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Abstract
Xylose is the second most abundant monomeric sugar in plant biomass. Consequently, xylose catabolism is an eco
logically important trait for saprotrophic organisms, as well as a fundamentally important trait for industries that 
hope to convert plant mass to renewable fuels and other bioproducts using microbial metabolism. Although com
mon across fungi, xylose catabolism is rare within Saccharomycotina, the subphylum that contains most industrially 
relevant fermentative yeast species. The genomes of several yeasts unable to consume xylose have been previously 
reported to contain the full set of genes in the XYL pathway, suggesting the absence of a gene–trait correlation for 
xylose metabolism. Here, we measured growth on xylose and systematically identified XYL pathway orthologs across 
the genomes of 332 budding yeast species. Although the XYL pathway coevolved with xylose metabolism, we found 
that pathway presence only predicted xylose catabolism about half of the time, demonstrating that a complete XYL 
pathway is necessary, but not sufficient, for xylose catabolism. We also found that XYL1 copy number was positively 
correlated, after phylogenetic correction, with xylose utilization. We then quantified codon usage bias of XYL genes 
and found that XYL3 codon optimization was significantly higher, after phylogenetic correction, in species able to 
consume xylose. Finally, we showed that codon optimization of XYL2 was positively correlated, after phylogenetic 
correction, with growth rates in xylose medium. We conclude that gene content alone is a weak predictor of xylose 
metabolism and that using codon optimization enhances the prediction of xylose metabolism from yeast genome 
sequence data.
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Introduction
Xylose is the most abundant pentose sugar and the second 
most abundant monomeric sugar in plant biomass, second 
only to glucose. Xylose occurs in xylan polymers in hemi
cellulose; therefore, the ability to hydrolyze xylan and oxi
dize xylose for energy is a common trait in saprophytic 
fungi (Polizeli et al. 2005). Metabolic conversion of xylose 
is also a key process in the efficient conversion of lignocel
lulosic biomass into biofuels and other bioproducts via fer
mentation by industrially leveraged yeast species. Unlike 
filamentous fungi, native xylose assimilation appears 
to be a somewhat rare trait within budding yeasts. 
Saccharomyces cerevisiae is the choice microbe for the 

industrial production of the vast majority of biofuels due 
to its high ethanol tolerance, high glycolytic and fermenta
tive capacity, and amenability to genetic engineering 
(Hong and Nielsen 2012). However, S. cerevisiae requires 
genetic engineering to metabolize xylose, and even engi
neered strains are often inefficient in the fermentation of 
lignocellulosic xylose (Osiro et al. 2019; Lee, Tremaine 
et al. 2021; Lee, Yook et al. 2021; Sun and Jin 2021). This 
has led to the suggestion that cost-effective industrial con
version of xylose would be better achieved using native 
pentose-fermenting yeast species. One successful ap
proach to identifying xylolytic species is the isolation of 
yeasts from xylose-rich environments, such as rotting 
logs and the guts of wood-boring beetles (Nguyen et al. 

Mol. Biol. Evol. 40(6):msad111 https://doi.org/10.1093/molbev/msad111 Advance Access publication May 8, 2023 1

https://orcid.org/0000-0002-7248-6551
https://orcid.org/0000-0001-5088-7461
mailto:cthittinger@wisc.edu
mailto:kaitlin.fisher@oswego.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/molbev/msad111


Nalabothu et al. · https://doi.org/10.1093/molbev/msad111 MBE

2006; Cadete et al. 2012; Urbina et al. 2013). Given that 
budding yeast genomes are increasingly available (Riley 
et al. 2016; Shen et al. 2018), a simpler means of identifying 
xylolytic yeasts through genome sequence data would fa
cilitate the discovery of additional xylose-metabolizing 
yeasts.

The budding yeast xylose catabolism pathway was first de
scribed in Cyberlindnera jadinii and Candida albicans (Chiang 
and Knight 1960; Veiga et al. 1960; Chakravorty et al. 1962), 
but most subsequent characterization has focused on xylose- 
fermenting genera, including Scheffersomyces and, more re
cently, Spathaspora (Verduyn et al. 1985; Kötter et al. 1990; 
Cadete et al. 2016). The native enzymatic pathway consists 
of three genes: XYL1, XYL2, and XYL3. XYL1 and XYL2 en
code a xylose reductase (XR) and xylitol dehydrogenase 
(XDH), respectively, which function in the oxidoreduc
tive conversion of xylose to xylulose with xylitol as an 
intermediate. XYL3 encodes a xylulokinase, which phos
phorylates xylulose to xylulose-5-phosphate to be fed 
into the nonoxidative branch of the pentose phosphate 
pathway (PPP). The identification of yeasts with com
plete pathways that were nonetheless unable to grow 
on xylose in previous surveys suggests a weak or absent 
gene–trait association between complete XYL pathways 
and xylose assimilation traits (Wohlbach et al. 2011; Riley 
et al. 2016).

In addition to a complete XYL pathway, other genetic 
and regulatory features may be important in determining 
xylose metabolic traits. Most studies have focused on the 
role of redox imbalance, which is thought to be produced 
by the different cofactor preferences of XR and XDH due 
to their preferences for NADPH and NAD+, respectively 
(Bruinenberg et al. 1983). This hypothesis is supported 
by the observation that some well-studied yeasts that effi
ciently metabolize xylose have evolved XR enzymes able to 
use NADH in addition to or in lieu of NADPH (Bruinenberg 
et al. 1984; Schneider et al. 1989; Cadete et al. 2016). 
Recently, it has been suggested that changes to cofactor 
preference in methylglyoxal reductase (encoded by 
GRE2) may also alleviate redox imbalance in xylofermenta
tive yeasts (Borelli et al. 2019). Additional properties, such 
as transporter presence or copy number and the expres
sion of other metabolic genes, have also been implicated 
in xylose utilization (Wohlbach et al. 2011). It is difficult 
to say how broadly applicable any of these explanations 
may be because the presence of XYL genes in the absence 
of xylose catabolism has only been studied in a handful of 
related yeast species. Thus, we do not know the extent of 
this lack of association across budding yeasts and whether 
other genome characteristics would enhance predictions 
concerning xylose metabolism.

The identification of some yeasts with complete XYL 
pathways that lack xylose assimilation suggests that xylose 
utilization may be much more difficult to predict based on 
gene content than many other metabolic traits, such as 
galactose utilization (Riley et al. 2016; Shen et al. 2018). 
An alternative strategy to predicting metabolic traits 
from gene content is evaluating specific metabolic genes 

for evidence of selection. Measuring selection on codon 
usage is one such approach. Among metrics developed 
to measure codon usage bias (Bennetzen and Hall 1982; 
Sharp and Li 1987; Wright 1990), codon optimization cap
tures how well matched individual codons are to their re
spective tRNA copy numbers in a given genome (dos Reis 
et al. 2004). Accordingly, a codon with a low-copy corre
sponding tRNA is less optimized than a codon with a high- 
copy corresponding tRNA. The codon optimization index 
of a gene therefore measures the concordance between 
its transcript and the cellular tRNA pool and has repeat
edly been shown to correlate with gene expression levels 
(Gouy and Gautier 1982; Duret and Mouchiroud 1999; 
Zhou et al. 2016). Recent work has shown that codon 
usage is under translational selection in most fungal spe
cies (Wint et al. 2022), including within budding yeasts 
(Labella et al. 2019). Studies examining the relationship 
between codon usage and metabolism in fungi have 
found that codon bias is elevated in genes encoding im
portant metabolic pathways (Gonzalez et al. 2020), and, 
further, that codon optimization of metabolic genes is 
predictive of growth in corresponding conditions 
(LaBella et al. 2021). Codon optimization of xylolytic 
genes has not been studied, but we hypothesize that it 
may be more useful than gene content in predicting 
which budding yeast species are well adapted to xylose 
metabolism.

Here, we measure growth on xylose and systematically 
identify XYL pathway orthologs across 332 publicly avail
able budding yeast genomes (Shen et al. 2018). In agree
ment with previous work, we find that an intact XYL 
pathway often does not confer xylose assimilation. We 
find multicopy XYL1 and XYL2 lineages to be common, 
and we find support for the hypothesis that XYL gene 
copy number is important by showing that XYL1 copy 
number coevolves with the ability to consume xylose. 
We then generate codon optimization indices for all XYL 
homologs and show that XYL3 codon optimization is sig
nificantly correlated with the ability to consume xylose, 
whereas codon optimization of XYL2 is significantly posi
tively correlated with kinetic growth rates on xylose. 
Collectively, our analyses reveal two genomic properties, 
copy number of XYL1 and codon optimization of XYL2 
and XYL3, that correlate with xylose metabolism and can 
be used as novel means of predicting xylolytic traits 
from genome sequence alone.

Results
Identification of XYL Homologs Across 332 Budding 
Yeast Species
We detected at least one of the three XYL pathway genes 
in 325 of 332 species (fig. 1). Complete pathways were 
found in 270 species. We were unable to detect any XYL 
genes in seven species. Six of the seven species with no de
tected XYL homologs were the six representative species of 
the Wickerhamiella/Starmerella (W/S) clade, so it appears 
that the entire XYL pathway has been lost in this clade. 
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XYL1 and XYL2 have evidence of gene duplications, losses, 
horizontal transfers, and multiple origins prior to the origin 
of Saccharomycotina, as well as within the budding yeasts. 
However, due to the sheer breadth of evolutionary dis
tance in this group, confident elucidation of the complete 
gene history for these genes is intractable with current tax
on sampling.

The phylogenies of XYL1 and XYL2 homologs were able 
to resolve previously ambiguous S. cerevisiae orthology 
(supplementary figs. S1–S3, Supplementary Material on
line). GRE3 has known XR activity, but it has been anno
tated as a nonspecific aldo–keto reductase and believed 
to be distinct from the XR-encoding genes of xylose- 
fermenting yeasts (Kuhn et al. 1995; Träff et al. 2002; 
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Toivari et al. 2004). We found definitive phylogenetic 
evidence that GRE3 is a member of the XR-encoding 
gene family and is orthologous to the XYL1 genes of 
more distantly related yeasts (supplementary fig. S1, 
Supplementary Material online). In contrast, S. cerevisiae 
is known to contain a XYL2 homolog, but the function 
of XYL2 has remained unclear given the inability of most 
S. cerevisiae strains to metabolize xylose. The nearly identi
cal S. cerevisiae paralogs SOR1 and SOR2 also fell within 
the XYL2 clade of the family Saccharomycetaceae. SOR1 
and SOR2 are annotated as encoding sorbitol dehydro
genases and are upregulated in response to sorbose and 
xylose (Toivari et al. 2004) (supplementary fig. S2, 
Supplementary Material online).

The XYL2 gene phylogeny showed more evidence of 
gene diversification and retention than was expected, given 
that species of the family Saccharomycetaceae are generally 
not able to use xylose as a carbon source. To further clarify 
XYL2 evolution within the Saccharomycetaceae, we gener
ated a maximum likelihood tree of the XYL2 homologs 
within the Saccharomycetaceae and included S. cerevisiae 
XDH1, a gene encoding a XDH present in some wine strains 
(but not the S288C reference strain) that was previously 
identified as being sufficient for weak xylose utilization 
(Wenger et al. 2010). The resulting tree supports an ances
tral duplication of XYL2, which produced two distinct par
alogous lineages that we name the SOR lineage and the 
XYL2 lineage based on the S. cerevisiae paralogs contained 
therein (supplementary fig. S3, Supplementary Material on
line). The XYL2 lineage homolog was preferentially retained 
by most Saccharomycetaceae species, whereas a handful re
tained only the SOR paralog, and a few retained both. The 
tree also supported a few subsequent duplications, includ
ing the lineage-specific duplication of SOR1/SOR2 in S. cer
evisiae. The phylogeny also showed that the XDH1 gene 
identified in some wine strains of S. cerevisiae by Wenger 
et al. (2010) is orthologous to S. cerevisiae SOR1/SOR2, 
not to S. cerevisiae XYL2. The protein sequence is identical 
to the Torulaspora microellipsoides SOR homolog, further 
corroborating a known 65-kb transfer from T. microellip
soides to the S. cerevisiae EC1118 wine strain and its rela
tives (Marsit et al. 2015).

A Complete XYL Pathway Is Necessary, but Not 
Sufficient, for Xylose Catabolism
The XYL pathway has been repeatedly shown to underlie 
xylose catabolism in focal budding yeasts, and no alterna
tive pathways are known. Nonetheless, previous genomic 
surveys have turned up multiple taxa that possess com
plete pathways but are unable to catabolize xylose 
(Wohlbach et al. 2011; Riley et al. 2016). In agreement 
with these previous studies, we measured maximum 
growth rates in a minimal medium containing xylose as 
the sole carbon source for 282 of the 332 species examined 
and found that only 52% of species with complete path
ways were able to grow on xylose (123/236, fig. 1). To ex
plicitly test for an evolutionary relationship between XYL 

pathway presence and xylose utilization, we used Pagel’s 
(1994) method to test for a correlation between the 
two binary traits and found strong support for the co
evolution of complete XYL pathways and xylose metabol
ism (P = 1.1 × 10−5, supplementary table S1, Supplementary 
Material online). Indeed, 235 of 236 species that exhibited 
growth in xylose medium contained complete pathways. 
Only Candida sojae appeared able to catabolize xylose al
though lacking a complete pathway, but this is likely attrib
uted to an incomplete C. sojae genome, rather than true 
pathway absence (Shen et al. 2018). These data collectively 
demonstrate that a complete XYL pathway is necessary, 
but not sufficient, for xylose catabolism, which suggests 
that there may be other quantifiable genomic features that 
would enhance predictions of xylose catabolism.

XYL1 Copy Number Is Correlated with Xylose 
Metabolism
Duplications and losses of enzyme-encoding genes are 
well-documented evolutionary modulators of metabolic 
activities (Kliebenstein 2008; Wolfe et al. 2015). XYL1 and 
XYL2 were frequently found as multicopy in our data set, 
so we next tested for a relationship between increased 
copy number and xylose metabolism. We scored yeast 
taxa as either multicopy or single-copy and again used 
Pagel’s (1994) method to look for a correlation between 
xylose catabolism and copy number. Copy number of 
XYL1 was significantly correlated with the ability to grow 
on xylose (P = 1.5 × 10−4, supplementary fig. S4, 
Supplementary Material online). The coevolutionary mod
el with the most support assumed that the two traits were 
interdependent (weighted Akaike information criterion 
[AIC] = 0.51, supplementary table S2, Supplementary 
Material online), but a model in which growth depended 
on XYL1 copy number was almost as strongly supported 
(weighted AIC = 0.48). Contrary to XYL1, coevolution 
between XYL2 copy number and growth on xylose 
was not supported (P = 0.60, supplementary table S3, 
Supplementary Material online). We did not test for a cor
relation with XYL3 copy number because only four species 
had multiple copies of this gene. As with gene content, the 
correlation between XYL1 duplication and growth in xy
lose medium was not perfect; indeed, 43% (20/46) of mul
ticopy lineages were unable to metabolize xylose. Whereas 
these data point to a significant role of XYL1 duplication in 
some taxa, we conclude that XYL1 copy number alone is 
insufficient to explain yeast variation in xylose metabolic 
traits.

XYL1 and XYL2 Are Highly Codon Optimized
We next examined whether codon optimization of the 
XYL pathway genes would be useful in predicting metabol
ic capabilities. Codon optimization indices (estAI values) of 
XYL pathway homologs were calculated for 320 of the 325 
species in which a XYL1, XYL2, or XYL3 gene was detected. 
XYL1 and XYL2 estAI distributions were both heavily 
skewed with median estAI values of 0.94 and 0.83, which 
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means these genes have a higher optimization than 94% 
and 83% of the coding genome of an individual species, re
spectively. XYL3 estAI values were more variable with a 
lower median optimization index of 0.55 (fig. 2A).

To provide context to codon optimization index distri
butions for XYL genes, we compared them to the optimiza
tion indices of genes that function in glycolysis and the PPP 
(fig. 2B). The XYL1 distribution was lower than the estAI 
distributions of highly expressed glycolytic genes (FBA1, 
TPI1, TDH1, PGK1, GPM1, and ENO1/ENO2), but it was simi
lar to PGI1, which encodes the glycolysis-initiating enzyme 
phosphoglucose isomerase. XYL2 genes were less codon 
optimized than most glycolytic genes, but interestingly, 
the XYL2 estAI distribution was similar to the rate-limiting 
steps in glycolysis (PFK1) and the oxidative PPP (ZWF1). 
XYL3 was clearly less codon optimized on average than 
genes involved in glycolysis or the PPP.

Codon Optimization of XYL3 Predicts Xylose Growth 
Abilities
The distributions of codon optimization indices for the three 
XYL genes in species able to grow in xylose medium were 
higher than the distributions of species showing no growth 
(fig. 3A). Because this difference could also be due to shared 
ancestry, we tested whether codon optimization of XYL 
genes was correlated with xylose utilization by using a 
Bayesian phylogenetic linear mixed model (GLMM) to con
trol for shared evolutionary history. Using this model, only 
codon optimization of XYL3 was significantly correlated 
with the ability to metabolize xylose (pMCMC = 0.039), 
whereas codon optimizations of XYL1 and XYL2 were not 
(supplementary table S4, Supplementary Material online).

Codon Optimization of XYL2 Correlates with Xylose 
Growth Rates
We have shown previously that codon optimization indices 
of specific genes involved in galactose metabolism not only 
predict whether a budding yeast species can utilize galact
ose, but can also be used to predict the rates of growth on 
galactose (LaBella et al. 2021). We similarly compared XYL 
gene codon optimization to growth rates measured in me
dium containing xylose as the sole carbon source to deter
mine whether this trait would be useful in predicting yeast 
growth rates when consuming xylose. Phylogenetically in
dependent contrasts (PICs) were used to compare estAI va
lues and growth rates for the 93 species with complete 
pathways and for which there was previously published evi
dence of selection on codon usage (Labella et al. 2019). 
Of the three genes examined, only XYL2 had a significant 
correlation between codon optimization and growth rate 
(P = 9 × 10−4, r = 0.34; fig. 3B and C).

Discussion
Xylose fermentation is an ecologically important trait of 
immense biotechnological value for the conversion of sus
tainable plant feedstocks into biofuels. This study identifies 

systematically XYL pathway homologs across a wide 
breadth of Saccharomycotina that includes representative 
species from all 12 major clades. Whereas most genomes 
examined contain complete pathways, less than half of 
those species were able to assimilate xylose under labora
tory conditions. This stands in contrast to other metabolic 
traits that have been investigated in yeasts that exhibit 
strong gene–trait associations (Riley et al. 2016; Shen 
et al. 2018). For example, a survey of galactose metabolism 
across the same extensive collection of budding yeast spe
cies found that 89% of species with complete GAL path
ways were able to use galactose as a carbon source in 
the laboratory (LaBella et al. 2021). The poor ability of 
gene content to predict xylose–metabolism traits has 
been noted before in surveys of a small number of biotech
nologically important yeasts (Wohlbach et al. 2011; Riley 
et al. 2016), but it was unclear whether this limited 
gene–trait association would apply broadly across budding 
yeasts. Whereas complete pathways are found in all major 
yeast clades, xylose metabolism is variable; most CUG-Ser1 
species are able to utilize xylose, assimilation shows 
up sporadically in most other clades, and it is completely 
absent in the Saccharomycetaceae. These patterns are con
sistent with previous observations (reviewed in Ruchala and 
Sibirny (2021)).

One limitation of this study and a possible explanation 
for the poor correlation between genotype and phenotype 
is that xylose catabolism requires specific conditions. We 
analyzed only growth data generated in our assay under 
a single laboratory condition. For some species, our data 
conflict with data aggregated from species descriptions 
(Opulente et al. 2018). For other species, conflicting data 
also exist elsewhere in the literature. For example, 
Kluyveromyces marxianus did not grow in our 96-well plate 
assay but has been found to consume xylose in shake flasks 
(Margaritis and Bajpai 1982). Oxygenation, base media, 
and temperature have all been documented as affecting 
xylose metabolism in different yeast species (Signori 
et al. 2014; Osiro et al. 2019). Beyond condition depend
ence, intraspecific metabolic heterogeneity, such as is 
known to occur in Kluyveromyces lactis and Torulaspora 
delbrueckii, could also produce inconsistencies (Lyutova 
et al. 2021; Silva et al. 2023). A final reason why our data 
may conflict with preexisting descriptions is historical hu
man errors in species typing and identification (Haase et al. 
2017). Our choice to confine our analysis to the data we 
directly collected from taxonomic type strains may have 
obscured growth in a few species, but in general, it elimi
nated the effects of inconsistent conditions and taxonom
ical error.

Whereas it remains unclear why XYL pathway presence 
is not sufficient to confer xylose catabolism, the finding 
that most yeast species do, in fact, have intact XYL path
ways has implications for industrial strain development 
at a time when researchers are actively searching for new 
candidate species. The first of these is that engineering xy
lose consumption in nonutilizing species will likely be 
more difficult than the simple heterologous expression 
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of XYL gene cassettes. A second, more promising, implica
tion is that most yeast species already have the genetic po
tential for xylose metabolism and could perhaps be coaxed 
into xylose utilization with adaptive laboratory evolution, 
mutagenesis, or a combination thereof.

Although we find pathway completeness alone to be in
sufficient for xylose assimilation, each of the three genes 
was found to have a property correlated with xylose metab
olism. Increased copy number of XYL1 and increased codon 
optimization of XYL3 are important for determining 
whether a species will consume xylose, whereas codon op
timization of XYL2 determines how efficiently xylose is con
verted to biomass. Of these, copy number has known 
relevance based on the observations that duplications 
and functional divergences of XYL1 are consequential in 
xylose-fermenting yeasts (Bruinenberg et al. 1984; Mayr 
et al. 2000; Cadete et al. 2016), and that amplification of 
heterologous XYL1 is a frequent mode of adaptation in en
gineered yeast populations evolved for xylose consumption 
in the lab (Li and Alper 2016; Peris et al. 2017). The present 

study confirms a statistically significant phylogenetic co
evolutionary relationship between XYL1 copy number 
and xylose metabolism. The relationship between XYL1 
amplification and xylose metabolism is unlikely to be a 
matter of simple flux; XYL2, not XYL1, is thought to be 
the rate-limiting step in xylose catabolism (Kim et al. 
2012; Zha et al. 2012; Ryu et al. 2016). Instead, detailed stud
ies of XYL1 paralog pairs within the CUG-Ser1 clade show 
divergence in cofactor preferences between paralogs 
(Bruinenberg et al. 1984; Cadete et al. 2016), which provides 
an attractive hypothesis in which duplicate XYL1 genes re
solve redox imbalance.

Both the XYL1 and XYL2 phylogenies generated show 
evidence of widespread duplication and loss. Despite evi
dence of xylitol oxidation to xylulose being the rate- 
limiting step in xylose degradation, XYL2 copy number 
was not associated with xylose catabolism. The phylogen
etic distribution of retained XYL2 paralogs is curious. Given 
the seeming ecological irrelevance of xylose utilization in 
the Saccharomycetaceae, the diversification and retention 
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of XYL2 genes in this group lack a clear explanation unless 
the primary function of XYL2 homologs in this family is not 
in xylose catabolism. Several lines of evidence in the litera
ture support this notion: 1) there is ample evidence that 
budding yeast XDH enzymes are promiscuous across poly
ols (Ko et al. 2006; Biswas et al. 2010, 2013; Sukpipat et al. 
2017); 2) the Xyl2 reverse reaction (reduction of xylulose to 
xylitol) is more energetically favorable by an order of mag
nitude (Rizzi et al. 1989); and 3) the strongest phylogenetic 
signal of XYL gene loss we observed was in the W/S clade of 
yeasts, which is a group of fructose-specializing yeasts that 
have evolved a novel means of reducing fructose to main
tain redox balance (Gonçalves et al. 2019). Taken together, 
these data are suggestive of an alternative role of the XYL 
pathway and XYL2 in particular. Instead of supporting xy
lose utilization, XDH activity in these yeasts may be im
portant for regenerating oxidized NAD+ in certain 

growth conditions through the reduction of sugars, includ
ing xylulose, fructose, and mannose, to the polyols xylitol, 
sorbitol, and mannitol, respectively. Additional experimen
tal work in the family Saccharomycetaceae is needed to de
termine if XDH activity plays a role in redox balance as 
hypothesized above, or perhaps functions in a yet-to-be- 
discovered process.

It was initially surprising to find that XYL2 copy number 
does not covary with qualitative xylose consumption be
cause XDH is considered a rate-limiting step, and overex
pression often increases xylose fermentation rates in 
engineered strains (Jeppsson et al. 2003; Karhumaa et al. 
2007). Instead, we found that XYL2 codon optimization 
positively correlates with growth rates on xylose. The cor
relation between codon optimization and growth that we 
report supports the hypothesis that endogenous XYL2 ex
pression levels affect rates of xylose consumption in 
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natively xylose-consuming yeasts. This optimization could 
be partly to overcome the unfavorable reaction kinetics 
and subpar substrate specificity mentioned above. 
Interestingly, the XYL2 estAI distribution we observed was 
highly similar to that of rate-limiting steps of glycolysis 
(PFK1) and the oxidative PPP (ZWF1), perhaps pointing to 
a general trend in genes encoding enzymes with rate-limiting 
or regulatory roles.

The codon optimization distribution of XYL3 was 
much broader than the other two genes in the XYL path
way. There is little evidence that increasing xylulose ki
nase activity alone increases xylose pathway flux, and so 
the broad distribution we observe may simply reflect a 
lack of selection on XYL3 gene expression. Nonetheless, 
only XYL3 codon optimization was correlated with the 
actual ability to consume xylose. The finding that XYL3 
codon optimization is correlated with qualitative growth, 
but not quantitative growth rate, coupled with the broad 
distribution of codon optimization across species, sug
gests that there may be an important threshold of XYL3 
expression or that the phylogenetically corrected signal 
was simply not as strong as for XYL2 in this data set. 
The different distributions observed between the XYL 
genes could also be related to other correlates of codon 
usage selection, such as the evolutionary ages of the genes 
(Prat et al. 2009). Indeed, XYL1 and XYL2 are members of 
large and ancient gene families of aldo–keto reductases 
and medium-chain dehydrogenases, respectively, where
as XYL3 does not appear to belong to a large fungal 
gene family.

Xylose metabolism cannot be predicted by gene con
tent alone in budding yeasts. Here, we show that there is 
a significant predictive value of codon optimization in 
the detection of native xylose-metabolizing yeasts for 
two of the three genes required for xylose degradation. 
Xylose fermentation is a trait of great ecological and bio
technological interest, whereas being exceedingly rare. 
Instead of expending resources testing large sets of yeasts 
or their synthesized genes, copy number and codon opti
mization could be used to filter for candidate yeasts with a 
higher probability of containing highly xylolytic pathways. 
We also show that XYL2 optimization has a linear relation
ship with growth rates on xylose. In the absence of growth 
or metabolic data, XYL2 sequences can be used to predict 
which species are likely to catabolize xylose especially well. 
This work presents a novel framework of leveraging signa
tures of selection, specifically codon optimization, for un
derstanding weak and variable gene–trait associations and 
could be a valuable tool for understanding trait variation 
in other systems.

Materials and Methods
Identification of XYL1, XYL2, and XYL3 Homologs
We identified homologs of XYL1, XYL2, and XYL3 across 
332 published budding yeast genome assemblies (Shen 
et al. 2018) using hidden Markov model (HMMER) se
quence similarity searches (v3.3, http://hmmer.org). 

HMM profiles were built using sequences retrieved from 
a BLASTp search using Spathaspora passalidarum XYL1.1, 
XYL2.1, and XYL3. Hits were manually curated to retain 
an alignment of 14 sequences representing a phylogenetic
ally diverse taxon set. HMMER searches were performed 
on protein annotations generated with ORFfinder (NCBI 
RRID:SCR_016643) using default settings, which include 
nonconventional start codons. Sequences were later 
manually curated to confirm probable start sites (see be
low). We did not account for modified translation tables 
found in some yeast clades (CUG-Ser1, CUG-Ser2, and 
CUG-Ala clades; Shen et al. 2018) because this codon is 
known to be rare (Labella et al. 2019).

HMMER searches for XYL1 and XYL2 both identified 
large gene families of aldose reductases and medium- 
chain dehydrogenases, respectively. To identify the XYL 
orthologous sequences, HMMER hits were assigned 
KEGG orthology with BLASTKoala (Kanehisa et al. 
2016), and approximate maximum likelihood trees of 
KEGG-annotated hits were built with FastTree v2.1.10 
(Price et al. 2009) (supplementary figs. S5 and S6, 
Supplementary Material online). Subclades containing 
XYL gene homologs based on KEGG orthology (XYL1 - 
K17743 and XYL2 - K05351) were identified for XYL1 and 
XYL2.

Coding sequences of homologs for all three genes were 
then manually curated. Probable start sites were identified 
using TranslatorX (Abascal et al. 2010), and sequences 
were trimmed or expanded accordingly. A combination 
of alignment visualization and collapsed tree inspection 
was used to identify highly divergent sequences that 
were then examined via BLAST; likely bacterial contami
nants were removed. Maximum likelihood phylogenies of 
protein sequences for each of the three genes were built 
with IQTree (Trifinopoulos et al. 2016) using 
ModelFinder (Kalyaanamoorthy et al. 2017) automated 
model selection (Xyl1- LG+F+I+G4, Xyl2- LG+I+G4, and 
Xyl3- LG+F+I+G4, supplementary figs. S1, S2, and S7, 
Supplementary Material online) based on 1,000 bootstrap 
replications. An independent maximum likelihood tree of 
Xyl2 protein sequences in the family Saccharomycetaceae 
with the addition of S. cerevisiae Xdh1 originating from a 
wine strain (Wenger et al. 2010) was generated using IQ 
tree with an LG+I+G4 substitution model and node sup
port based on 1,000 bootstrap replications. Trees were vi
sualized and annotated in iTOL (Letunic and Bork 2021).

Growth Assays
All yeast strains used in growth experiments were first 
plated on yeast extract peptone dextrose (YPD) agar plates 
and grown until single colonies were visible. The 
plates were then stored at 4 °C for up to a month. Single 
colonies were then cultured in liquid YPD for a week at 
room temperature on a culture wheel. After a week of 
growth, yeast strains were subcultured in 96-well plates 
containing minimal medium with 1% glucose or 1% xylose 
and allowed to grow for a week at room temperature. The 
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96-well plates contained a four-quadrant moat around the 
edge of the plate where 2 mL of water was added to each 
quadrant. The addition of water to the plate prevents 
evaporation in the edge and corner wells, allowing for 
the whole plate to be utilized. After the initial week of 
growth on the treatments, all yeasts were transferred 
into fresh 1% glucose or 1% xylose minimal medium and 
placed on a plate reader and stacker (BMG FLUOstar 
Omega). Plates were read every 2 h for a week at OD600. 
All growth experiments were replicated three times. In 
each replicate, both the order of yeasts on the plate and 
order of sugars on the plate were randomized to alleviate 
plate effects. Growth rates were quantified in R using the 
package grofit (Kahm et al. 2010). Average growth rates 
were calculated across replicates for each species.

Codon Optimization
Codon optimization indices of XYL1, XYL2, and XYL3 
homologs were determined as in LaBella et al. (2021). 
Species-specific codon optimization values (wi values) for 
all codons were retrieved from Labella et al. (2019). For 
each ortholog analyzed, each codon was identified and as
signed its species-specific wi value. The codon optimization 
index (stAI) for each ortholog was then calculated as the 
geometric mean of wi values for each gene. Five species 
in our data set do not have corresponding wi values due 
to software issues (LaBella et al. 2019) and were dropped 
from codon optimization analyses (Middelhovenomyces te
pae, Nadsonia fulvescens var. fulvescens, Spencermartinsiella 
europaea, Botryozyma nematodophila, and Martiniozyma 
abiesophila). To compare codon optimization values be
tween species, the gene-specific stAI value of each gene 
was normalized to the genome-wide distribution of stAI va
lues for the respective species using the empirical cumula
tive distribution function. The resulting normalized codon 
optimization index (estAI value) is an estimate of the 
genome-wide percentile of codon optimization for each 
gene (e.g., an estAI value of 0.95 indicates a gene that is 
more optimized than 95% of genes in the genome). For spe
cies with multiple paralogs, including those derived from 
the whole genome duplication, only the gene with the 
highest estAI value was considered in further analysis.

Orthologs of glycolysis pathway genes (CDC19, ENO1/ 
ENO2, FBA1, GPM1, PFK1, PGI1, PGK1, TDH1, TDH2/ 
TDH3, and TPI1) and PPP genes (GND1/GND2, RKI1, 
SOL3/SOL4, TAL1, TKL1/TKL2, and ZWF1) were identified 
using HMMER searches as described above with the excep
tion of manual curation. Codon optimization for each 
gene was measured as described above. For species with 
multiple paralogs, only the maximum estAI value per 
gene per species was retained for analysis.

Statistical Analyses of Growth Data and Codon 
Optimization
Pagel’s (1994) tests were used to test for correlated evolu
tion between binary growth traits and the binary traits of 
pathway completeness or multicopy genes. Growth was 

scored as present in all species exhibiting nonzero growth 
in xylose media and absent in species without detectable 
growth. XYL pathways were scored as complete in all 
taxa possessing at least one copy of XYL1, XYL2, and 
XYL3 and incomplete when any of the three genes was ab
sent. Taxa with two or more copies of XYL1 or XYL2 were 
scored as multicopy, whereas taxa with only one copy were 
scored as single copy. Tests were performed using the R 
package phytools (Revell 2012).

A Bayesian phylogenetic linear mixed model was used 
to test the effect of codon optimization and binary growth 
traits using MCMCglmm with family set to “categorical” 
(Hadfield 2010). Quantitative codon optimization indices 
were scaled to have a mean of 0 and standard deviation 
of 1. All three genes were combined in a single model 
with phylogeny as a random effect. Priors were set with 
an inverse-gamma prior with shape and scale equal to 
0.001. The model was run with 4 × 107 iterations, a burn-in 
of 105 iterations, and a thinning interval of 104. Chains 
were visually inspected and model convergence was as
sessed using Heidelberger and Welch’s convergence 
diagnostic.

The effect of codon optimization on quantitative 
growth rates was tested separately for each gene using 
PICs. To compare xylose growth rates to estAI values, we 
first retained data for only those species previously found 
to have evidence of genome-wide selection on codon 
usage (Labella et al. 2019). Two species had extremely 
high growth rates that did not appear to be artifactual 
(supplementary fig. S8, Supplementary Material online). 
Since phylogenetic independent contrasts are highly sensi
tive to outlier data, we removed these two species. For the 
remaining 93 species, growth rate was compared with co
don optimization by fitting a linear model to PIC values to 
account for phylogenetic relatedness. PIC values were gen
erated using the ape package in R (Paradis and Schliep 
2019). All other statistical analyses were performed using 
R stats v3.6.2.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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