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Optimal allocation to treatment
sequences in individually randomized
stepped-wedge designs with attrition

Mirjam Moerbeek

Abstract
Background/aims: The stepped-wedge design has been extensively studied in the setting of the cluster randomized
trial, but less so for the individually randomized trial. This article derives the optimal allocation of individuals to treat-
ment sequences. The focus is on designs where all individuals start in the control condition and at the beginning of each
time period some of them cross over to the intervention, so that at the end of the trial all of them receive the
intervention.
Methods: The statistical model that takes into account the nesting of repeated measurements within subjects is pre-
sented. It is also shown how possible attrition is taken into account. The effect of the intervention is assumed to be sus-
tained so that it does not change after the treatment switch. An exponential decay correlation structure is assumed,
implying that the correlation between any two time point decreases with the time lag. Matrix algebra is used to derive
the relation between the allocation of units to treatment sequences and the variance of the treatment effect estimator.
The optimal allocation is the one that results in smallest variance.
Results: Results are presented for three to six treatment sequences. It is shown that the optimal allocation highly
depends on the correlation parameter r and attrition rate r between any two adjacent time points. The uniform alloca-
tion, where each treatment sequence has the same number of individuals, is often not the most efficient. For
0:1 ł r ł 0:9 and r = 0, 0:05, 0:2, its efficiency relative to the optimal allocation is at least 0.8. It is furthermore shown
how a constrained optimal allocation can be derived in case the optimal allocation is not feasible from a practical point
of view.
Conclusion: This article provides the methodology for designing individually randomized stepped-wedge designs, taking
into account the possibility of attrition. As such it helps researchers to plan their trial in an efficient way. To use the
methodology, prior estimates of the degree of attrition and intraclass correlation coefficient are needed. It is advocated
that researchers clearly report the estimates of these quantities to help facilitate planning future trials.
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Introduction

Since the study by Hussey and Hughes,1 the stepped-
wedge design has gained increasing attention in the
medical statistical literature. The stepped-wedge design
is a special type of the cross-over design2,3 in which
cross-over only occurs from the control to the interven-
tion condition. This is illustrated in Figure 1, in which
five treatment sequences can be distinguished. In this
figure, all sequences start in the control condition and
at the beginning of each time period one sequence
crosses over to the intervention. As both treatment con-
ditions are available within each sequence, the design is
more efficient than the multi-period parallel-group

design with the same number of time periods.
Furthermore, it may result in easier recruitment
because everyone will eventually receive the interven-
tion condition.

The implementation of a stepped-wedge design has
seen an increasing use in cluster randomized trials.4,5
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With such designs, complete clusters, such as house-
holds, family practices or clinics are randomized to
treatment sequences. Of course, it is also possible to
implement the stepped-wedge design in an individually
randomized trial.6 Examples are trials to treat obstruc-
tive sleep apnoea,7 chronic constipation,8 malforma-
tions,9,10 dementia,11 to reduce household air
pollution12 and to evaluate self-management support
programmes13 and spillover of HIV knowledge.14 The
design of the individually randomized stepped-wedge
design has not yet been thoroughly explored in the
statistical literature. A recent study evaluated the
efficiency of the individually randomized stepped-
wedge design in trials with three time periods.15

Stepped-wedge designs are often implemented such
that an equal number of clusters or individuals is

assigned to each treatment sequence (i.e. a uniform

allocation). However, for cluster randomized trials, it

has already been shown that this is not necessarily the

best choice.16–18 It is, therefore, expected that a uni-

form allocation is not the best choice in an individually

randomized stepped-wedge design either. The aim of

this contribution is to study the optimal allocation of

individuals to treatment sequences and the relative effi-

ciency of the uniform allocation as compared to the

optimal allocation. Furthermore, to what extent the

optimal allocation changes if the study is hampered by

attrition of individuals over time will also be studied.
This contribution is organized as follows. In the

‘Methods’ section, the statistical model that relates out-
come to time period and treatment condition is intro-
duced and it is shown how the treatment effect and its
variance are estimated in studies without and with attri-
tion. The variance of the treatment effect estimate is
used as optimality criterion and this section also shows
how constrained optimization is used to numerically
derive the optimal allocation to treatment sequences.
The ‘Results’ section presents optimal allocations for
three to six sequences along with the efficiency of the
uniform allocation relative to the optimal allocation.
The optimal allocations may not always be feasible
from a practical point of view and the ‘Methods’

section deals with optimal allocations where the pro-
portions of individuals allocated to each sequence are
bounded by an upper and lower limit. Conclusion and
discussion are given in the last section.

Methods

Statistical model

All individuals start in the control condition, and in
each time period a number of individuals crosses over
the intervention. The number of time periods T in a
stepped-wedge design as depicted in Figure 1 is
T = J + 1, where J is the number of sequences. A mea-
surement is taken at the end of each time period. The
model for the quantitative outcome Yijt of individual
i= 1, . . . , nj in sequence j= 1, . . . , J at the end of
time period t = 1, . . . , T is as follows

Yijt =b+ tt + xjtg + eijt

Here, b is the baseline score, tt are the period effects
(with t1 = 0 for identifiability), xjt is treatment condi-
tion (with xjt = 0 if sequence j is in the control condi-
tion in time period t and 1 if it is in the intervention
condition in this time period) and g is the effect of
treatment. Note that this treatment effect does not
depend on the time elapsed since crossing over, hence it
is a sustained effect. The residual is denoted as eijt, and
has a mean equal to zero and a variance that is equal
to s2

e . The correlation between eijt and eijt0 depends on
the time difference between the measurements:
cor(eijt, eijt0 )= rjt�t0j, where the parameter 0\r\1

denotes the correlation between two measurements one
time period apart. This correlation function is called
the exponential decay function:19,20 the correlation
between two measurements becomes smaller if these
two measurements are further away in time. Such a
correlation function is more realistic than compound
symmetry, where the correlation does not depend on
the time lag between any two measurements.

The model can be written in matrix–vector notation.
The model for individual i= 1, . . . , nj in sequence
j= 1, . . . , J is given by

Figure 1. Graphical representation of a stepped-wedge design with five sequences.
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Yij =Xju+ ejt

where

Yij = Yij1 Yij2 Yij3 � � � YijTð Þ0

is the vector of length T with responses

Xj =

1 0 0 � � � xj1

1 1 0 � � � xj2

1 0 1 � � � xj3
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is the T 3 (T + 1) matrix with predictors

u= b t1 t2 � � � tT gð Þ0

is the vector of length T + 1 with regression coefficients

eij = eij1 eij2 eij3 � � � eijTð Þ0

is the vector of length T with residuals, and

V =s2
e
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is the T 3 T variance–covariance matrix of this vector.
Note that each individual has the same matrix V , mean-
ing that the parameters s2

e and r are constant across
individuals.

Given an estimate V̂ of the matrix V , the vector of
regression coefficients is estimated as

û=
XJ

j= 1

njXj
0V̂
�1

Xj

 !�1 XJ

j= 1

njXj
0V̂�1yij

with corresponding variance–covariance matrix

cov û
� �

=
XJ

j= 1

njXj
0V̂
�1

Xj

 !�1

The treatment effect estimate ĝ is the last entry of
vector û; its associated variance var(ĝ) is in row T and
column T of matrix cov(û).

The stepped-wedge design is a multi-period design,
and it is very likely individuals drop out during the
course of the study. The last observation of individual i

in sequence j is taken at the end of time period Tij, with
1 ł Tij ł T . The number of individuals in sequence j
who have their last observation at the end of time
period t is denoted by njt. In the case of a constant

attrition rate r between any two adjacent time points,
njt = nj(1� r)t�1 � nj(1� r)t. The matrix Xjt includes
the first t rows of matrix Xj and the matrix Vt includes
the first t rows and first t columns of matrix V . The
variance–covariance matrix of the estimated regression
coefficients then becomes

cov û
� �

=
XJ

j= 1

XT

t= 1

njtXjt
0V̂ t
�1

Xjt

 !�1

The proportion individuals allocated to sequence j is
denoted pj, with inequality constraint 0\pj\1, 8j and
equality constraint

PJ
j= 1 pj = 1. The optimal alloca-

tion of individuals to sequences is denoted
p�=(p�1, p

�
2, . . . , p�J ) and minimizes the variance of the

treatment effect estimator var(â). As such, the optimal
allocation results in a treatment effect that is estimated
with highest precision and hence power of the test on
treatment effect is maximized.

In practical settings, the lower and upper bounds 0
and 1 for pj may result in an optimal allocation p� that
is not feasible. For instance, it may be difficult to imple-
ment the intervention when the number of subjects in a
sequence is either too low or too high. The inequality
constraint 0\pj\1 may then be replaced by the set of
constraints pLj

\pj\pUj
, where pLj

and pUj
are the user-

specified lower and upper boundaries for sequence j.
These boundaries have a subscript j, meaning that they
may be different across the treatment sequences. They
should be chosen such that the equality constraintPJ

j= 1 pj = 1 can still be met. The optimal allocation
then becomes a constrained optimal allocation. The
second subsection of the ‘Results’ section shows an
example where constrained optimization is applied.

A simple equation for the relation between the allo-
cation p=(p1, p2, . . . , pJ ) and the variance var(ĝ) can-
not be derived in the case of exponential decay and/or
attrition. For that reason, the derivation of the optimal
allocation to treatment conditions is done numerically,
using the function constrOptim.nl in the R package
Alabama21 for optimization with equality and inequal-
ity constraints. This function is iterative and requires a
starting vector of proportions. It is advised to use vari-
ous such vectors to avoid convergence to a local mini-
mum of var(ĝ). The function does not only report the
optimal allocation, but also the value of var(ĝ) achieved
for the optimal allocation. As such, the efficiency of the
optimal allocation can be compared to any other allo-
cation (Supplemental material).

Relative efficiency

Once the optimal allocation has been derived, it can be
compared to the uniform allocation. The relative
efficiency quantifies the loss of efficiency of using the
uniform allocation pu rather than the optimal allocation
p�. It is calculated as RE= var(ĝ)p= p�= var(g)p= pu

,
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where the numerator and denominator are the variances
of the treatment effect estimator as obtained with the
optimal and uniform allocation, respectively. The rela-
tive efficiency is in the interval ½0, 1�. A relative efficiency
of 0.8 implies the sample size of the uniform allocation
has to be increased by ((1=0:8)� 1)3 100%= 25% to
perform as well as the optimal allocation; for a relative
efficiency of 0.9, the sample size has to be increased by
((1=0:9)� 1)3 100%= 11%.

Results

Optimal allocation to treatment sequences

Figure 2 shows the optimal allocation to treatment
sequences as a function of the correlation parameter r

and for three, four, five and six sequences in case

attrition is absent (i.e. when r = 0). The optimal alloca-
tion to sequences strongly depends on r: for small r,
there is a large variability across the optimal proportions,
pj, while the optimal allocation approaches the uniform
allocation if r increases to 0.9. The optimal allocation
holds symmetry properties: the first and the last sequence
have equal optimal proportions, the second and the
second-last sequence have equal optimal proportions,
and so forth. Furthermore, the first and last sequence
have highest optimal proportions, and the further away
a sequence is from the top or bottom edges of the design
(i.e. the closer the treatment switch is to the middle time
period(s)), the lower the optimal proportion. A related
result was previously found for the cluster randomized
stepped-wedge design: the information content is higher
for sequences closer to the edges.22 As is obvious, the
higher the information content of a sequence, the more

Figure 2. Optimal allocation of individuals to three, four, five or six treatment sequences in case attrition is absent.
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advantageous it is to assign a large proportion of individ-
uals to that sequence.

Figures 3 and 4 show optimal proportions for a con-
stant attrition rate of r = 0:05 and r = 0:2 between any
two adjacent time points, respectively. The optimal allo-
cation no longer holds its symmetry properties: the first
sequence has a higher optimal proportion than the last,
the second sequence has a higher optimal proportion
than the second last, and so forth. For small values of
r, sequences closer to the top and bottom edges of the
design have higher optimal proportions than those that
switch at or near the middle time period(s). This result
does not hold for larger values of r and if r= 0:9, the
optimal proportion for a sequence is higher if that
sequence has its treatment switch earlier in time.
Furthermore, the variability in optimal proportions at

r= 0:9 increases if the attrition rate increases from 0.05
(Figure 3) to 0.2 (Figure 4).

Figure 5 shows the relative efficiencies of the uni-
form allocation against the optimal allocations that
were presented in Figures 2–4. In all cases, the relative
efficiency is at least 0.8 and the loss of efficiency
increases with increasing number of sequences. The
filled circle lines show the relative efficiencies, in case
attrition is absent. In all four panels, larger values are
observed for larger values of r. In other words: the loss
in efficiency when implementing a uniform allocation is
smallest if an individual’s observations are highly
correlated. The filled square lines show relative efficien-
cies for attrition rate r = 0:05. As in studies without
attrition, there is a monotone increasing relation
between the relative efficiency and r. The filled triangle

Figure 3. Optimal allocation of individuals to three, four, five or six treatment sequences for a constant attrition rate, r= 0:05,
between any two adjacent time points.
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lines show the relative efficiencies for attrition rate,
r = 0:2. As can be seen, the relation between the rela-
tive efficiency and r is no longer monotonous: there is
a maximum in relative efficiency at r= 0:6, after which
point increasing correlation reduces the relative effi-
ciency. It should be noted that scenarios with no attri-
tion (i.e. filled circle lines) have the highest relative
efficiency while relative efficiencies at higher attrition
rates are consistently dominated by those at lower attri-
tion rates.

Constrained optimal allocation to treatment
sequences

The results in Figures 2–4 show that for some values of
r, there is a large variability in the optimal proportions

p�j . Some sequences may be assigned a (much) larger
proportion of individuals than others. Such an alloca-
tion may be impractical as it requires (much) more
trained personnel to implement the intervention in one
sequence than in another.

Consider as an example a trial with four sequences
without attrition (top right panel of Figure 2). Suppose

an a priori estimate of the within-person correlation is

r= 0:4. The optimal allocation is p�=(p�1, p
�
2, p
�
3, p
�
4)

= (0:33, 0:17, 0:17, 0:33). A third of the individuals is

assigned to sequence 1, only one-sixth to each of

sequences 2 and 3 and again a third to sequence 4. This

means a relatively large amount of personnel should be

recruited and trained to implement the intervention in

sequence 1, but only half of them are needed in

sequences 2 and 3, and again all of them in sequence 4.

Figure 4. Optimal allocation of individuals to three, four, five or six treatment sequences for a constant attrition rate, r= 0:2,
between any two adjacent time points.
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If similar personnel numbers are maintained through-
out the study, then high workloads at the beginning
and end sequences put increased stress on the personnel
and resources that may affect intervention implementa-
tion and data quality. It could also be that already
staffed personnel (like nurses at hospital study sites)
are recruited and trained at the beginning of the study,
but because half are not needed again until sequence 4
and will likely shift back to their regular duties for a
time, there is a risk of them requiring significant
retraining. Such types of practical issues can be solved
by implementing a constrained optimal allocation.

Figure 6 shows an example of an optimal allocation
with such constraints for a trial with four sequences
and absent attrition. The left panel gives the optimal

proportions for user-selected constraints on the lower
and upper bound pLj

= 0:15, 8j and pUj
= 0:35, 8j.

These two bounds are indicated by the horizontal
dashed lines. For r ł 0:3, the optimal proportions of
sequences 1 and 4 are found on this upper bound and
the optimal proportions of sequences 2 and 3 are found
on this lower bound. For larger values of r, the optimal
proportions are as shown in the upper right panel of
Figure 2. In other words, for low values of r, the opti-
mal proportions are somewhat pulled towards the uni-
form allocation. As a result of that, the efficiency of the
uniform allocation for low values of r is somewhat
higher when such constraints are used (see right panel
in Figure 6) than when they are not (see top right panel
in Figure 5).

Figure 5. Efficiency of the uniform allocation relative to the optimal allocation.
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Discussion and conclusion

This contribution showed that uniform allocation to
treatment sequences is not always the best choice in an
individually randomized stepped-wedge design. In stud-
ies where attrition is absent, the optimal allocation is
almost equal to the uniform allocation in case the
repeated measures within an individual are highly cor-
related. For lower correlations, the optimal proportions
may vary much across the sequences. For trials with
attrition and a high within-individual correlation, the
optimal proportion becomes larger if the sequence has
its treatment switch earlier in time. Furthermore, the
efficiency of the uniform design decreases when more
periods are included in the design, which mirrors the
finding for the cohort cluster randomized stepped-
wedge designs with a compound symmetry correlation
structure.17 For all number of sequences J , correlation
parameters r and attrition rates r as studied in this con-
tribution, the efficiency of the uniform allocation is at
least 0.8. In other words, for these scenarios, the uni-
form allocation requires an increase of the sample size
of at most 25% to perform as well as the optimal allo-
cation. The (possible) practical limitations of the opti-
mal allocation and the loss of efficiency due to using
the uniform allocation should be weighed for any study
at hand before a decision is made about the most suit-
able allocation of individuals to treatment sequences.

R syntax to calculate the optimal allocation to
sequences can be found on my Github page. The opti-
mal allocation is locally optimal, meaning it depends
on the correlation parameter r and attrition rate r. A
priori values of these two parameters may be found in
the literature or obtained from expert knowledge. A
sensitivity analysis may be performed to study how the

optimal allocation changes if other plausible values of
these parameters are used. Alternatively, one may
derive a more formal robust design, such as a maximin
design. To facilitate researchers of future stepped-
wedge designs, I advocate estimates of the correlation
parameter and attrition rate are clearly reported in the
scientific literature.

The stepped-wedge design is a longitudinal design
and is therefore subject to attrition. This contribution

studied optimal allocation for attrition that was con-

stant across time and future research may focus on

attrition rates that change over time. In my previous

research on longitudinal studies, I used the Weibull sur-

vival function, which allows for monotonically increas-

ing or decreasing attrition over time.23,24 It would be of

interest to study how the optimal allocation of an indi-

vidually stepped-wedge design behaves under such

attrition. This contribution also assumed that attrition

is constant across individuals. Future research may

focus on optimal allocations when attrition depends

on, for instance, the treatment sequence. For instance,

attrition may be higher for individuals in the less inter-

esting control condition than those in the intervention

condition. It may then be expected that more individu-

als are allocated to those sequences that have their

treatment switch earlier in time.
Missing data are often considered a burden: they

make the design incomplete rather than complete and
hence result in a loss of efficiency. However, incomplete
designs may be considered a priori if the aim is to mini-
mize the number of measurements rather than the num-
ber of individuals. In the social science literature, such
designs are known as planned missing data designs.25

An example is the so-called dog-leg design26 and it may

Figure 6. Constrained optimal allocation for four sequences and zero attrition. Left panel: optimal allocation, right panel: efficiency
of the uniform allocation relative to the optimal allocation.
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be interesting to study optimal allocations to treatment
sequences for such a design.

Another design for which it may be interesting to
study the optimal allocation is the so-called hybrid
design or sandwich stepped-wedge design.16,27,28 This is
a combination of the multi-period parallel-group design
and the stepped-wedge design. For cluster randomized
trials with large samples, this design has been shown to
be more efficient than the stepped-wedge design. It
would be interesting to see if this result translates to the
individually randomized stepped-wedge design and
how the optimal allocation is affected by attrition.

It should finally be mentioned that this contribution
assumes a sustained effect of treatment. This assump-
tion does not always hold in practice: the effect of treat-
ment may be pronounced shortly after the treatment
switch, but then stabilize or even decrease later in time
if the initial treatment benefits are washed out over
time. This may be taken into account in the statistical
model by allowing for differential treatment effects
after the treatment switch. The allocation that is opti-
mal for one such treatment effect may not be so for
another. To derive an ‘overall’ optimal allocation, one
may derive a so-called DS-optimal design. Such an opti-
mal design minimizes the confidence ellipsoid of a sub-
set of all model parameters, where in this case the
subset consists of all treatment effects.29,30 Another
approach may be to minimize the weighted sum of var-
iances of these treatment effects in a compound optimal
design,31 where the weights represent the relative impor-
tance of the treatment effects.

To my knowledge, this is one of the first studies on
the efficient design of the individually randomized
stepped-wedge design. I hope the results in this article
will help medical scientists to design their trial in an
efficient way. I also hope this contribution will increase
methodological interest in the individually randomized
stepped wedge, so that more guidelines for its design
and analysis will become available in the near future.

Declaration of conflicting interests

The author declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author received no financial support for the research,

authorship, and/or publication of this article.

ORCID iD

Mirjam Moerbeek https://orcid.org/0000-0001-5537-1237

Supplemental material

R syntax to search the optimal allocation for designs without
or with attrition can be downloaded from https://github.com/
MirjamMoerbeek/Optimal_IRSWD.

References

1. Hussey MA and Hughes JP. Design and analysis of
stepped wedge cluster randomized trials. Contemp Clin

Trials 2007; 28: 182–191.
2. Senn S. Cross-over trials in clinical research. Chichester:

Wiley, 2002.
3. Jones B and Kenward MG. Design and analysis of cross-

over trials. Boca Raton, FL: Chapman & Hall/CRC,

2002.
4. Hemming K, Carroll K, Thompson J, et al. Quality of

stepped-wedge trial reporting can be reliably assessed

using an updated CONSORT: crowd-sourcing systematic

review. J Clin Epidemiol 2019; 107: 77–88.
5. Hemming K, Haines TP, Chilton PJ, et al. The stepped

wedge cluster randomised trial: rationale, design, analy-

sis, and reporting. Br Med J 2015; 350: h391.
6. Zhan Z, de Bock GH and van den Heuvel ER. Statistical

methods for unidirectional switch designs: past, present,

and future. Stat Methods Med Res 2018; 27(9):

2872–2882.
7. Truby H, Edwards BA, O’Driscoll DM, et al. Sleeping

well trial: increasing the effectiveness of treatment with

continuous positive airway pressure using a weight man-

agement program in overweight adults with obstructive

sleep apnoea – a stepped wedge randomised trial proto-

col. Nutr Diet 2019; 76(1): 110–117.
8. Grossi U, Stevens N, McAlees E, et al. Stepped-wedge

randomised trial of laparoscopic ventral mesh rectopexy

in adults with chronic constipation: study protocol for a

randomized controlled trial. Trials 2018; 19: 90.
9. Maruani A, Tavernier E, Boccara O, et al. Sirolimus

(rapamycin) for slow-flow malformations in children: the

observational-phase randomized clinical PERFORMUS

trial. JAMA Dermatol 2021; 157: 1289–1298.
10. Marchand A, Caille A, Gissot V, et al. Topical sirolimus

solution for lingual microcystic lymphatic malformations

in children and adults (TOPGUN): study protocol for a

multicenter, randomized, assessor-blinded, controlled,

stepped-wedge clinical trial. Trials 2022; 23: 557.
11. Berge LI, Gedde MH, Torrado Vidal JC, et al. The

acceptability, adoption, and feasibility of a music appli-

cation developed using participatory design for home-

dwelling persons with dementia and their caregivers. The

‘‘Alight’’ app in the LIVE@Home.Path trial. Front Psy-

chiatry 2022; 13: 949393.
12. Young BN, Good N, Peel JL, et al. Reduced black car-

bon concentrations following a three-year stepped-wedge

randomized trial of the wood-burning Justa cookstove in

rural Honduras. Environ Sci Technol Lett 2022; 9:

538–542.
13. Luu KL, Witkamp FE, Nieboer D, et al. Effectiveness of

the ‘‘living with cancer’’ peer self-management support

program for persons with advanced cancer and their rela-

tives: study protocol of a non-randomized stepped wedge

study. BMC Palliat Care 2022; 21: 107.
14. Rewley J, Fawzi MCS, McAdam K, et al. Evaluating

spillover of HIV knowledge from study participants to

their network members in a stepped-wedge behavioural

intervention in Tanzania. BMJ Open 2020; 10: e033759.
15. Hooper R and Knowles C. Improving the efficiency of

individually randomized clinical trials by staggering the

250 Clinical Trials 20(3)



introduction of the intervention. Stat Med 2019; 38:
44–52.

16. Zhan Z, de Bock GH and van den Heuvel ER. Optimal
unidirectional switch designs. Stat Med 2018; 37:
3573–3588.

17. Li F, Turner EL and Preisser JS. Optimal allocation of
clusters in cohort stepped wedge designs. Stat Probab Lett
2018; 137: 257–263.

18. Lawrie J, Carlin JB and Forbes AB. Optimal stepped
wedge designs. Stat Probab Lett 2015; 99: 210–214.

19. Grantham KL, Kasza J, Heritier S, et al. Accounting for
a decaying correlation structure in cluster randomized
trials with continuous recruitment. Stat Med 2019; 38:
1918–1934.

20. Kasza J, Hemming K, Hooper R, et al. Impact of non-
uniform correlation structure on sample size and power
in multiple-period cluster randomised trials. Stat Meth-

ods Med Res 2019; 28(3): 703–716.
21. Varadhan R. Package ‘Alabama’, 2015, https://cran.r-

project.org/web/packages/alabama/alabama.pdf
22. Kasza J and Forbes AB. Information content of cluster–

period cells in stepped wedge trials. Biometrics 2019;
75(1): 144–152.

23. Moerbeek M. Powerful and cost-efficient designs for
longitudinal intervention studies with two treatment
groups. J Educ Behav Stat 2008; 33: 41–61.

24. Moerbeek M. The effect of missing data on design effi-

ciency in repeated cross-sectional multi-period two-arm

parallel cluster randomized trials. Behav Res Methods

2021; 53(4): 1731–1745.
25. Rhemtulla M, Jia F and Little TD. Planned missing

designs to optimize the efficiency of latent growth para-

meter estimates. Int J Behav Dev 2014; 38: 423–434.
26. Hooper D and Bourke L. The dog-leg: an alternative to a

cross-over design for pragmatic clinical trials in relatively

stable populations. Int J Epidemiol 2014; 43(3): 930–936.
27. Girling AJ and Hemming K. Statistical efficiency and

optimal design for stepped cluster studies under linear

mixed effects models. Stat Med 2016; 35: 2149–2166.
28. Thompson JA, Fielding K, Hargreaves J, et al. The opti-

mal design of stepped wedge trials with equal allocation

to sequences and a comparison to other trial designs. Clin

Trials 2016; 14: 639–647.
29. Berger MPF and Wong WK. An introduction to optimal

designs for social and biomedical research. Chichester:

Wiley, 2009.
30. Atkinson AC, Donev AN and Tobias RD. Optimum

experimental design, with SAS. Oxford: Clarendon, 2007.
31. Cook RD and Wong WK. On the equivalence of con-

strained and compound optimal designs. J Am Stat Assoc

1994; 89: 687.

Moerbeek 251


