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Abstract

Sacituzumab govitecan (SG) is an antibody-drug conjugate (ADC) targeting TROP2, which has 

recently been approved for treatment-refractory metastatic urothelial cancer (UC). However, the 

variability of TROP2 expression across different bladder cancer (BC) subtypes, as well as after 

enfortumab vedotin (EV) exposure, remains unknown. Using gene expression data from four 

clinical cohorts with >1400 patient samples of muscle-invasive BC and a BC tissue microarray, we 

found that TROP2 mRNA and protein are highly expressed across basal, luminal, and stroma-rich 

subtypes, but depleted in the neuroendocrine subtype. In addition, TROP2 mRNA levels are 

correlated with NECTIN4 mRNA but are more highly expressed than NECTIN4 mRNA in patient 

cohorts and BC cell lines. Moreover, CRISPR/Cas9-mediated knockdown of TROP2 demonstrates 

that its expression is one factor governing SG sensitivity. After prolonged EV exposure, cells 

can downregulate NECTIN4, leading to EV resistance, but retain TROP2 expression and remain 

sensitive to SG, suggesting nonoverlapping resistance mechanisms to these ADCs. While our 

findings warrant further validation, they have significant implications for biomarker development, 

patient selection, and treatment sequencing in the clinic as well as clinical trial design and 

stratification for metastatic BC patients.

Patient summary:

In this report, we investigated the expression levels of the drug target TROP2 across different 

molecular subtypes of bladder cancer in multiple patient cohorts and cell lines. We found high 

levels of TROP2 in most subtypes except in the neuroendocrine subtype. Overall, TROP2 gene 

expression is higher than NECTIN4 gene expression, and cells resistant to enfortumab vedotin 

(EV), a NECTIN4-targeting antibody-drug conjugate, remain sensitive to sacituzumab govitecan 

(SG). Our findings suggest that SG may be effective across most bladder cancer subtypes, 

including the bladder cancers previously treated with EV.

Keywords

Urothelial cancer; Bladder cancer; Sacituzumab govitecan; Enfortumab vedotin; Molecular 
subtypes; Antibody-drug conjugate

The surface protein TROP2, encoded by the gene TACSTD2/ TROP2, is a calcium signaling 

transmembrane protein that is highly expressed in multiple cancers including bladder 

urothelial carcinoma (UC; Supplementary Fig. 1) and is associated with poor survival [1]. 

Sacituzumab govitecan (SG; prior name IMMU-132) is an antibody-drug conjugate (ADC) 

that delivers SN-38, a topoisomerase inhibitor, to tumor cells expressing TROP2. A recent 

phase 2 trial of SG (TROPHY-U-01, NCT03547973) in patients with heavily pretreated, 

locally advanced, or metastatic UC demonstrated a 27% overall response rate, leading to 

expedited approval by the Food and Drug Administration [2]. Additional trials are underway 

to confirm SG efficacy (TROPiCS-04, NCT04527991) and to evaluate drug combinations, 

including with the NECTIN4-targeting ADC enfortumab vedotin (EV) (NCT04724018). As 

SG moves into earlier disease states and is incorporated into combinations with other ADCs, 
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understanding the mechanisms of sensitivity and resistance is critical to maximize clinical 

efficacy.

The effectiveness of an ADC is dependent on both high tumor expression of the target 

surface protein and tumor sensitivity to the toxic payload. Molecular subtyping of UC 

has highlighted differences in oncogenic mechanisms and clinicopathologic features [3]. 

Whether TROP2 mRNA is ubiquitously and uniformly expressed across the six consensus 

molecular subtypes of UC has not been reported. Further, whether exposure or resistance 

to one ADC (eg, EV) confers resistance to another ADC (eg, SG) remains unknown. Here, 

we interrogated TROP2 gene expression in multiple clinical datasets, evaluated cell line 

sensitivity to EV and SG, and assessed gene expression variability across bladder cancer 

(BC) subtypes to better understand the potential for combination therapy. Further methods 

are available in the Supplementary material.

To assess TROP2 mRNA expression across the six molecular subtypes of BC, we analyzed 

TROP2 mRNA expression in four patient cohorts (n = 1483 samples) with localized muscle-

invasive bladder tumors (in studies by Seiler et al [4], Sjödahl et al [5], Robertson et al 

[6], and NCT02609269). Clinical characteristics were described previously [7]. Using the 

consensus classifier subtypes [3], we found comparable median expression between luminal 

(luminal papillary, luminal nonspecified, and luminal unstable), basal, and stroma-rich 

subtypes, with greater variability in expression among basal and stroma-rich subtypes in 

all four cohorts (Fig. 1A–D and Supplementary Table 1). Expression variability within basal 

subtypes was mirrored in basal BC cell lines (Supplementary Fig. 2). Surprisingly, there 

was lower TROP2 expression in neuroendocrine (NE)-like subtypes, which we validated 

by immunohistochemistry using tissue microarrays and a collection of NE BC specimens 

(Fig. 1E, and Supplementary Fig. 3 and 4); TROP2 was previously shown to be enriched 

in and a driver of NE prostate cancer [8]. We also found that TROP2 mRNA levels were 

well correlated with TROP2 protein levels (Spearman’s rank correlation r = 0.62, p < 

0.0001; Fig. 1F and Supplementary Fig. 4), suggesting that gene expression may serve as 

a proxy for protein expression, in accordance with prior studies [9,10]. Finally, in patients 

with advanced disease treated on the IMvigor210 clinical trial [11], TROP2 expression was 

similar across different metastatic sites and was similar in patients with locally advanced and 

metastatic UC (Supplementary Fig. 5). Together, these results may predict comparable SG 

effectiveness across most non-NE BC subtypes.

To assess the potential effectiveness of TROP2- and NECTIN4-targeting ADCs, we 

compared TROP2 and NECTIN4 mRNA expression in the patient cohorts and 35 BC 

cell lines. We found that TROP2 and NECTIN4 mRNA expression is positively correlated 

(Spearman’s rank correlation r > 0.4, p < 0.0001; Supplementary Fig. 6), but that TROP2 
mRNA is overall more highly expressed than NECTIN4 mRNA in patient samples (p < 

1e-56; Fig. 2A and B) and cell lines (p < 0.0001; Fig. 2C). We also found either no 

correlation or a negative correlation between TROP2, PDCD1 (encoding PD1), and CD274 
(encoding PD-L1) in patient cohorts (Supplementary Fig. 7).

Next, we investigated TROP2 and NECTIN4 protein expression across multiple BC 

cell lines. We found that in NECTIN4-positive BC cells, NECTIN4 expression was 
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more variable (median fluorescence intensity [MFI] = 1131 ± 2086 a.u.; (Fig. 2D and 

Supplementary Table 2), while TROP2 expression was overall higher and more uniform 

(MFI = 2239 ± 1354 a.u.; Fig. 2E and Supplementary Table 2). Importantly, differences 

in NECTIN4 and TROP2 expression corresponded to differences in ADC sensitivity. For 

example, in UMUC1, a NECTIN4LOW/TROP2HI luminal BC line, cells were more sensitive 

to SG (half-maximal inhibitory concentration [IC50] = 0.050 ± 0.021 μg/ml) than EV 

(IC50 = 3.1 ± 0.3 μg/ml; Fig. 2F and Supplementary Table 3). Conversely, in HT-1197, a 

NECTIN4LOW/TROP2MED BC line, cells were only slightly more sensitive to SG (IC50 = 

1.2 ± 0.2 μg/ml) than EV (IC50 = 3.5 ± 0.4 μg/ml). Interestingly, in HT-1376, a NECTIN4HI/

TROP2HI BC line, cells were more sensitive to EV (IC50 = 0.31 ± 0.25 μg/ml) than SG 

(IC50 = 2.8 ± 0.4 μg/ml), suggesting resistance to SG despite high surface protein levels 

of TROP2, potentially due to altered intracellular protein trafficking or intrinsic payload 

(SN-38) resistance (Supplementary Fig. 8 and Supplementary Table 3). Nonetheless, TROP2 

expression is critical for SG sensitivity, as knockdown of TROP2 led to SG resistance 

(Supplementary Fig. 9).

Finally, to assess whether BC lines exposed to EV retain sensitivity to SG, we evolved EV 

resistance in vitro using a NECTIN4MED/TROP2MED BC cell line, 647V, by repeated EV 

exposure. The EV-resistant cell lines had decreased expression of NECTIN4 (Fig. 2G) but 

retained expression of TROP2 (Fig. 2H). Expression of NECTIN4 and TROP2 in additional 

HT-1376 and UMUC-1 EV-resistant cell lines showed similar results (Supplementary Fig. 

10). While the potency of EV decreased from IC50 = 2.3 ± 0.1 μg/ml in the control to IC50 = 

4.7 ± 0.7 and 5.8 ± 0.9 μg/ml in the EV-resistant cell lines (Fig. 2I and Supplementary Table 

3), the potency of SG was unchanged (control IC50 = 0.015 ± 0.002; EV-resistant lines, IC50 

= 0.018 ± 0.001 and 0.016 ± 0.002 μg/ml; Fig. 2J and Supplementary Table 3). Together, 

these data suggest that cells exposed to EV or that acquire EV resistance remain sensitive to 

SG, suggesting different mechanisms of resistance.

In conclusion, our study demonstrates that TROP2 mRNA and protein expression are 

comparably high across non-NE subtypes of BC. This contrasts with NECTIN4, which 

we previously showed to be enriched in luminal subtypes [7]. Interestingly, TROP2 mRNA 

expression exceeds NECTIN4 mRNA expression in patient cohorts and BC cell lines. 

Moreover, our data show that in NECTIN4LOW/TROP2HI BC cell line models, SG is more 

potent than EV, suggesting that TROP2 expression levels likely influence SG efficacy, in 

accordance with data in triple-negative breast cancer [12]. Indeed, we show that loss of 

TROP2 using CRISPR-mediated knockdown leads to SG resistance in BC cells. A recent 

study also identified a missense mutation in TROP2, which impairs TROP2 localization 

to the cell surface, in a breast cancer patient who developed SG resistance [13]. Whether 

similar mechanisms of resistance are found in BC patients awaits further study. In addition, 

our data in EV-resistant cell lines suggest that SG may be effective in patients previously 

treated with or resistant to EV, and warrant further validation in patient biopsies taken before 

and after ADC treatment.

Limitations of our study include extrapolating surface protein expression from 

transcriptomic data (although our data demonstrate a strong correlation between mRNA 

and protein levels, in accordance with prior studies [9,10]), utilizing primary tumor samples 
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for most of our analysis (due to the lack of metastatic biopsy cohorts), and the lack of pre/

post-ADC patient samples to confirm our findings. Although we found absent to low levels 

of TROP2 in NE tumors, the exact threshold of expression required to respond to SG is not 

known and warrants further study. Trials evaluating the efficacy of ADCs should consider 

tumor molecular subtyping and target protein staining to better identify patients, and our 

data support the use of SG in patients with non-NE BC subtypes and patients previously 

treated with EV.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
TROP2 mRNA and TROP2 protein expression across the molecular subtypes of muscle-

invasive bladder cancer (MIBC). Violin plots showing TROP2 mRNA expression levels by 

consensus molecular subtypes in the (A) Seiler, (B) TCGA, (C) Sjödahl, and (D) Decipher 

cohorts. (E) Immunohistochemistry for TROP2 was performed using a bladder cancer TMA 

(n = 80 samples, in duplicate). H scores for TROP2 were assigned in a blinded manner, 

and subtypes were determined previously. The average TROP2 H score ± SEM is shown for 

each subtype. The p value from Kruskal-Wallis testing is shown for each cohort in panels 

A–E. (F) Scatter plot showing the correlation between TROP2 protein (H score) and TROP2 

mRNA expression levels. The Spearman’s rho coefficient is shown (p < 0.0001). Ba/Sq 

= basal/Squamous; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = 

luminal unstable; NE = neuroendocrine; SEM = standard error of the mean; TCGA = The 

Cancer Genome Atlas; TMA = tissue microarray.

Chou et al. Page 7

Eur Urol Oncol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 –. 
TROP2 and NECTIN4 mRNA expression in MIBC and correlation to antibody-drug 

conjugate response. Violin plots of NECTIN4 and TROP2 mRNA levels in the (A) TCGA 

and (B) Sjödahlcohorts. The p value from Wilcoxon rank-sum testing is shown for each 

cohort. (C) Box and whisker plot of NECTIN4 and TROP2 mRNA expression in 35 

urothelial carcinoma cell lines. (D) NECTIN4 and (E) TROP2 surface protein expression 

in seven bladder cancer cell lines. (F) Dose-response curves to the antibody drug conjugates 

(ADCs) enfortumab vedotin (EV) and sacituzumab govitecan (SG) in the UMUC-1 cell line. 

(G) NECTIN4 and (H) TROP2 surface protein expression in 647V control (black) and two 

647V EV-resistant lines (purple and magenta) cell lines. Dose-response curves to (I) EV and 

(K) SG in 647V control (black) and two 647V EV-resistant lines (purple and magenta). BC 

= bladder cancer; MIBC = muscle-invasive bladder cancer; TCGA = The Cancer Genome 

Atlas. **** p < 0.0001 by Wilcoxon rank-sum test.
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