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Chronic Wounds. Wounds throughout the body are
common and can be debilitating injuries with long recovery
times.1−3 Wounds that fail to proceed through the normal
phases of inflammation, proliferation/repair, and remodeling
remain in a dysregulated inflammatory state and are re-
classified from acute to chronic wounds.2 Chronic wounds are
characterized by their inability to heal within an expected time
frame and are heterogeneous in pathogenesis, size, body
location, likelihood of infection, and amputation risk.4 Various
disease states result in chronic wound development, including
diabetes (diabetic foot ulcers), venous insufficiency (venous
ulcers), and undue skin pressure (pressure ulcers).1,5−7 In the
United States, the prevalence of chronic wounds is estimated
to be 4.5 million patients, resulting in substantial economic and
psychosocial costs.2,8 With risk factors for chronic wounds
becoming more prevalent due to increasing population age and
obesity rate, the market size of wound closure products has
been increasing and was projected to exceed $25 billion USD
in 2022.8

In clinical practice, chronic wounds are treated with initial
and regular extensive debridement, to remove devitalized
tissue, and the use of non-specific wound dressings.2,9 These
commercially available wound dressings (wet gauze, hydrogels,
hydrocolloids, foam dressings, films) promote wound healing
by providing moisture, gas exchange, thermal insulation,
drainage of exudates, a barrier against infections, and
minimization of skin irritation or friction between the wound
and clothing or devices such as wheelchairs.2,10,11 Some
commercial bandages may also deliver debriding or antimicro-
bial agents.2 More advanced commercial dressings such as
acellular and cellular skin substitutes are costly and generally
used in specialty settings.1,2,12,13 These skin substitutes provide
a provisional extracellular matrix (ECM) substitute for cell
anchorage, and function as a growth factor depot and, in the
case of cellular skin substitutes, a stromal cell reservoir.1,12

Currently, the selection of the wound dressing relies on a
clinical assessment of the patient’s wound.2 The wide variety of
wound dressings combined with a general lack of high-quality
evidence complicates wound dressing selection in clinical
routine.2,11

Emerging Targets in Chronic Wounds. In the past two
decades, our understanding of chronic wound pathophysiology
has deepened. It has become increasingly accepted that the
inflammatory phase is likely the most dysregulated process in
chronic wounds.1,3,14,15 Chronic wounds exhibit a chronic pro-
inflammatory environment with high levels of pro-inflamma-
tory chemokines, cytokines, reactive oxygen species (ROS),

and ECM-degrading matrix metalloproteases (MMPs).1,3,14,15

This pro-inflammatory environment is a positive feedback
loop, as it continuously attracts neutrophils and monocytes,
polarizes macrophages into the pro-inflammatory M1
phenotype, and leads to the further secretion of pro-
inflammatory and leukocyte-attracting chemokines and cyto-
kines.1,16 This environment impairs central processes of
regeneration such as angiogenesis, granulation tissue for-
mation, and re-epithelialization, and impairs the progression
into the proliferation and remodeling phases of wound
healing.1,16

The chronic, low-grade inflammation in chronic wounds can
be targeted by modulating neutrophil and monocyte recruit-
ment and macrophage polarization.1 Neutralizing pro-inflam-
matory chemokines and cytokines in chronic wounds breaks
the cycle of leukocyte influx and secretion of leukocyte-
recruiting chemokines.17 Alternatively, delivering anti-inflam-
matory M2 macrophages to chronic wounds improves
angiogenesis and re-epithelialization.18 In diabetic wounds,
recent studies demonstrated the counterintuitive hypothesis
that induction of an acute inflammation can decrease chronic
inflammation and improve wound healing.19−21 The local
application of acutely pro-inflammatory molecules might also
be a promising strategy for non-diabetic chronic wounds.
In addition to chemokines and cytokines, immune cells

secrete other factors such as ROS and MMPs that directly
impair the proliferative and remodeling phases of regener-
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ation.1,3,14,15,22−26 While ROS have physiological roles in
wound healing, the excessive ROS concentrations observed in
chronic wounds lead to lipid peroxidation, protein modifica-
tion, and DNA damage.24 This oxidative stress results in
apoptosis of stromal cells and impairs angiogenesis, granulation
tissue formation, and re-epithelialization.24 To reduce ROS
concentration, ROS metabolism can be modulated with small
molecules. For instance, the iron(II)-sequestering agent
deferoxamine inhibits the generation of the highly toxic
hydroxyl radical by iron(II).27 Nucleic acid therapeutics that
silence genes of ROS-generating enzymes or augment the
expression of ROS-degrading enzymes are also promising
avenues. MMPs are endopeptidases that degrade the ECM and
other substrates (growth factors, cytokines, chemokines).25,26

In physiological wound healing, a delicate balance in the
expression of MMPs and their inhibitors leads to a controlled
degradation of the ECM and enables stromal cell migration,
angiogenesis, and the remodeling of the injured tissue.25,26 The
increased MMP concentrations observed in chronic wounds
leads to excessive ECM breakdown and the degradation of
growth factors, which impairs angiogenesis and re-epithelializa-
tion.22,25,26 MMP activity can be targeted by low-molecular-
weight MMP inhibitors28 and nucleic acid drugs that silence
MMP genes29 or express tissue inhibitors of metalloprotei-
nases. As certain MMPs are beneficial to wound healing, such
as MMP8 in diabetic wounds,30 high MMP subtype specificity
is essential for these therapeutics. An important point to
consider is the systemic bioavailability of ROS- and MMP-
targeting drugs, as systemic exposure could interfere with
physiologic ROS and MMP functions in other tissues.
Due to proteolysis and ROS damage, the ECM in chronic

wounds is often not able to provide pro-healing cues to stromal
cells and thus impairs the transition into the proliferative and
remodeling phase.4 Polymeric ECM-mimicking dressings
decorated with ECM-derived peptides promise to directly
engage with and provide anchors for fibroblasts, keratinocytes,
and endothelial cells.31 They can further provide a reservoir for
the prolonged release of pro-healing growth factors.32

Compared with the clinically used skin substitutes described
above, these dressings made from polymers and peptides
would be potentially simpler to manufacture, more stable, and
less immunogenic than biological skin substitutes.
The therapeutic targets may also become useful biomarkers

that could provide insights about the prognosis of a chronic
wound. As chronic wounds are classified using macroscopic
and unspecific criteria (wound size, depth),33 new molecular
diagnostics are needed to understand the underlying molecular
pathophysiology, make predictions on healing rate, and
evaluate treatment success. Ideally, diagnostic bandages sense
these biomarkers in situ and provide prognostic information to
the clinician at the point-of-care. Biomarkers of interest include
markers of inflammation, oxidative stress, MMP activity,
bacterial infection, and mechanical stress.34 Such molecular
fingerprinting will also enable evidence-based treatment
selection once molecular therapeutics become available for
chronic wounds. Diagnostic wound dressings therefore
promise to pave the way for personalized medicine in chronic
wounds. The ultimate goal is for a bandage to sense the
molecular composition of a wound and to autonomously
release the right drug at the right time (theranostic wound
dressing).
Scope of the Virtual Special Issue. Advances in the

understanding of chronic wound pathophysiology led to the

emergence of new targets that motivate the development of
diagnostic and therapeutic bandages. To highlight the rapidly
evolving field of advanced bandages for chronic wounds, ACS
Pharmacology & Translational Science and ACS Applied Bio
Materials welcome contributions to an upcoming Virtual
Special Issue, “Breakthrough Technologies in Diagnosis and
Therapy of Chronic Wounds”, intended to provide readers
with original research articles and review/perspective articles
on transformative diagnostic and therapeutic wound dressing
for chronic wounds.
The Virtual Special Issue format means that articles are

published in the next available regular journal issue shortly
after acceptance, instead of being published in a dedicated
issue. Once all articles for the collection have been accepted,
they will be featured on a dedicated web page, giving additional
exposure to each publication.
The submission deadline for both journals is January 31,

2024. We are looking forward to your manuscripts and
welcome pre-submission inquiries, which can be sent to the
relevant journal offices at the following email addresses:
ACS Pharmacology & Translational Science: eic@ptsci.acs.org
ACS Applied Bio Materials: eic@ami.acs.org
Simon Matoori, Topic Editor, ACS Pharmacology &
Translational Science orcid.org/0000-0002-1559-0950
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