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Abstract

Motivation: Batch effects heavily impact results in omics studies, causing bias and false positive results, but soft-
ware to control them preemptively is lacking. Sample randomization prior to measurement is vital for minimizing
these effects, but current approaches are often ad hoc, poorly documented and ill-equipped to handle multiple
batches and outcomes.

Results: We developed Omixer—a Bioconductor package implementing multivariate and reproducible sample ran-
domization for omics studies. It proactively counters correlations between technical factors and biological variables
of interest by optimizing sample distribution across batches.

Availabilityand implementation: Omixer is available from Bioconductor at http://bioconductor.org/packages/re

lease/bioc/html/Omixer.html. Scripts and data used to generate figures available upon request.

Contact: |.j.sinke@lumc.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Batch effects can overshadow biological differences in size (Baggerly
et al., 2008) and critically influence the results of omics studies
(Harper et al., 2013; Lambert and Black, 2012). Even in benign
cases, they decrease power to detect a true biological effect or con-
taminate results with false positives (Leek ez al., 2010). Despite the
numerous statistical methods developed to adjust for batch effects
(Espin-Perez et al., 2018; Johnson et al., 2007; van Iterson et al.,
2017), a reactive approach is often insufficient. In fact, when tech-
nical variables are confounded with experimental factors of interest,
batch effect correction will mask the underlying biological signal
(Gohetal., 2017).

Sample randomization is a proactive, and arguably more impact-
ful, method for obtaining reproducible results in high-throughput
experiments (Yang et al., 2008). However, its implementation suf-
fers from several key issues. Particularly where there are numerous
or nested batches each composed of a limited number of samples,
such as separate microarrays or sequencing lanes, single random
draws can inadvertently result in high correlations between technical
covariates and biological factors. This is further complicated by an
often poorly documented randomization process that is not neces-
sarily reproducible. Although stratified randomization has been
shown to effectively remove chip effects in microarray experiments
(Buhule et al., 2014), it does not address all relevant biological
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variables. Therefore, to adequately combat bias in results, employ-
ing methods capable of handling a wider array of research setups is
imperative.

We developed Omixer—an R package for multivariate and re-
producible randomization in omics studies. From a diverse range of
randomized sample layouts, it selects the one that optimally balan-
ces biological variables across batches. Omixer offers the flexibility
required to perform randomization effectively in a variety of study
designs and experimental setups.

2 Materials and methods

To optimize distribution of biological variables across batches, sam-
ple randomization is performed multiple times (default: 1000; see
Supplementary Fig. S1 for more information). After combining
resulting lists with the user-specified plate layout, statistically robust
tests of correlation determine the optimal setup, where the absolute
sum of correlations between biological and technical factors is mini-
mized. As a precautionary step, layouts with evidence for any tested
batch associations are excluded (P <0.05 for any batch-outcome
correlation), although in practice this will not change the resulting
layout given suitably large iteration numbers (see Fig. 1A).

To reserve wells for control samples or other studies, a mask can
be specified in the options, and paired samples such as those from
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Fig. 1. Overview of Omixer functionality and graphical output with (A) distribution
of the sum of absolute correlations from 10 000 randomized layouts, coloured by fil-
tering step outcome (B) resulting correlation matrices from the (i) optimal Omixer
layout, (ii) median result and (iii) worst case scenario after simple randomization

and (C) lab-friendly sample sheets created by Omixer as a PDF, showing the first
plate colour coded by box number

twin studies can be blocked so they remain together in the same
batch. Non-standard plate layouts can be specified, but Omixer will
automatically generate the most commonly used plate and chip com-
binations. Previously generated layouts can quickly be reproduced,
and lab-friendly sample sheets reduce the risk of mixups when
manually pipetting samples.

2.1 Multivariate and reproducible randomization

The main function, omixerRand, takes a sample list and plate layout
as input and optimizes distribution of specified biological variables
across batches. Resulting correlations are visually displayed and the
optimal seed is saved locally. By loading this seed, previously gener-
ated layouts can be reproduced quickly and efficiently with the
omixerSpecific function.

2.2 Lab-friendly sample sheets

The omixerSheet function converts the output of previous Omixer
functions into lab-friendly sample sheets, saving these in the work-
ing directory as a printable PDF. Wells can be coloured by other var-
iables, such as box number (see Fig. 1C) or tissue, to further smooth
transition into the wet lab.

2.3 Omixer outperforms simple randomization
Particularly when multiple batch types and outcomes are present, a
single randomization is likely to result in significant correlations. As
an example, we randomized 672 samples across 2 levels of batches,
as described in the Omixer vignette. Following 10 000 simple ran-
domizations, 85% of the resulting layouts have at least one P-value
under 0.05. The distribution of the sum of absolute correlations for
the resulting 10 000 layouts (Fig. 1A) suggests that the expected sum
of correlations between batches and outcomes following a single
randomization is 0.5. The correlations present in an average selec-
tion (Fig. 1B.ii) are small on the whole (0.004 to 0.065), but signifi-
cant associations (P < 0.05) still exist.

Looking at the worst case scenario following simple randomiza-
tion (Fig. 1B.iii), we see that simple randomization has the potential
to choose layouts with multiple significant associations (P < 0.05 for
5 comparisons), resulting in large batch effects that will bias results.
By contrast, Omixer would reject all layouts with significant corre-
lations, and instead return an optimal layout from the 15% remain-
ing (blue in Fig. 1A). In this example, the optimal layout’s
correlations (Fig. 1B.i) are all under 0.037 and none are significant.

3 Conclusions

In conclusion, Omixer offers an intuitive, reproducible alternative to
current randomization practices in omics research. Its implementa-
tion is a key step in combatting batch effects preemptively and
reducing the risks of sample mixups in the wet lab.
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