Table 8.
TP | TN | FP | FN | Precision | Sensitivity or Recall (%) |
F1-Score (%) |
Specificity (%) |
Accuracy (%) |
AUC (%) |
|
---|---|---|---|---|---|---|---|---|---|---|
SA + ResNet50 | 127 | 392 | 4 | 5 | 0.9695 | 96.21 | 96.6 | 99 | 96.2 | 98.83 |
ResNet50 | 118 | 386 | 10 | 14 | 0.92 | 89.4 | 90.8 | 96.6 | 91.7 | 98.3 |
SA +VGG16 | 124 | 388 | 8 | 8 | 0.939 | 93.9 | 93.9 | 98 | 93.9 | 98.87 |
VGG16 | 118 | 385 | 11 | 14 | 0.9147 | 89.4 | 90.4 | 97.2 | 90.9 | 98.8 |
SA + InceptionV3 | 123 | 388 | 8 | 9 | 0.93 | 93.2 | 93.5 | 98 | 93.9 | 98 |
InceptionV3 | 120 | 384 | 12 | 12 | 0.909 | 90.9 | 90.9 | 97 | 90.9 | 97 |
SA + ResNet101 | 114 | 385 | 11 | 18 | 0.912 | 86.36 | 97.2 | 88.7 | 89.4 | 97.86 |
ResNet101 | 115 | 384 | 12 | 17 | 0.9055 | 87.12 | 97 | 88 | 87.9 | 98.09 |
SA +VGG19 | 112 | 380 | 16 | 20 | 0.875 | 84.85 | 96 | 86.2 | 85.6 | 97.6 |
VGG19 | 125 | 391 | 5 | 7 | 0.9615 | 94.7 | 98.7 | 95.4 | 95.5 | 99.22 |
SA + ResNet18 | 100 | 378 | 18 | 32 | 0.8475 | 75.76 | 80 | 95.5 | 80.3 | 95.32 |
ResNet18 | 89 | 370 | 26 | 43 | 0.7739 | 67.42 | 72.1 | 93.4 | 72.7 | 91.41 |