in Equation 3 can be computed effi-
ciently using geometrical moments and performing the integration
over a L3 cubic grid in which the shape has been mapped onto
(Novotni and Klein, 2003). We implement this algorithm to com-
pute the ZC moments and employ the same 643 grid, with 2 grid-
unit thick surfaces, that was shown by the authors to give the best
shape-retrieval performance. However, our implementation of the
EDTsurf algorithm (Xu and Zhang, 2009) provides a straightfor-
ward way to adjust these parameters, and the resulting shape repre-
sentation f ðxÞ can be plugged into the Novotni and Klein algorithm
directly without any prior surface triangulation.

Before computing the geometric moments, the voxelized shape is
normalized so to fit in the unit sphere. Because ZC functions have
poor resolution close to the boundary (Callahan and De Graef,
2012) we scale the object such that the maximum distance from the
geometric center, rmax, corresponds to 70% of the unit sphere ra-
dius, i.e. scaling by the factor s ¼ 0:7=rmax. We note that the default
scaling factor used in the Cþþ library from Novotni and Klein
(2003) use s ¼ 1=2Rg, where Rg is the radius of gyration—the root-
mean squared distance to the center of mass. This scaling does not
guarantee full embedding of the object within the unit sphere, so the
object function has to be defined as zero for values outside the
boundary for correct normalization.

Obviously, the sum in Equation 1 has to be truncated at some
order n¼N; Figure 1 shows the level of shape information captured
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in the ZC moments computed up to orders N ¼ 10, 15, 20, 25 and
30 for the molecular surface of nuclear protein EBNA1 (PDB ID

code 1B3T). The number of moments that have to be computed for
a given order N is ðN þ 1ÞðN þ 2ÞðN þ 3Þ=6. At N¼20, most of
the salient shape features are captured in the 1771 ZC moments.

This is the default order in ZEAL, but can be changed by the user.
Note: Figure Replacement Requested.
Note: Figure Replacement Requested.
Note: Figure Replacement Requested.

2.2 Shape matching
The ZC moments in Equation 3 can be used to compare the shape
similarity between two objects by finding the rotation that maxi-
mizes the correlation between the vector XðAÞ, containing the ZC

moments XA
i¼nml for the fixed protein A, and the vector XðBja;b; cÞ

containing the ZC moments XB
i¼nml for the protein B rotated with

Euler angles ða;b; cÞ. This can be viewed as minimizing the angle h
between the vectors—they are correlated if they point in the same
direction (small h). Because the vectors are in the complex space C

n

(C1771 for N¼20), both the angle and its cosine are in general com-
plex. A geometrically meaningful (real) angle, the Euclidean angle
cos hE , is defined by

cos hE �
Re½hXðAÞ;XðBja; b; cÞi�
kXðAÞkkXðBja; b; cÞk

¼ Re½
P
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i XB

i �
½
P
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i XA

i �
1=2½
P

XB
i XB
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1=2

(4)

where we take the real (Re) part of the Hermitian (complex) inner

product, and where XA
i and XB

i denote the complex conjugate of

moments XA
i and XB

i respectively. Since the complex vector space is

isomorphic to the real vector space (Scharnhorst, 2001), the

Euclidean angle of vectors in C
n is the angle in R

2n. Note that the

inner product might not vanish for cos hE ¼ p=2 (Marsh, 2017). It
is possible to also define the Hermitian angle between complex vec-
tors, in which case one takes the modulus (absolute value) of the

Hermitian inner product. However, with that interpretation of the

angle, parallel vectors in C
n can be orthogonal in R

2n. We will refer

to cos hE, i.e the ZC moment correlation, as the ZEAL-score. Thus,
shapes with ZEAL-score equal to 1 have moment vectors pointing in
the same direction and consequently the same shape (in ZC space).

For shape comparisons alone, there is a simpler way than finding
the rotation that maximizes the ZEAL-score for two shapes. This is

done by collecting the ZC moments to ð2l þ 1Þ dimensional vectors
Xnl � ½Xl

nl;X
l�1
nl ;X

l�2
nl ; :::; X�l

nl �
t and compute the length of these vec-

tors (which is rotationally invariant):

Fnl � ½
Xm¼l

m¼�l

jXm
nlj

2�1=2 (5)

By forming the ZC shape-descriptor vector (ZCD)
½F00; F20;F22;F31 . . .� one can compare the resemblance of two
shapes by calculating the Euclidean distance dE between their

ZCDs. For order 20, the shape information is then compactly con-
tained in a ZCD with 121 (real) numbers, and the similarity between

proteins A and B above given by
dE ¼ ½

Pi¼121

i¼1

ðFA
i � FB

i Þ
2�1=2. The maximum dE for judging if

shapes are similar has be determined empirically. We find that dE <

0:025 (for unnormalized ZCDs) represents a descent cut-off for pro-
teins with similar shape.

2.3 Shape alignment
As alluded to before, the ZEAL-score can be used to find the trans-

formation that gives maximum shape overlap between two struc-
tures. If the shapes are similar, the transformation can (to a good

approximation) be reduced to a rotational search by placing the cen-
troid for each shape at the origin. If we parameterize the rotation
using Euler angles ða; b; cÞ, and adopt the zyz convention, the rota-

tion with maximum ZEAL-score is bounded by 0 � a; c � 2p and
0 � b � p. Supplementary Figure S2 shows the ZEAL-score (A)

and heavy atom RMSD (B) as a function of the two Euler angles a
and b for two copies of nuclear protein EBNA1 (PDB ID code
1B3T), one rotated so that the correct alignment lies on this 2D

angle grid. As expected, the global maximum (ZEAL-score ¼ 1) is
the rotation that results in perfect shape superposition. But the
shape-correlation landscape is highly non-convex with many local

maxima, corresponding to fair alignments in terms of shape overlap.
For orientations close to the maximum (ZEAL-score � 0.75), the

score and RMSD are strongly correlated (Supplementary Figures
S2C and S3).

In general, finding the rotation with the maximum ZEAL-score
in an exhaustive search is prohibitively expensive; each new rotation
requires the ZC moments to be recomputed from a rotated molecu-

lar surface. While the maximum overlap among ZC moments can be
searched for using a sophisticated fast Fourier transform (FFT)

method (Liu et al., 2013), this still requires the use of local search
methods after selecting candidate solutions (referred to as ‘peak
picking’) from the FFT search since the global maximum might not

lie on the FFT grid. As a trade off between accuracy and speed, we
use a machine learning method known as surrogate modeling where

an internal model (i.e. a surrogate) of the objective function is con-
structed, which is then used to find better points to evaluate. We use
the surrogate optimization algorithm implemented in MATLAB

(2020), with the ZEAL-score as the objective function bounded by
the Euler angles. In short, the algorithm cycles between two phases:
(i) Constructing the surrogate model by interpolating ZEAL-scores

evaluated from random Euler angles using cubic radial basis func-
tions (Gutmann, 2001); (ii) Searching for the maximum ZEAL-score

by evaluating the surrogate model at thousands of sample points
such that the search balances between refining an existing solution
and searching in places that have not yet been evaluated in the hunt

for a better global maximum (controlled by a merit function with
cyclical weights (Regis and Shoemaker, 2007)). Unlike other opti-

mization algorithms, there is no notion of convergence here. The al-
gorithm continues alternating between the two phases until it
reaches a stopping criteria, such as the number of ZEAL-score evalu-

ations or a time limit. This algorithm is very robust as demonstrated
when performing self-alignment trials of five structures where one

copy is randomly rotated relative an un-rotated copy 20 times
(Supplementary Table S1): the average RMSD before and after
ZEAL alignment is 22 and 0.03 Å respectively. As will be shown,

high-quality superpositions can be expected for shape matches with-
in 500 ZEAL-score evaluations—the default stopping criteria in
ZEAL—and, on average, a ZEAL-score above 0.8.

N = 10 N =15 N = 20

N = 25 N = 30

Fig. 1. The shape information (reconstructions) of the molecular surface (bottom

right) for the nuclear protein EBNA1 (PDB ID code 1B3T) encoded in ZC expan-

sions up to order N¼ 10, 15, 20, 25 and 30 from a 64�64�64 grid. At N¼20,

most of the salient features are captured and this is the default expansion order in

ZEAL
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2.4 Single-chain and same-shape dataset
Our set of single-chain structures for evaluating the performance of
ZEAL, and finding proteins with similar function and shape, is
based on a PISCES (Wang and Dunbrack, 2003) culled list contain-
ing 23 004 structures with a maximum 90% pairwise sequence iden-
tity, a minimum resolution of 2.0 Å and a maximum
crystallographic R-factor of 0.25. From this list, 18 965 structures
could be mapped to unique entries in the UniprotKB (UniProt
Consortium, 2018) from which we retrieve the following annota-
tions: Protein names; Length; DNA-binding; EC number and
Keywords;. We will refer to this set as the S1 set of single chain
structures.

We compute the ZCD for all structures using the (EDT-gener-
ated) molecular surface, with rp ¼ 1:4 Å, mapped to a 643 grid, a
two-voxel thick molecular surface, ZC moments computed up to
order 20 and a normalization distance of 70% of the embedding
unit sphere. We also compute the radius of gyration Rg for all struc-
tures to allow shapes to be filtered based on their compactness.

To find pairs of structures with similar shape (shape matches),
we then compute the Euclidean distance dE between all ZCDs of the
S1p 18 965ð18 965� 1Þ=2 unique (and non-identical) pairs of struc-
tures and select those with dE < 0:025. This resulted in a total of
161 490 shape matches which we will call the same-shape (S2)
dataset.

2.5 Benchmark
Irrespective of method, a shape-based alignment of two proteins
with the same backbone orientation (same fold) has to be compar-
able to alignments generated by conventional main-chain oriented
tools, since the structures are expected to have similar global shape.
By the same token, proteins with different backbone folds, but simi-
lar global shape (shape twins) should have a superposition that
clearly makes the shape resemblance apparent. In the first case,
alignments of same-fold proteins are a testament to the robustness
of the underlying algorithm. And in the second case, given a robust
algorithm, superposition of structures with completely different
folds are a testament of the possible advantage of shape over con-
ventional tools in such cases.

We therefore evaluate the performance of ZEAL for these cases,
i.e. alignment of same-fold proteins and superposition of shape-twin
proteins, using 1000 computations of the ZEAL-score as a stopping
criterion for the surrogate optimization algorithm. As a gold stand-
ard for alignment of proteins with the same fold, we use TM-align
(Zhang and Skolnick, 2005) and compare the Ca RMSD for the
alignments. We also include HEX (Ritchie and Kemp, 1999) and
MS3align (Shivashankar et al., 2016) which are two other available
tools to perform alignments based on shape (described below).
Because RMSD is not uniquely defined, it is computed using the
same corresponding residues as those mapped by TM-align.
Consequently, a lower RMSD for ZEAL may be available by finding
a different mapping that minimize RMSD. By the same token, we
use the ZEAL-score as the measure of shape overlap, and we com-
pute the ZC moments using the same normalization scheme for all
superposed structures generated by the different methods.

2.5.1 Datasets

Alignments by ZEAL (and the ZCDs) are size invariant due to the
normalization step in the moment computation. Contrary to Sael
et al. (2008), we note that shape matches with very different sizes is
not a rare event. Supplementary Figure S4 shows the 2D cumulative
distribution of the percent difference in residue length and radius of
gyration in the S2 set. Approximately 13% of shape matches have a
length that differs by more than 100%, and approximately 7% have
a radius of gyration that differs by more than 50%. To exclude the
effect of any size difference in the benchmark, we prepare a subset
of S2 called the same-shape-and-size (S3) dataset as follows. The S2
set is restricted to shape-matches that do not differ by more than
10% in chain-length and radius of gyration (Rg), resulting in 27 122
shape matches of similar size. From this, we also exclude the 390
shape matches with chain lengths less than 50 residues, and the 9

shape matches with a sequence identity greater than 90% as
reported by TM-align. This resulted in 26 723 shape matches (16%
of S2) of similar size and compactness—the S3 set.

To identify pairs of structures with similar backbone- fold we
use the TM-score (Zhang and Skolnick, 2004, 2005) as a proxy for
structural similarity. Based on a large set of non-homologous pro-
teins, it has been shown that protein pairs with TM-scores > 0.9
have the same fold, while those who are not in the same fold have a
TM-score < 0.5 (Xu and Zhang, 2010). A TM-score < 0.2 corre-
sponds to random structurally similarity. We used the stand-alone
version of TM-align (version 20190818) (Zhang and Skolnick,
2005) to obtain TM-scores, the sequence alignment and the Ca

RMSD for all structures in the S3 dataset.
The benchmark analysis pertains to two sets comprising 100

shape matches each, selected from the S3 dataset based on the TM-
scores reported by TM-align: (i) the high TM-score (same fold) data-
set with TM-score > 0.9 for all structures and (ii) the low TM-score
(shape twins) dataset with TM-score < 0.3 for all structures. This
results in 1600 and 10 678 pairs for the high TM-score set and low
TM-score dataset respectively. We then randomly select 100 pairs
from each set, such that a structure in the created benchmark dataset
is unique (i.e. occurs only once among shape matches). Data and
PDB ID codes for all pairs are given in Supplementary Tables S3 and
S4 for the high and low TM-score benchmark dataset respectively.

2.5.2 HEX

Although a tool developed primarily for docking proteins or ligands,
HEX allow structures to be aligned as well (referred to as ‘molecular
matching’ in the Hex 8.0.0 user manual). However, to the best of
our knowledge, the alignment performance has never been bench-
marked. HEX can be considered a cousin to ZEAL; it represents the
protein shape by an expansion using spherical polar Fourier (SPF)
basis functions (Ritchie et al., 2008), which have a radial term and
an angular term, the spherical harmonics just like the ZC functions.
As for ZEAL, the optimal superposition is a rotational search after
translating the structures so that their center of mass coincide, but
the optimal rotation is found on a sampling grid on which the cor-
relation of the SPF-moments are computed efficiently with FFT-
based methods. This makes alignment fast but with the drawback of
reduced accuracy. We use the default settings for the search grid and
a correlation order of 10 as recommended in the manual (all param-
eters are provided in Supplementary Table S2). The search in HEX
oversamples the search space, so many similar—but wrong—solu-
tions may be found, which is why solutions have to be clustered and
then ranked. The correct superposition may be among the top solu-
tions, but here we always use the solution ranked as number one.

2.5.3 MS3align

Whereas ZEAL and HEX are parameter-based methods, MS3align
(Shivashankar et al., 2016) uses the triangulated molecular surface
itself to extract the so-called landmark points; protrusions and
grooves are identified with local curvature analysis and the rigid-
body transformation that minimizes the RMS distance between
these points is searched for. The performance of MS3align is
affected by the choice of four parameters: Rc and Ts control the
quality of the landmark points, Tmrd and Tms control how these
landmark points are aligned. The parameters have to be chosen such
that they pick up the expected size of features one is interest in.
Thus, the exact choice of these parameters depends on the dataset
being studied and might require manual tuning to identify relevant
landmark points. Here, we set Rc ¼ 3 Å, Tmrd ¼ 5 Å and
Ts ¼ Tms ¼ 0:1. MS3align does not compute molecular surfaces and
therefore requires triangulated surfaces as input. We generated tri-
angulated molecular surfaces with EDTsurf (Xu and Zhang, 2009),
using a 1.4 Å probe radius and a scale factor of 1, and converted the
triangle mesh (in PLY format) to the OFF file-format expected by
MS3align. Shape matching with MS3align is size-dependent, so to
not bias the result against this method the S3 set compares proteins
of similar size.
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3 Software and availability

ZEAL has been developed in MATLAB (2020), R2020a (version

9.8.0), and can be used online at https://andrelab.org/zeal or as a
standalone program with command line or graphical user interface.

Source files and installers are available at https://github.com/Andre-
lab/ZEAL

4 Results and discussion

While ZEAL can be run as a command line tool for large scale ana-
lysis, its primary use case is as an interactive graphical software for
shape alignment and comparison. The graphical user interface facili-

tate easy setting of parameters related to voxelization and surface
generation, selection of atoms to include in shape matching through

a JSmol interface (Hanson et al., 2013) and the choice of a range of
molecular representations. Some of these features are highlighted in
Supplementary Figure S14.

4.1 Shape-based alignment of same-fold proteins
To investigate the potential of superposing proteins by optimizing
complementarity of surface shape, we applied ZEAL to a bench-
mark set of protein pairs with the same fold and compare them to
alignments provided by TM-align. ZEAL is also compared to two al-
ternative approaches for shape alignment, HEX and MS3align.
Figure 2 shows the RMSD (A) and ZEAL-score (B) distributions for
the 100 same-fold protein pairs in the high TM-score set (TM-score
> 0.9) aligned using TM-align, ZEAL, HEX and MS3align. Two
examples of the corresponding alignments are visualized in
Figure 2C, and six additional ones in Supplementary Figure S5.
Summarizing statistics are presented in Supplementary Table S5.
The inset in Figure 2A shows the RMSD difference compared to
TM-align (DRMSDTM) as a cumulative distribution, i.e. the fraction
of alignments with RMSD difference less than DRMSDTM. For
ZEAL, 90% of the alignments have DRMSDTM < 1 Å, whereas this
is only true for 62% and 35% using HEX and MS3align respective-
ly. MS3align failed for 20 out of the 100 pairs. It is possible that
MS3align could have faired better using a different choice of param-
eters. For ZEAL, only one alignment had DRMSDTM > 2.8 Å, and
Supplementary Figure S5E shows that these structures have axial
symmetry; the ZEAL-score is the same as that from TM-align (0.9),
but the DRMSDTM is off by 26 Å which means that there may not
be enough information about the shape in ZC space to distinguish
the alignment found by TM-align. In such situations, a higher order
for the ZC moments may be necessary to encapsulate more informa-
tion about the shape in the ZC moments. Indeed, using moments up
to order 30 gives much better agreement (Supplementary Figure S6);
DRMSDTM ¼ 1.1 Å, and a higher ZEAL-score than TM-align (0.82
versus 0.81). However, only a slight improvement over order 20 is
obtained when employing this high expansion order on the entire
benchmark set (Supplementary Table S7 and Supplementary Figure
S9). We also note that the scaling factor in the object normalization
step is not critical for the shape-alignment performance of ZEAL
(Supplementary Table S8 and Supplementary Figure S10).

In terms of computational speed, HEX is the winner among the
shape aligners and finishes the search within a few seconds (single
core, IntelV

R

XeonVR CPU E5-2697 v4 @ 2.30 GHz). For the high TM-
score set, ZEAL requires on average (standard deviation) 58 (667) s
to find the maximum ZEAL-score identified in an initial reconnais-
sance search (1000 ZEAL-score evaluations in the surrogate opti-
mization algorithm). This corresponds to 259 (6234) ZEAL-score
evaluations. MS3align is often slowest, requiring 180 (6377) s (the
20 failed cases not included).

The results for ZEAL clearly demonstrate that shape-based
superposition can perform on par with state-of-art structure-based
alignment methods like TM-align without direct guidance of the
Cartesian coordinates and sequence. Computational speed of ZEAL
could be substantially increased by using an FFT-based approach,
but this comes at the price of lower accuracy.

4.2 Shape-based alignment of shape-twin proteins
A key advantage of the shape-based superposition approach is for
studies of pairs of evolutionary related proteins with highly diver-
gent sequence and structure, but also in identifying shape similarity
(local or global) between unrelated proteins. By their nature, highly
divergent homologs and examples of convergent evolution are diffi-
cult to identify and validate. We can, however, benchmark the abil-
ity of ZEAL to align structurally dissimilar proteins with similar
global shape (shape twins), some of which may arise due to remote
homology or functional constraints. On a set of proteins with simi-
lar shape and size but low structural similarity (TM-score < 0.3)
ZEAL is the only method investigated here that consistently finds
the rotation with maximum shape overlap among the 100 structure
pairs in this benchmark. Figure 3A shows the ZEAL-score distribu-
tions and the complementary cumulative distribution function
(CCDF) in the inset, with summarizing statistics presented in
Supplementary Table S6. The CCDF gives the probability (one-sided
P-value) to observe a ZEAL-score higher than a particular level. For
ZEAL, the fraction of alignments with ZEAL-score higher than 0.75
is 91%, while this is only true for 10%, 17% and 7% of the cases
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The probability density functions (PDF) of the backbone Ca RMSD using the resi-

due mapping from TM-align. The PDFs were estimated (kernel density) from the

corresponding histograms shown individually for each method (top). The inset

shows the associated cumulative distribution function (CDF) for the RMSD differ-

ence relative TM-align. (B) The corresponding ZEAL-score (shape correlation)

PDF, estimated from the histograms (top). The inset shows the complementary
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using TM-align, HEX and MS3align respectively. Figure 3B shows
cartoon and surface representations for two examples from this
dataset, with 6 additional examples shown in Supplementary Figure
S7. Clearly, the superpositions from ZEAL achieves an orientation
that makes the shape resemblance apparent in all cases. Note, how-
ever, that an excellent shape alignment between two proteins does
not guarantee that the comparison is meaningful, and that hom-
ology exists. Nonetheless, structural comparison can provide insight
even for non-homologous proteins. For example, in Supplementary
Figure S8 we show how shape-alignment of TIM barrels can be used
to compare the relative placement of structural elements on the out-
side of the central beta-barrel.

4.3 Correlation between global surface shape and

function
In the so called twilight zone, the evolutionary signal between se-
quence and structure similarity fades. This zone is operationally
defined as when the protein sequence similarity is less than
25 6 5%, at which case the rule of thumb no longer holds that the
proteins are very likely to have similar structure in terms of the main
chain orientation (Chung and Subbiah, 1996; Rost, 1999).
However, because structure is more conserved through evolution
than sequence, tools like TM-align can still probe the evolutionary
signal by finding similarities in the overall secondary structure, such
as domains or folds. On the other hand, proteins on the borderline
to the twilight zone may still share a common ancestor, but with dif-
ferent structures. Take for instance the example of Glutathione S-
transferase from whiteleg shrimp (PDB ID code 5AN1) and the
Adenosine Phosphorylase from the soil bacterium B. cereus (PDB ID
code 3UAW). Both are transferases with similar global shape but
different structures with TM-scores of 0.28 and 0.29. A protein-
BLAST sequence alignment (Altschul et al., 1990) reveals a 22%
identity (query coverage 43%) with low probability of that similar-
ity occurring by chance (E-value 0.001). A structural alignment
from TM-align (Supplementary Figure S11) is not conclusive to cor-
roborate any evolutionary links since no part of the structures are
aligned, including the groove of the active sites containing the

ligands. Superposing the global shapes using ZEAL results in an
alignment where the active sites are much closer in space
(Supplementary Figure S11), facilitating a structural comparison of
the proteins. It is difficult to prove that the similarity of overall
shape and co-alignment of the active sites is a result of divergent
evolution from an ancestor. Nonetheless, examples like these high-
light an interesting evolutionary scenario in which the evolutionary
signal may be largely lost in sequence and backbone structure, but
ancestry is manifested in similarity between surface shape due to
conservation of binding surfaces. Alternatively, this could also re-
flect convergent evolution.

In the exploratory work by the Kihara lab (Sael et al., 2008), a
few examples of functionally related proteins were presented that all
have similar global surface (as measured by ZCDs) but with low se-
quence and backbone conformational similarity. This type of ana-
lysis can be aided by ZEAL, since superpositions can reveal matches
in surface shape relevant for biological function. Also, since the
superposition reflects the shape information captured by the ZC
moments used for the shape matching per se (via ZCDs), the shape
analysis is an apples to apples comparison. Previous studies have
therefore provided anecdotal evidence that global surface shape can
be critical for function, but such conclusions must be validated by a
more comprehensive statistical analysis. Here, we provide a general
approach to quantify the degree of coupling between shape and
function similarity that goes beyond the main chain orientation of
proteins.

We start from the S1p set of 18 965ð18 965� 1Þ=2 unique (and
non-identical) pairs of structures and define the following two sets:
A protein pairs with similar shape and dissimilar structures (defined
as dE < 0:025 and TM-score < 0.3) and B protein pairs with simi-
lar function (defined as sharing a given keyword in the UniprotKB
annotation).

We compute the associated probabilities P(A), P(B) and PðA \
BÞ (details given in Supplementary Section S4) of a protein pair
belonging to set A, B or the intersection of the two (A \ B). If shape
is independent of function (beyond the secondary structure), then
the ratio j ¼ PðA \ BÞ=PðAÞPðBÞ will be equal to one. If j > 1, this
suggests that global shape intrinsically encodes information about
function beyond protein architecture and fold.

Table 1 presents j for the keywords ‘kinase’, ‘calcium’, ‘DNA-
binding’ and ‘zinc-finger’, together with 95% bootstrap percentile
confidence intervals and one-sided P-values for the null hypothesis j
equals 1. The permutation and bootstrap distributions are shown in
Supplementary Figures S12 and S13, respectively.A detailed descrip-
tion of the significance testing is given in Supplementary Section S4,
and statistics for 28 selected keywords with j significantly larger
than 1 are given in Supplementary Table S9. For kinases and cal-
cium proteins, j is not significantly different from 1 and no correl-
ation between global shape and function can be established. For
DNA-binding and zinc-finger, however, j is 1.83 and 2.48 respect-
ively with P-values� 0:001. Figure 4 shows ZEAL-processed struc-
tures for three DNA-binders (A–C) and two that are also Zinc-
fingers (D, E). All pairs have at least one structure forming a com-
plex with DNA, and the superposed structures reveals possible
DNA-binding interfaces for the pair members lacking DNA-com-
plexes. Taken together, this suggest that for some classes of proteins,
such as those that bind DNA or have zinc-finger domains, functional
and global shape similarity might be the result of convergent (or di-
vergent) evolution where geometrical constraints, such as the
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Table 1. The shape-function independence ratio j for selected key-

words, with confidence intervals (CI) estimated from bootstrap

resamples and P-values estimated from permutation tests

Keyword j 95 % CI P-value

Kinase 0.97 0.74 1.04 0.79

Calcium 0.89 0.86 1.08 0.60

DNA-binding 1.83 1.67 1.99 7.1 � 10�14

Zinc-finger 2.48 2.05 2.88 5.5 � 10�14
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cylindrical shape of DNA, sets an evolutionary boundary beyond
the exact packing of amino acids into folds.

While the global shape seems to be important for some function-
al classes of proteins, the role of shape on local parts of the protein
surface is much more apparent. For instance, the DNA-binding pro-
tein with PDB ID code 4KIS (chain A) contains a zinc-finger domain
(residues 270–310) that binds to DNA. A shape match to this region
is the DNA-binding domain of SKN-1 (PDB ID code 1SKN, chain
P). The structures are very different as reflected in their low TM-
scores (0.17). While ZEAL does not support automatic local shape
matching yet, it is possible in the standalone version to interactively
(or by commands) select a region of interest (ROI) in JSmol (Hanson
et al., 2013) (embedded) and have ZEAL superpose the structures
using the ROI. Supplementary Figure S14 shows snapshots of the
GUI and the ROI-selection of the Zinc-finger of 4KIS, the ZEAL-

score optimization search window, with the final superposition in
Supplementary Figure S15.

4.4 Protein design
ZEAL could also be used as an aid in the de novo design of protein
assemblies. Consider the dimeric proteins shown in Figure 5; one
heteromer (A) and one homomer complexed with DNA (B). After
finding shape matches (shown in blue) in the S1 set to the A chains
(shown in orange) in these structures, the ZEAL superpositions
clearly show that the orientation of the shape matches have a surface
complementarity close to the native assembly. A de novo protein as-
sembly could be designed by taking the ZEAL-oriented shape-match
and use computational design methods to improve the interface of
the novel assembly.

5 Conclusion

We have presented ZEAL, a tool to perform protein structure super-
position based on shape, such as the molecular surface. For struc-
tural homologs, it delivers accuracy on par with TM-align, and for
shape homologs, it consistently finds the optimal shape overlap
given enough ZEAL-score evaluations (typically less than 300). We
have also given an example how ZEAL can be used as a tool for
investigating protein function. By combining shape-based matching
and superposition we establish a quantitative support for links be-
tween shape and function beyond evolutionary related systems. The
applications of shape alignment goes beyond the examples studied
in this work. We have outlined how ZEAL could be used in compu-
tational protein design but also anticipate that the methodology
could be employed in the rapidly emerging field of cryo-electron mi-
croscopy to place proteins in electron density. Shape-based align-
ment have a number of limitations. Speed considerations makes
coordinate-based alignment the method of choice when comparing
structurally similar proteins. Comparison of multidomain proteins
with different domain orientations typically requires superposition
of one domain at a time. And fundamentally, alignment of closely
related proteins with dissimilar shape would fail with this approach.
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