Skip to main content
. 2023 Jun 9;31(spe2):e263313. doi: 10.1590/1413-785220233102e263313

Table 2. Univariate and multiple logistic regression analysis for the study of factors associated with wound condition at 7 days.

Variables Category p-value OR 95% CI
Univariate analysis 1        
Age   0.1478 1.011 0.996;1.025
BMI adequate vs overweight 0.3978 1.441 0.618;3.357
  underweight vs overweight 0.8244 0.847 0.196;3.659
Albumin   0.1271 0.539 0.243;1.192
Transferrin   0.0306 0.989 (1.011) 0.978;0.999 (1.001;1.023)
Diabetes no vs yes 0.3371 0.528 0.143;1.945
Smoking no vs yes 0.1613 0.226 0.028;1.813
Alcoholism no vs yes 0.7860 0.797 0.155;4.096
Arterial hypertension yes x no 0.0424 2.667 1.034;6.877
Number of comorbidities 0 vs 2-4 0.0971 0.338 0.094;1.218
  1 vs 2-4 0.3625 0.500 0.112;2.223
Limb LL vs UL 0.3215 1.433 0.704;2.917
Hip yes vs no 0.0272 2.593 1.113;6.039
Compound fracture no vs yes 0.0004 5.493 2.132;14.149
Osteosynthesis yes vs no 0.6276 1.181 0.604;2.309
Blood glucose normal vs above 0.1375 2.507 0.745;8.432
Albumin below vs normal 0.0566 3.632 0.964;13.680
Transferrin below vs normal 0.1226 2.597 0.773;8.722
Multiple analysis 2        
Compound fracture no vs yes 0.0014 9.687 2.399; 39.125

BMI: body mass index. LL: lower limb. UL:-upper limb. 1 Univariate analysis: modeling the probability of satisfactory condition. Univariate logistic regression; OR=odds ratio, 95% CI (95% confidence interval for OR). 2 Multiple Analysis:- stepwise variable selection process.