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Extracellular SQSTM1 exacerbates acute pancreatitis by activating 
autophagy-dependent ferroptosis
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ABSTRACT
Acute pancreatitis (AP) is an abdominal inflammatory disease initiated by damaged pancreatic acinar 
cells and developed by systemic inflammation. SQSTM1 (sequestosome 1) has an intracellular 
function in mediating substrate degradation during macroautophagy/autophagy, and it can be 
released by macrophages and monocytes to trigger lethal inflammation during bacterial infection. 
Here, we report that extracellular SQSTM1 acts as a mediator of AP by enhancing the sensitivity to 
autophagy-dependent ferroptotic cell death. Serum SQSTM1 is elevated in AP patients as well as in 
mice that have cerulein-induced AP. The administration of SQSTM1-neutralizing antibodies protects 
against experimental AP in mice. Mechanistically, recombinant SQSTM1 protein (rSQSTM1) increases 
AGER (advanced glycosylation end-product specific receptor)-dependent ACSL4 (acyl-CoA synthetase 
long chain family member 4) expression, leading to polyunsaturated fatty acid production for 
autophagosome formation and subsequent ferroptosis. The rSQSTM1-elicited pathological responses 
during AP are attenuated in mice with the conditional deletion of Ager in the pancreas. These 
findings may provide not only new insights into the mechanism of autophagy-dependent cell 
death, but also suggest that targeting the extracellular SQSTM1 pathway is a potential strategy for 
the treatment of AP.
Abbreviations: 5-HETE, 5-hydroxyeicosatetraenoic acid; ACSL4, acyl-CoA synthetase long chain family 
member 4; AP, acute pancreatitis; ATG, autophagy related; AGER, advanced glycosylation end-product 
specific receptor; DAMPs, danger/damage-associated molecular patterns; FTH1, ferritin heavy chain 1; 
GPX4, glutathione peroxidase 4; IL, interleukin; INSR, insulin receptor; MAP1LC3B, microtubule associated 
protein 1 light chain 3 beta; MDA, malondialdehyde; MPO, myeloperoxidase; PRRs, pattern recognition 
receptors; PUFA, polyunsaturated fatty acid; RNAi, RNA interference; SQSTM1, sequestosome 1; TNF, 
tumor necrosis factor; TLR, toll like receptor
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Introduction

Acute pancreatitis (AP) is an acute response to injury of the 
pancreas that can be fatal or lead to serious complications [1]. 
The global incidence of AP has continued to increase over the 
last several decades, with gallstone migration and alcohol abuse 
being the two major risk factors for AP in humans [2]. Although 
the pathogenesis of sterile inflammation in AP remains largely 
unclear, increasing evidence suggests that danger/damage- 
associated molecular pattern (DAMP) molecules play a critical 
role in linking local trypsin-induced acinar cell damage to sub
sequent systemic inflammation and multiorgan failure [3]. 
DAMPs are endogenous molecules that can be released by 
dead or dying cells to induce or amplify inflammatory responses 
through various pattern recognition receptors (PRRs) expressed 
by immune and nonimmune cells [4,5]. Certain DAMPs (e.g., 
HMGB1 [high mobility group box 1]) and DAMP receptors 
(e.g., AGER [advanced glycosylation end-product specific recep
tor] and TLRs [toll like receptors]) have been identified as 
therapeutic targets for AP [6–8].

In mammalian cells, SQSTM1/p62 (sequestosome 1) acts as 
a receptor protein involved in signal transduction, oxidative stress, 
and macroautophagy (hereafter referred to as autophagy) [9]. As 
a representative autophagy receptor, SQSTM1 sorts ubiquitinated 
substrates (including SQSTM1 itself) for lysosome-mediated 
degradation [10,11]. In addition to these intracellular functions, 
we recently demonstrated that SQSTM1 can be released by innate 
immune cells to mediate lethal inflammation during bacterial 
infection [12]. Specifically, we demonstrated that INSR (insulin 
receptor) is a PRR responsible for the cytokine-like activity of 
extracellular SQSTM1 in macrophages and monocytes, providing 
a potential therapeutic target for sepsis and septic shock [12]. 
However, it remains unknown whether extracellular SQSTM1 
plays a similar role in AP caused by sterile inflammation.

Ferroptosis is a type of regulated cell death that was first 
described in cancer cells harboring RAS mutations [13,14]. 
Unlike apoptosis, which relies on caspase activation, ferroptosis 
typically requires the activation of oxidative stress to trigger lipid 
peroxidation and subsequent plasma membrane rupture [15,16]. 
Ferroptosis is often associated with the overactivation of 
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autophagy, and the inhibition of autophagy reduces ferroptotic 
responses, including aberrant immune activation [17–19]. 
Targeting ferroptotic pathways may be a strategy to prevent 
inflammation-associated diseases or pathological conditions [20], 
including pancreatitis [21–23].

In this study, we provide the first evidence that extracellular 
SQSTM1 is involved in the development of AP. We found that 
serum SQSTM1 is elevated in human and mouse AP and that 
blocking extracellular SQSTM1 activity protects against experi
mental AP in mice. We further revealed that AGER, but not INSR, 
is essential for extracellular SQSTM1 activity in acinar cells to drive 
polyunsaturated fatty acid (PUFA) synthesis, resulting in autopha
gy-dependent ferroptotic damage.

Results

Serum SQSTM1 is elevated in AP

Cerulein, a cholecystokinin analog, is the most used experi
mental stimulant to analyze early pathological events in AP 
because of its rapidity, ease of induction, and reproducibility 

[24]. To determine whether serum SQSTM1 is a biomarker to 
predict disease severity in AP, we assayed the serum level of 
SQSTM1 in cerulein-induced experimental AP in mice. As 
expected, hematoxylin and eosin (H&E) stains showed that 
cerulein time-dependently caused pancreatic damage with the 
typical histopathological features of AP (e.g., edema, vacuoliza
tion, inflammatory cell infiltration, and necrosis) (Figure 1A, 
B). Serum AMY (amylase) and PNLIP (pancreatic lipase) 
remain more sensitive and specific biochemical markers for 
the diagnosis of AP [25]. In addition to serum AMY and 
PNLIP, serum SQSTM1 concentrations were time- 
dependently increased in mice by the administration of ceru
lein (Figure 1C-1E).

Furthermore, compared with normal healthy controls, 
serum SQSTM1 was elevated in AP patients, especially in 
severe AP patients (Figure 1F). The acute physiology and 
chronic health evaluation (APACHE-II) is a prognostic scor
ing system for predicting the severity of AP [25]. Statistical 
analysis showed that there was a positive correlation between 
SQSTM1 and APACHE-II scores (Figure 1G). Thus, elevated 
serum SQSTM1 correlates with AP disease severity.
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Figure 1. Serum SQSTM1 is elevated in AP. (A) Representative samples of pancreas H&E staining in mice after the administration of cerulein for 2–8 h. Scale bar: 100 μm. (B) Bar 
graph shows quantification of histological scores of cell death, edema, and inflammation (n = 5 mice/group; data are presented as means ± SD). (C-E) Analysis of serum 
concentration of AMY, PNLIP, or SQSTM1 in mice after the administration of cerulein for 2–8 h (n = 5 mice/group; one-way ANOVA with Tukey’s multiple comparisons test on all 
pairwise combinations; data are presented as means ± SD). (F) Analysis of serum SQSTM1 concentration in normal healthy people and AP patients (n = 10–15 cases/group; one- 
way ANOVA with Tukey’s multiple comparisons test on all pairwise combinations; data are presented as means ± SD). (G) Correlation analysis of serum SQSTM1 levels with 
APACHE-II scores in AP patients (linear regression t test; data are presented as scatter plots).
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Blocking SQSTM1 prevents experimental AP

To determine whether elevated serum SQSTM1 contributes to 
experimental AP, we used an SQSTM1-neutralizing antibody 
(termed αSQSTM1) previously shown to effectively block extra
cellular SQSTM1 activity in mice [12]. H&E staining revealed that 
αSQSTM1, in comparison to control IgG, dose-dependently pre
vented pancreatic tissue damage caused by cerulein (Figure 2A). 
Other pancreatitis experimental parameters, including serum 
AMY (Figure 2C), serum PNLIP (Figure 2D), pancreatic trypsin 
activity (Figure 2E), pancreatic neutrophil recruitment (as mea
sured by pancreatic MPO [myeloperoxidase] activity) (Figure 2F), 
and pancreatic necrosis (as reflected by HMGB1) (Figure 2G) 
were ameliorated by the administration of αSQSTM1. TNF 
(tumor necrosis factor), IL1B (interleukin 1 beta), IL6, and IL17 

are important cytokines in the development of inflammation in 
AP. Additionally, αSQSTM1 restricted the production of these 
pro-inflammatory cytokines in serum during cerulein-induced 
AP (Figure 2H).

To further understand the utility of αSQSTM1 in AP therapy, 
we investigated a different model of L-arginine-induced acute 
necrotizing pancreatitis. Previous studies by us and others have 
shown that peak pathological responses in L-arginine-induced AP 
occur at 72 h, whereas cerulein-induced AP occurs at 8 h [26–28]. 
The αSQSTM1 treatment also protected mice from L-arginine- 
induced AP, reducing pancreatic histological and experimental 
responses at 72 h (Fig. S1). Collectively, these neutralizing anti
body experiments demonstrate that extracellular SQSTM1 is 
a mediator of experimental AP.
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Figure 2. Blocking SQSTM1 prevents cerulein-induced AP. (A) Representative samples of pancreas H&E staining in mice after the administration of cerulein in the 
absence or presence of αSQSTM1 (5–10 mg/kg) for 8 h. Scale bar: 100 μm. (B) Bar graph shows quantification of histological scores of cell death, edema, and 
inflammation (n = 5 mice/group; data are presented as means ± SD). (C-H) Analysis of serum AMY, serum PNLIP, pancreatic MPO, serum HMGB1, and indicated serum 
cytokines in mice after the administration of cerulein in the absence or presence of αSQSTM1 (5–10 mg/kg) for 8 h (n = 5 mice/group; one-way ANOVA with Tukey’s 
multiple comparisons test on all pairwise combinations; data are presented as means ± SD in C-G; data are presented as a heat map of the mean in H).
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Autophagy-dependent ferroptosis is enhanced by 
rSQSTM1

One of the primary mechanisms of cerulein- or L-arginine- 
induced AP is the triggering of acinar cell death [3]. To deter
mine the direct effects of extracellular SQSTM1 on acinar cells, 

we compared cerulein- or L-arginine-induced cell death in 
266–6 cells (a mouse acinar pancreatic cell line) in the absence 
or presence of recombinant SQSTM1 protein (rSQSTM1). The 
rSQSTM1 alone had no significant effect on the induction of 
cell death in 266–6 cells (Figure 3A). However, cerulein- or 
L-arginine-induced cell death was enhanced by rSQSTM1 
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Figure 3. Autophagy-dependent ferroptosis is enhanced by rSQSTM1. (A) Analysis of the level of cell death in 266–6 acinar cell line after treatment with cerulein 
(100 nM) or L-arginine (5 mg/mL) in the absence or presence of rSQSTM1 (2 ng/ml) for 24–72 h (n = 3 biologically independent samples; two-way ANOVA with 
Tukey’s multiple comparisons test on all pairwise combinations; data are presented as means ± SD). (B) Analysis of the level of cell death in 266–6 acinar cell line 
after treatment with cerulein (100 nM) or L-arginine (5 mg/mL) in the absence or presence of rSQSTM1 (2 ng/ml), liproxstatin-1 (500 nM), Z-VAD-FMK (10 µM), or 
necrosulfonamide (1 µM) for 48 h (n = 3 biologically independent samples; one-way ANOVA with Tukey’s multiple comparisons test on all pairwise combinations; 
data are presented as means ± SD). (C, D) Analysis of the concentration of intracellular Fe2+ or MDA in 266–6 acinar cell line after treatment with cerulein (100 nM) or 
L-arginine (5 mg/mL) in the absence or presence of rSQSTM1 (2 ng/ml) for 48 h (n = 3 biologically independent samples; one-way ANOVA with Tukey’s multiple 
comparisons test on all pairwise combinations; data are presented as means ± SD). (E, F) Analysis of indicated protein or gene expression in 266–6 acinar cell line 
after treatment with cerulein (100 nM) or L-arginine (5 mg/mL) in the absence or presence of rSQSTM1 (2 ng/ml) for 24 h (data are presented as means ± SD in F). (G) 
Western blot analysis of ATG5 expression in Atg5-knockdown 266–6 cells. (H) Analysis of the effect of Atg5 knockdown, spautin-1 (5 µM), or liproxstatin-1 (500 nM) on 
the level of cell death in 266–6 acinar cell line after treatment with cerulein (100 nM) or L-arginine (5 mg/mL) in the absence or presence of rSQSTM1 (2 ng/ml) for 
48 h (data are presented as a heat map of the mean of 3 biologically independent samples).
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(Figure 3A). To determine the type of increased cell death 
sensitivity caused by rSQSTM1, we used classical cell death 
inhibitors. Our analysis showed that this death-sensitizing 
effect of rSQSTM1 on 266–6 cells could be reversed by the 
addition of the ferroptosis inhibitor liproxstatin-1, but not by 
the addition of the necroptosis inhibitor necrosulfonamide or 
the apoptosis inhibitor Z-VAD-FMK (Figure 3B).

Because ferroptosis is a type of iron-dependent cell death 
caused by lipid peroxidation [15,29], we determined the effect 
of rSQSTM1 on iron accumulation and lipid peroxidation in 
the cells. Cerulein- or L-arginine-induced iron accumulation 
was increased by rSQSTM1 (Figure 3C). Quantitative deter
mination of malondialdehyde (MDA, one of the end products 
of lipid peroxidation) showed that rSQSTM1 increased lipid 
peroxidation in response to cerulein or L-arginine treatment 
(Figure 3D). The rSQSTM1 alone failed to induce MDA 
production, suggesting that rSQSTM1 may not directly cause 
lipid peroxidation (Figure 3D).

Because ferroptosis has excessive autophagy responses [17], 
we also examined the levels of MAP1LC3B (microtubule- 
associated protein 1 light chain 3 beta) and the degradation 
substrates GPX4 (glutathione peroxidase 4) and ferritin, 
which are repressors and autophagic substrates of ferroptosis 
[30–32]. Western blot analysis showed that rSQSTM1 
increased cerulein- or L-arginine-induced MAP1LC3B-II pro
tein upregulation, GPX4 protein downregulation, and FTH1 
(ferritin heavy polypeptide 1) protein downregulation 
(Figure 3E). In contrast, the mRNAs of Gpx4 and Fth1 were 
not remarkedly altered by cerulein or L-arginine in the 
absence or presence of rSQSTM1 (Figure 3F). As expected, 
the knockdown of Atg5 using two specific shRNAs and the 
administration of the autophagy inhibitor spautin-1 blocked 
cell death induced by cerulein or L-arginine in the presence of 
rSQSTM1 (Figure 3G,H). These findings indicate that 
rSQSTM1 enhances the sensitivity to autophagy-dependent 
ferroptosis.

ACSL4-mediated autophagy and ferroptosis are induced 
by rSQSTM1

Although there are many types and sources of lipids, the 
synthesis of PUFA is an important initial step to enhance 
subsequent lipid peroxidation during ferroptosis [33]. We 
and others previously demonstrated that ACSL4 (acyl-CoA 
synthetase long chain family member 4) is a driver of ferrop
tosis because of its involvement in the metabolism and for
mation of PUFA-containing phospholipids [34,35]. Western 
blot and qPCR analysis demonstrated that rSQSTM1 alone 
upregulated ACSL4 protein and mRNA (Figure 4A,B). 
Consequently, the levels of 5-hydroxyeicosatetraenoic acid 
(5-HETE), one of the products of arachidonic acid catalyzed 
by ACSL4, were increased (Figure 4C). In contrast, the 
expression of ALOX5 (arachidonate 5-lipoxygenase), 
a mediator of lipid peroxidation in the pancreas [36], was 
not affected by rSQSTM1 (Figure 4A).

In addition to cerulein or L-arginine, rSQSTM1 also 
increased the toxicity of classical ferroptosis inducers (erastin 
and RSL3) in 266–6 cells and primary acinar cells (mPACs) 
(Figure 4D). These processes were reversed by the ACSL4 

inhibitor PRGL493 or by the genetic knockdown of Acsl4 
(Figure 4D). Because PUFAs are also essential fatty acids 
that participate in autophagosome formation [37], we 
assayed the impact of the knockdown of Acsl4 on 
rSQSTM1 plus cerulein-induced MAP1LC3B-II expression 
and LC3 puncta formation. The knockdown of Acsl4 by 
shRNA inhibited rSQSTM1 plus cerulein-induced 
MAP1LC3B-II protein upregulation (Figure 4E), and it 
increased LC3 puncta formation (Figure 4F). Accordingly, 
Acsl4 silencing inhibited rSQSTM1 plus cerulein-induced 
degradation of GPX4 and FTH1 proteins (Figure 4E). 
Transmission electron microscopy analysis of autophagic 
vacuoles further confirmed the role of ACSL4 in mediating 
autophagic responses to rSQSTM1 plus cerulein (Figure 4G). 
Altogether, these findings suggest that rSQSTM1 selectively 
upregulates the expression of ACSL4, which contributes to 
the production of PUFAs for autophagosome formation and 
subsequent autophagy-dependent ferroptosis.

AGER mediates rSQSTM1 activity in acinar cells

We first investigated the effect of INSR in mediating 
rSQSTM1 activity in ferroptosis. Consistent with the previous 
notion that INSR is a receptor for rSQSTM1 in macrophages 
[12], rSQSTM1-induced Tnf (tumor necrosis factor) and Il6 
(interleukin 6) mRNA expression was restricted in insr−/− 

macrophages (Figure 5A,B). However, rSQSTM1-induced 
Acsl4 mRNA expression and 5-HETE production was unaf
fected in insr−/− acinar cells (Figure 5C,D), suggesting that 
INSR is not essential for extracellular SQSTM1-mediated 
ACSL4 expression and activity.

AGER belongs to a class of PRRs that recognize 
a variety of ligands to drive pancreatitis and pancreatic 
cancer [38,39]. Next, we examined whether AGER is 
a receptor for SQSTM1 in acinar cells. Indeed, His tag 
affinity-isolation experiments demonstrated a direct inter
action between AGER and SQSTM1 proteins, which was 
inhibited by αSQSTM1 (Figure 5E). Functionally, 
rSQSTM1-induced upregulation of Acsl4 mRNA was 
blocked in ager−/− acinar cells compared with wild-type 
acinar cells (Figure 5F). Quantitative analysis of 5-HETE 
also confirmed the role of AGER in mediating rSQSTM1 
activity in arachidonic acid metabolism in acinar cells 
(Figure 5G). Moreover, the depletion of Ager in acinar 
cells reversed the rSQSTM1-increased toxicity of cerulein, 
L-arginine, erastin, and RSL3 (Figure 5H), indicating that 
rSQSTM1 amplifies ferroptosis sensitivity in acinar cells 
through the receptor AGER.

AGER depletion prevents rSQSTM1-mediated AP

To determine whether AGER is required for SQSTM1 activity 
in vivo, we treated wild-type and conditional pancreatic Ager- 
depleted mice (hereafter ager−/−) with rSQSTM1 in cerulein- 
induced AP. Histopathological analysis revealed that 
rSQSTM1 increased cerulein-induced inflammatory, edema, 
and necrotic responses in pancreatic tissue (Figure 6A,B). 
Accordingly, serum AMY (Figure 6C), serum PNLIP 
(Figure 6D), pancreatic trypsin activity (Figure 6E), pancreatic 
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MPO activity (Figure 6F), and serum HMGB1 (Figure 6G) 
were upregulated by rSQSTM1 in cerulein-induced AP. The 
rSQSTM1-induced pathological responses of AP were reduced 
in ager−/− mice. As expected, rSQSTM1-induced pancreatic 
MDA production (Figure 6H), pancreatic ACSL4 expression 
(Figure 6I), and serum DCN (decorin; a marker of ferropto
sis) (Figure 6J) were limited in ager−/− mice. These animal 
studies demonstrated the pathological role of AGER in driv
ing rSQSTM1-mediated AP with an increase in ACSL4 
expression and ferroptosis sensitivity.

Discussion

Sterile inflammation occurs in the absence of microorganisms 
and is often associated with PRRs that recognize DAMPs 
released by damaged cells [4]. Unrestricted sterile inflamma
tion is the fundamental pathological event leading to various 
human diseases [4]. In this study, we established an SQSTM1- 
AGER signaling pathway that drives experimental AP by 
activating ferroptosis-related sterile inflammation. Our find
ings also provide new insights into the immune consequences 
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of ferroptotic death [40], which could be useful for the devel
opment of anti-inflammation therapeutic strategies.

Impaired autophagic flux in pancreatitis can lead to the 
accumulation of SQSTM1 [41]. We demonstrated that 
SQSTM1 can be released into the extracellular space and act 
as a mediator to restore autophagic flux and subsequent 
autophagy-dependent ferroptosis in acinar cells. Thus, there 
is a complex dynamic of autophagic activity that controls 
acinar cell injury during pancreatitis in a SQSTM1- 
dependent manner. Most DAMPs are endogenous proteins 
that have important functions during cellular stress, including 
cell death stimulation [42]. Once they are released into the 
extracellular space, they can individually or synergistically 
trigger an inflammatory response [4]. We found that serum 
SQSTM1 was significantly upregulated during AP in humans 
or mice compared with normal groups, although we cannot 
exclude that non-acinar cells also contribute to the release of 
SQSTM1 in vivo. Furthermore, serum SQSTM1 levels were 
time-dependently upregulated with the development of 
experimental AP. Whether serum SQSTM1 can be used to 
assist in AP staging needs to be further investigated in large 
clinical studies [43]. Nevertheless, a comparison of the sensi
tivity and specificity of SQSTM1 with other biomarkers (e.g., 

serum AMY and PNLIP) may be important for the early 
diagnosis and assessment of the course of AP [25].

Our study highlights the fact that lipid peroxidation- 
mediated ferroptotic damage accelerates AP by releasing 
SQSTM1. There are two mechanisms for releasing SQSTM1 
into the extracellular environment: passive release and active 
release [44]. In response to bacterial lipopolysaccharide, 
SQSTM1 is actively secreted from activated macrophages and 
monocytes by secretory lysosome-mediated exocytosis [12]. 
This process requires the phosphorylation of SQSTM1 through 
the activation of the lipopolysaccharide-TLR4-STING1 (stimu
lator of interferon response cGAMP interactor 1) pathway [12]. 
In addition, pyroptosis caused by bacterial infection can lead to 
the passive release of SQSTM1 in immune cells [12]. Although 
the pathogenesis of pancreatitis involves the induction of mul
tiple distinct cell death pathways, trypsin from pancreas 
extracts plays a positive role in susceptibility to ferroptosis, 
resulting in increased pancreatitis severity in mice. Our study 
further demonstrated that extracellular SQSTM1 also can acti
vate autophagy-dependent ferroptosis. The inhibition of 
SQSTM1 activity by neutralizing antibodies prevents experi
mental forms of AP, including those associated with ferroptosis 
injury and cytokine production. These data also support 
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previous clinical observations that lipid peroxidation is 
a common pathological event in patients with pancreatitis 
[45–47].

Further, we demonstrated that AGER is a new receptor for 
SQSTM1 in acinar cells. Increased cytokines may accelerate 
acinar cell damage, resulting in positive feedback through 
immune cell infiltration that leads to systemic inflammation 
[48]. Our current study shows that INSR is not required for 

SQSTM1-triggered ACSL4 expression in acinar cells, although 
INSR favors SQSTM1 activity in mediating cytokine production 
in macrophages [12]. INSR also protects acinar cells from AP- 
stimulated injury, including cerulein or fatty acid plus ethanol 
[49]. We showed that AGER mediates extracellular SQSTM1 
activity in acinar cells during ACSL4 production. The lipid 
metabolizing enzyme ACSL4 is one of the most widely recog
nized mediators of ferroptosis, and the expression of ACSL4 by 
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SQSTM1 increases autophagosome formation and the sensitivity 
to ferroptosis. The deletion of Ager and pharmacological inter
ventions that interrupt the AGER-ligand interaction also reduce 
pyroptosis-mediated release of IL1B and HMGB1 during AP [6]. 
AGER is also required for DCN-mediated immune responses in 
AP during ferroptosis [50]. Therefore, AGER plays a central role 
in organizing multiple cell death-related inflammatory and 
metabolic pathways [38,39].

In summary, we revealed that activating the SQSTM1- 
AGER pathway in acinar cells contributes to ferroptosis and 
sterile inflammation in experimental AP. Targeting SQSTM1 
release or activity may represent a potential therapeutic strat
egy for the treatment of AP. Future directions for study 
include research to determine how different DAMPs (includ
ing SQSTM1) shape the inflammatory response to different 
cell death modalities (including ferroptosis) to drive AP [51]. 
It is also important to understand how different regulatory 
necrosis, including ferroptosis and necroptosis [52], synergis
tically lead to acute pancreatitis. One possibility is that while 
ferroptosis and necroptosis differ in their entire signaling 
pathways [53], they may share some common regulators 
(e.g., receptor interacting serine/threonine kinase 3 [RIPK3] 
and GPX4) that cross-affect cell death types [54,55]. To deter
mine whether extracellular SQSTM1 is the cause of AP, future 
clinical trials are needed to block SQSTM1 activity to see if AP 
progression in patients is improved. Achieving this goal 
requires the collaboration of various disciplines to develop 
specific SQSTM1 antagonistic antibodies or small-molecule 
drugs that can be used in clinical trials.

Materials and methods

Reagents

Erastin (S7242), RSL3 (S8155), liproxstatin-1 (S7699), 
Z-VAD-FMK (S7023), necrosulfonamide (S8251), and spau
tin-1 (S7888) were obtained from Selleck Chemicals. 
PRGL493 (32,748) was obtained from Cayman Chemical. 
Cerulein (C9026) and L-arginine (A5006) were obtained 
from Sigma-Aldrich. Dimethyl sulfoxide (DMSO; 472,301) 
was obtained from Sigma-Aldrich and was used to prepare 
the stock solution of most drugs. The final concentration of 
DMSO in the drug working solution in the cells was <0.01%. 
Additionally, 0.01% DMSO was used as a vehicle control in 
the corresponding cell culture assays.

The neutralizing antibodies to SQSTM1 (814,801) and 
mouse IgG1 control antibodies (400,101) were obtained 
from BioLegend. The antibodies to ACTB (3700) and 
MAP1LC3A/B (4108) were obtained from Cell Signaling 
Technology. The antibodies to GPX4 (ab125066) and FTH1 
(ab183781) were obtained from Abcam. The antibodies to 
ACSL4 (PA5-27,137) and ALOX5 (PA5-78,762) were 
obtained from Thermo Fisher Scientific. The rSQSTM1 
(TP506359) was obtained from OriGene.

Cell culture

The mouse 266–6 (CRL-2151) cell line was obtained from the 
American Type Culture Collection and cultured in Dulbecco’s 

modified Eagle’s medium (DMEM; Thermo Fisher Scientific, 
11,995,073) supplemented with 10% heat-inactivated fetal 
bovine serum (FBS; Thermo Fisher Scientific, A3840001) 
and 1% penicillin and streptomycin (Thermo Fisher 
Scientific, 15,070–063) at 37°C, 95% humidity, and 5% CO2. 
Primary mouse acinar cells were cultured as described pre
viously [56]. Briefly, the pancreas from male C57BL/6 J mice 
(8–10 weeks) was removed and minced for 5 min in Hanks’ 
balanced salt solution (HBSS; Sigma-Aldrich, H8264) plus 
0.1% bovine serum albumin (BSA; Sigma-Aldrich, 05470) 
and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES; Sigma-Aldrich, PHG0001). After washing, the 
pancreatic segments were incubated in 10 mL collagenase IA 
solution (HBSS 1× containing 10 mM HEPES, 200 U/ml of 
collagenase IA [Sigma-Aldrich, C9891], and 0.25 mg/ml of 
trypsin inhibitor) for 20–30 min at 37°C. The solution con
taining collagenase was then removed and replaced with 
DMEM supplemented with 1% penicillin and streptomycin, 
10% FBS, 0.25 mg/ml of trypsin inhibitor, and 25 ng/ml of 
recombinant mouse EGF (epidermal growth factor; Sigma- 
Aldrich, E5160) at 37°C, 95% humidity, and 5% CO2. Cell 
line identity was validated by short tandem repeat profiling, 
and routine mycoplasma testing was negative for 
contamination.

Animal models

Our protocol for animal use was reviewed and approved by 
our institutional animal care and use committees. Pancreatic- 
specific ager-knockout mice were produced and identified in 
our laboratory by crossing floxed Ager (produced by the Rui 
Kang laboratory [57]) and Pdx1-Cre (the Jackson Laboratory, 
014647) transgenic mice (C57BL/6 J background). Mouse 
were kept under standard pathogen-free conditions with an 
artificial 12-h light/dark cycle (lights on: 08:00) and constant 
50%-60% humidity. Mouse were allowed access to tap water 
and free (ad libitum) access to standard laboratory chow 
during the experimental period.

For cerulein-induced AP, male mice (8–10 weeks) received 
7 hourly intraperitoneal (i.p.) injections of 50 μg/kg cerulein 
in sterile saline [58]. In some experiments, rSQSTM1 was 
administered by i.p. at a dose of 250 μg/mouse at 3 h after 
the first cerulein injection. For L-arginine-induced AP, 
a sterile solution of L-arginine (8%) was prepared in normal 
saline and the pH was adjusted to 7.0. Mice received 2 hourly 
i.p. injections of L-arginine (4 g/kg), while controls were 
administered saline i.p. as described previously [26]. For the 
treatment group, αSQSTM1 monoclonal antibodies (5 or 
10 mg/kg) or control IgG1 (10 mg/kg) were repeatedly admi
nistered intraperitoneally to mice at 1 and 6 h after the first 
cerulein or L-arginine injection. The parameters of AP were 
assessed 8 or 72 h after the last cerulein or L-arginine treat
ment, respectively.

Animals were sacrificed at the indicated time by CO2 
asphyxia, and a blood sample and tissue were collected. 
Serum was further collected immediately after centrifugation 
at 10,000 g for 5 min at 4°C. Tissue samples were collected, 
snap-frozen in liquid nitrogen, and stored at −80°C. 
Formalin-fixed pancreas samples were processed, and 
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5-μm-thick paraffin sections were stained with H&E for his
tological analysis. Pancreatitis was scored according to 
a revised scoring standard [59], with an independent pathol
ogist evaluating histological scores for acinar cell death, leu
kocyte infiltration, or edema in a blind manner. Histological 
images were acquired using an EVOS FL Auto Cell Imaging 
System (Thermo Fisher Scientific).

Western blot analysis

Cells were lysed 3 times with 1× cell lysis buffer (Cell 
Signaling Technology, 9803) containing protease inhibitor 
cocktail (Sigma-Aldrich, P8340) on ice for 10 min. Protein 
was quantified using the bicinchoninic acid assay (Thermo 
Fisher Scientific, 23,225) and 20–30 μg of each sample was 
resolved on 4%-12% Criterion XT Bis-Tris gels (Bio-Rad, 
3,450,124) in XT MES running buffer (Bio-Rad, 1,610,789) 
and transferred to polyvinylidene difluoride membranes (Bio- 
Rad, 1,620,233) using the Trans-Blot Turbo Transfer Pack and 
System (Bio-Rad, 1,704,150) [60]. Membranes were blocked 
with Tris-buffered saline with 0.1% Tween 20 detergent (Cell 
Signaling Technology, 9997; TBST) containing 5% nonfat 
milk (Cell Signaling Technology, 9999) for 1 h and incubated 
overnight at 4°C with various primary antibodies (1:500– 
1:1000). Following 3 washes in TBST, membranes were incu
bated with goat anti-rabbit or anti-mouse IgG horseradish 
peroxidase-conjugated secondary antibody (1:1000; Cell 
Signaling Technology, 7074 or 7076) at room temperature 
for 1 h. After being washed with TBST, the signals were 
visualized using enhanced chemiluminescence (Thermo 
Fisher Scientific, 32,106) and then visualized and analyzed 
with a ChemiDoc Touch Imaging System (Bio-Rad).

Cytotoxicity assays

A Countess II FL Automated Cell Counter (Thermo Fisher 
Scientific) was used to assay the percentages of dead cells after 
cell staining with 0.4% trypan blue solution (Thermo Fisher 
Scientific, T10282). In short, samples were prepared by adding 
10 μl of cell suspension to 10 μl of 0.4% trypan blue stain.

The qPCR assay

Total RNA was extracted and purified from cultured cells 
using the RNeasy Plus Mini Kit (QIAGEN, 74,136). First- 
strand cDNA was synthesized from 1 µg of RNA using the 
iScript cDNA Synthesis Kit (Bio-Rad, 1,708,890). Briefly, 20- 
μl reactions were prepared by combining 4 μl of iScript Select 
reaction mix, 2 μl of gene-specific enhancer solution, 1 μl of 
reverse transcriptase, 1 μl of gene-specific assay pool (20×, 2  
μM), and 12 μl of RNA diluted in RNase-free water. Then 
cDNA from various cell samples was amplified by real-time 
qPCR with specific primers using a CFX96 Touch Real-Time 
PCR Detection System (Bio-Rad) with CFX Manager software 
2.0 (Bio-Rad). The data were normalized to Actb and the fold 
change was calculated via the 2−ΔΔCt method [61]. The relative 
concentrations of mRNA were expressed in arbitrary units 
based on the untreated group, which was assigned a value of 
1. The primers were used as below. Gpx4: 

CCTCTGCTGCAAGAGCCTCCC and CTTATCCAGGCA 
GACCATGTGC; Fth1: GCCGAGAAACTGATGAAGCTGC 
and GCACACTCCATTGCATTCAGCC; Acsl4: CCTTTGG 
CTCATGTGCTGGAAC and GCCATAAGTGTGGGT 
TTCAGTAC; Tnf: GGTGCCTATGTCTCAGCCTCTT and 
GCCATAGAACTGATGAGAGGGAG; Il6: TACCACTTCA 
CAAGTCGGAGGC and CTGCAAGTGCATCATCGT 
TGTTC; and Actb: CATTGCTGACAGGATGCAGAAGG 
and TGCTGGAAGGTGGACAGTGAGG.

RNAi

The pre-desigined Atg5 shRNA1 (TRCN0000375819), Atg5 
shRNA2 (TRCN0000099432), and Acsl4 shRNA 
(TRCN0000011987) were obtained from Sigma-Aldrich. The 
shRNA was transfected into cells using Lipofectamine 3000 
(Invitrogen, L3000-015) when cells were at approximately 
60%-70% confluence. Puromycin (InvivoGen, ant-pr-1) was 
used to generate stable knockdown cell lines. The efficiency of 
RNAi was verified by western blotting.

ELISA analysis

The concentrations or activity of AMY (amylase; Abcam, 
ab102523), MPO (Thermo Fisher Scientific, EMMPO), tryp
sin (Abcam, ab102531), PNLIP (pancreatic lipase; CUSABIO, 
CSB-E16930m), HMGB1 (Sino-Test Corporation, 
326,054,329), TNF (Thermo Fisher Scientific, A43658), IL1B 
(Thermo Fisher Scientific, BMS6002), IL6 (Thermo Fisher 
Scientific, A43656), IL17 (Thermo Fisher Scientific, 
BMS6001), MDA (Abcam, ab118970), iron (Sigma-Aldrich, 
MAK025), SQSTM1 (ADI-900-212, Enzo Life Sciences), 
DCN (R&D Systems, DY1060), and 5-HETE (Abbexa, 
abx251443) in the indicated samples were measured using 
enzyme-linked immunosorbent assay (ELISA) kits according 
to the manufacturer’s guidelines.

Serum SQSTM1 levels in patients or mice were measured 
by ELISA using 35–50 µl serum/sample. Briefly, samples and 
standards were added to wells coated with SQSTM1-specific 
monoclonal antibodies (supplied with the ELISA kit). The 
plate was then incubated and washed to remove excess anti
body. A blue solution of horseradish peroxidase (HRP) con
jugate was added to each well bound to the SQSTM1 
antibody. The plate was incubated again, washed and 
3,3’,5,5’ tetramethylbenzidine substrate solution was added. 
Finally, stop solution was added to stop the substrate reaction. 
The resulting yellow color was read at 450 nm, which was 
proportional to the level of SQSTM1 in the sample.

Immunofluorescence analysis

Cells were cultured on glass coverslips and fixed in 3% for
maldehyde for 30 min at room temperature prior to detergent 
extraction with 0.1% Triton X-100 (Cell Signaling 
Technology, 39,487) for 10 min at 25°C. Coverslips were 
saturated with 2% BSA in phosphate-buffered saline (PBS; 
Cell Signaling Technology, 9872) for 1 h at room temperature 
and processed for immunofluorescence with primary antibo
dies, followed by Alexa Fluor 488-conjugated secondary 
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antibodies (Thermo Fisher Scientific, A32731). Nuclear mor
phology was analyzed with the fluorescent dye Hoechst 33,342 
(Thermo Fisher Scientific, 62,249). Images were taken with 
a ZEISS LSM 800 confocal microscope.

Transmission electron microscopy analysis

Transmission electron microscopy analysis of autophagic 
vacuoles was performed as previously described [62]. In 
brief, cells were fixed with 2% paraformaldehyde and 2% 
glutaraldehyde in 0.1 mol/L phosphate buffer (pH 7.4), fol
lowed by postfixation for 6 h in 1% OsO4. After dehydration 
with graded alcohol solutions, each sample was embedded in 
epoxy resin (Sigma-Aldrich, 45,359). The cut-thin sample (70  
nm) was mounted on a copper mesh (Sigma-Aldrich, TEM- 
74357) and post-stained with 2% uranyl acetate and 1% lead 
citrate, dried, and analyzed with a transmission electron 
microscope (JEOL).

His tag-based assays for protein-protein interactions

A Pierce His Protein Interaction Pull-Down Kit (Thermo 
Fisher Scientific, 21,277) was used to assay the interaction 
between SQSTM1 and AGER according to the manufacturer’s 
guidelines. Briefly, His-tag human SQSTM1 protein 
(OriGene, AR09432PU-L) was used as bait, while A549 
(ATCC, CCL-185) cell lysate was used as the source of prey 
protein. The prey protein was captured through the Pierce 
Spin Column containing the immobilized polyhistidine- 
tagged bait protein. The Pierce Spin Column was then rinsed 
with wash and binding buffer to reduce nonspecific interac
tions. The resulting complex could then be recovered and 
analyzed by western blotting.

Patient samples

Serum from patients with AP were collected from the 
University of Pittsburgh. The collection of samples was 
approved by the University of Pittsburgh institutional review 
board. The severity of AP was defined according to the 
revised Atlanta classification [63].

Statistical analysis

Data are presented as mean ± SD except where otherwise 
indicated. GraphPad Prism 8.4.3 was used to collect and 
analyze data. A one-way or two-way analysis of variance 
(ANOVA) with Tukey’s multiple comparisons test was used 
for comparison among the different groups. A p value of 
<0.05 was considered statistically significant. We did not 
exclude samples or animals.
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