Skip to main content
. 2023 Jun 13;13:9590. doi: 10.1038/s41598-023-35197-2

Table 8.

Quantitative comparison between the proposed model (SA + ResNet50) and other classification networks (InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 each with or without SA, and also ResNet50 without SA). For all of them we use SGD Optimizer during the training phase.

TP TN FP FN Precision Sensitivity
or
Recall (%)
F1-Score
(%)
Specificity
(%)
Accuracy
(%)
AUC
(%)
SA + ResNet50 127 392 4 5 0.9695 96.21 96.6 99 96.2 98.83
ResNet50 118 386 10 14 0.92 89.4 90.8 96.6 91.7 98.3
SA +VGG16 124 388 8 8 0.939 93.9 93.9 98 93.9 98.87
VGG16 118 385 11 14 0.9147 89.4 90.4 97.2 90.9 98.8
SA + InceptionV3 123 388 8 9 0.93 93.2 93.5 98 93.9 98
InceptionV3 120 384 12 12 0.909 90.9 90.9 97 90.9 97
SA + ResNet101 114 385 11 18 0.912 86.36 97.2 88.7 89.4 97.86
ResNet101 115 384 12 17 0.9055 87.12 97 88 87.9 98.09
SA +VGG19 112 380 16 20 0.875 84.85 96 86.2 85.6 97.6
VGG19 125 391 5 7 0.9615 94.7 98.7 95.4 95.5 99.22
SA + ResNet18 100 378 18 32 0.8475 75.76 80 95.5 80.3 95.32
ResNet18 89 370 26 43 0.7739 67.42 72.1 93.4 72.7 91.41