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Abstract
Objectives This study aimed to assess levels of biomarkers associated with inflammation and tissue destruction in peri-
implant crevicular fluid (PICF) of implants provided with customized or standard healing abutments during early implant 
healing.
Materials and methods Thirty implants were placed in 22 patients with partial posterior edentulism. Subsequently, test group 
implants (n=15) received one-piece titanium abutments that were fabricated using computer-aided design/computer-aided 
manufacturing (CAD/CAM). Control group implants (n=15) were provided with standard abutments. PICF collection and 
standardized periapical radiographs were carried out at suture removal one week later, following crown delivery after 3 
months and at 6 months. Expression of C-reactive protein (CRP), interferon-γ, tumor necrosis factor (TNF)-α, interleukin 
(IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12A, IL-17A, macrophage inflammatory protein (MIP)-1α, matrix metal-
loproteinase (MMP)-13, osteopontin, osteoactivin, Receptor Activator of NF-κB (RANK), and TGF-β were analyzed using 
a multiplex ELISA kit.
Results Both groups showed a significant decrease in protein expression of CRP, IL-1β, IL-6, IL-8, MIP-1α, osteopontin, 
osteoactivin, and TGF-β, while MMP-13 levels increased during the observation period. A rise in OPG and RANK levels was 
detected among customized abutments. Expression of CRP was higher, whereas IL-1β, IL-1α, and MIP-1α were decreased 
in control compared to test group implants after 6 months. Marginal bone loss did not depend on abutment modality.
Conclusions Both abutment types showed distinctive temporal expression of inflammatory biomarkers during 6 months 
following implant placement.
Trial registration ISRCTN98477184, registration date 18/05/2022
Clinical relevance Customized healing abutments exert similar effects on inflammation during early implant healing com-
pared to standard healing abutments.

Keywords Dental implant-abutment design · Cytokines · Bone implant interface · Osseointegration

Introduction

The function and integrity of the peri-implant soft tissue 
seal play a key role in implant healing by ensuring healthy 
conditions of the transmucosal area, thereby paving the way 
for stable osseointegration [1]. The soft tissue seal serves as  
a protective barrier separating the oral environment from 
the underlying peri-implant bone and consists of an epithe-
lial and a connective tissue zone [2, 3]. Depending on the 
prosthetic protocol for non-submerged dental implants, the 
healing abutment has to be removed and reconnected several 
times between implant placement and the delivery of the 
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final restoration. As each disconnection of restorative com-
ponents involves a disruption of the soft tissue adhesion, it 
has been suggested that repeated manipulations might nega-
tively impact peri-implant soft- and hard-tissue conditions 
[4–6]. In this context, some studies showed adverse effects 
of the disconnections on marginal bone levels surrounding 
the implant.

Early investigations by Abrahamsson et al. demonstrated 
in a pre-clinical study that increasing the number of abut-
ment removals and reconnections up to five times compro-
mised the mucosal barrier, leading to the epithelium’s api-
cal migration and increasing marginal bone resorption [7]. 
These findings were later confirmed by studies demonstrat-
ing that standard prosthetic protocols for implant treatment 
requiring frequent abutment changes were associated with 
a decreased subepithelial connective tissue attachment in 
dogs [5] and with an increased marginal bone loss during the 
implant healing period in a clinical trial [8]. More specifi-
cally, a meta-analysis reported a weighted mean difference 
in crestal bone loss of 0.19 mm (95% confidence interval, 
0.06–0.32 mm) in favor of final abutment placement after 
implant insertion compared to multiple abutment manipula-
tions [4]. Consequently, it has been suggested that minimiz-
ing the number of abutment dis- and reconnections could 
have beneficial effects on marginal bone levels [9].

Another approach reflecting the tissue conditions sur-
rounding an implant is to analyze the peri-implant crevicular 
fluid (PICF) [10]. In line with the abovementioned findings 
on interproximal bone level, repeated abutment removal 
and reconnection of more than three times were associated 
with higher IL-1β levels in PICF compared to implants that 
received final abutments at implant uncovery, suggesting 
promotion of inflammation [11].

As a result of these studies, prosthetic protocols that aim 
to reduce tissue trauma following implant insertion have 
been developed. According to the “one abutment at one 
time” protocol, the definitive restorative abutment is placed 
at the time of implant insertion to prevent removal during 
the healing phase [12]. Moreover, in addition to reducing 
the number of abutment manipulations, customized abut-
ments can be provided through a virtual design based on 
computer-guided planning in order to simulate the natural 
anatomy of the prosthetic crown [13]. To manufacture a 
customized healing abutment after implant insertion, one 
digital impression is required which can also be used for the 
definitive crown design. After the healing period, the abut-
ment is removed in order to attach the crown based on the 
emergence profile of the abutment. In contrast, conventional 
impression taking takes at least two abutment manipulations 
prior to definitive restoration.

However, the influence of minimizing the number of 
dis- and reconnections of the healing abutment combined 
with abutment customization on the underlying processes of 

early implant healing is poorly understood. This pilot study 
aimed to assess the effects of one-piece customized titanium 
abutments on a broad range of biomarkers associated with 
inflammation and tissue degradation in the peri-implant 
crevicular fluid (PICF) as well as the marginal bone loss 
observed during the early healing phase. We hypothesized 
that the use of customized healing abutments induces a 
reduced inflammatory response compared to standard heal-
ing abutments.

Materials and methods

Study population and design

In this prospective study, participants were recruited at the 
University Clinic of Dentistry, Vienna, between January 
2019 and July 2021. Patients were included after obtaining 
their written consent and if the following inclusion criteria 
were met: (1) >18 years old, (2) one or more missing tooth/
teeth in the molar region of the upper and/or lower jaw, (3) 
adequate bone quality and availability for implant place-
ment, (4) no signs of inflammation in the region where 
implant placement is planned, (5) good systemic health 
conditions, (6) stable occlusion, and (7) willing to par-
ticipate and attend follow-up appointments. Patients were 
excluded in case of the following criteria: the presence 
of untreated periodontitis, smokers (> 10 cigarettes per 
day), alcoholism or drug abuse, history of chemotherapy 
or radiation, and diabetes with > 7.5 HbA1c. A total of 30 
titanium implants (C1, MIS Implants Technologies, Bar 
Lev Industrial Park, Israel) were allocated to two groups 
using online available randomization tools (https:// www. 
rando mizer. org/). The general study design is summarized 
in Fig. 1. The study protocol was approved by the Ethics 
Committee of the Medical University of Vienna (EK-Nr. 
1807/2017) and performed in accordance with the Helsinki 
Declaration of 1975, as revised in 2013, and the “Good 
Scientific Practice” guidelines of the Medical University 
of Vienna. The trial was registered at ISRCTN registry 
(https:// doi. org/ 10. 1186/ ISRCT N9847 7184).

Surgical and prosthetic protocol

Prior to surgery, randomization was performed at each 
implant site to determine if the implant will be provided 
with a customized or a standard healing abutment. All 
patients received 2 g amoxicillin one hour before surgery 
as a standard clinical protocol [14]. Surgery was performed 
under local anesthesia using 1–2 cartridges of articaine with 
1:100000 epinephrine (Ultracain D-S forte, Sanofi, France) 
for each implant site. Following a crestal incision and exten-
sion to the buccal and lingual aspects of adjacent teeth, a 

https://www.randomizer.org/
https://www.randomizer.org/
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full-thickness flap was elevated, and site preparation was 
performed according to the manufacturer’s instruction.

After implant insertion in the test group participants, digital 
impressions (TRIOS 3, 3shape, Denmark) were taken to man-
ufacture a customized healing abutment from titanium blanks 
(Ti-blank, MIS Implants Technologies, Bar Lev Industrial 
Park, Israel) using dental modeling software (Ceramill Mind 
3.0, Amann Girrbach, Germany) and a 5-axis milling unit 
(Ceramill Motion 2, Amann Girrbach, Germany). Custom-
ized abutments were subsequently delivered to the patient and 
installed. In the control group, concave titanium standard heal-
ing abutments were installed after surgery. Mucoperiosteal 
flaps were adapted to the healing abutments and sutured (5-0 

coated vicryl, Ethicon, US). Suture removal was performed 
in all patients one week after implant placement (T1). Three 
months following surgery, the study participants received a 
screw-retained crown made out of zirconia (T2). In the control 
group, conventional impression taking (Impregum Penta Soft 
Polyether, 3M, US) was performed, and patients received the 
definitive crown 7 days later. Test group participants were 
provided with a crown bonded to a titanium base harboring 
the matching shape of the previous customized healing abut-
ment; the aim was to minimize tissue trauma. Six months after 
surgery, patients were scheduled for a follow-up visit (T3). 
Figure 2 shows the installation of a customized abutment fol-
lowed by crown delivery after 3 months.

Fig. 1  Flow chart of the study 
design and clinical procedures. 
PICF, peri-implant crevicular 
fluid; RA, radiographic assess-
ment

30 implants

Test group (n=15) Control group (n=15)

Pa�ent screening (n=26)

Randomiza�on (n=22)

Exclusion (n=4)
Not mee�ng 
inclusion criteria

Standard healing abutmentIndividual healing abutment

• PICF collec�on
• RA

Enrollment

Alloca�on

Implant placement 

T1 (Suture removal,                    
1 week)

T2 (Crown delivery,                        
3 months)

T3 (6 months follow-up)

• PICF collec�on
• RA

• PICF collec�on
• RA

Fig. 2  Case report for the test 
and control group. Manufac-
turing of a CAD/CAM-based 
customized one-piece titanium 
abutment (A) and fixation fol-
lowing implant placement (B). 
Delivery of definitive crown 
(C) after 3 months (D). Control 
group implants were provided 
with standard healing abutments 
(E) and definitive crown (F)
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PICF collection

PICF sample collection was performed on each visit at 4 
sites (mesio-buccal, disto-buccal, mesio-lingual, disto-lin-
gual) of each implant. After gentle air drying and isolation 
of the gingiva with sterile gauze to prevent saliva contami-
nation, a sterilized paper collection strip (PerioPaper strips, 
Oraflow Inc., Plainview, NY, USA) was inserted into the 
peri-implant sulcus until slight resistance was reached for 
30 s. If contamination with blood was observed, the samples 
were discarded. The adsorbed volume was determined using 
a calibrated electronic volume quantification unit (Periotron 
8000, Oralflow Inc., Plainview, NY, USA). The four strips 
of each implant were pooled together in Eppendorf tubes 
and subsequently stored at −80°C until further processing. 
Before analysis, the samples were unfrozen, and protein 
extraction following an elution method was performed as 
described previously [15]. Twenty microliters of extraction 
buffer (24.5mL phosphate-buffered saline (pH 7.4), 125ml 
phenylmethylsulfonylfluoride (PMSF; Sigma Chemical, St. 
Louis, MO), 200mM in methanol, 1 mg/ml in water, and 
83.5 ml of 30% human serum albumin (Sigma Chemical, 
St. Louis, MO)) were pipetted onto the cellulose part paper 
collection strip. The strips were put inside Eppendorf tubes 
and centrifuged at 2000 rpm at 4° C for 5 min. To gain a 
total volume of 100 μl for each tube, this step was replicated 
four additional times. The entire product was then stored on 
dry ice for subsequent analysis of biomarker concentration.

Cytokine analysis

A commercial human multiplex ELISA kit (Quantibody 
Human Periodontal Disease Array 1 Kit, RayBiotech, Nor-
cross, Georgia, USA) was used to assess the expression of 
C-reactive protein (CRP), interferon (IFN)-γ, tumor necrosis 
factor (TNF)-α, transforming growth factor (TGF)-β, inter-
leukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12A, 
IL-17A, macrophage inflammatory protein (MIP)-1α, matrix 
metalloproteinase (MMP)-9, MMP-13, osteopontin, osteo-
activin, osteoprotegerin, and Receptor Activator of NF-κB 
(RANK). Concentrations were determined by generating a 
standard curve for comparison.

Radiographic assessments

Radiographic examinations using standard parallel tech-
nique, perpendicular to the long axis of the implants, were 
conducted after implant placement (T1) as well as at the 
3- and 6-month follow-up visit (T2 and T3, respectively). 
The distances on the radiograph were calibrated using the 
known implant diameters. All radiographs were assessed 
by a blinded independent examiner who was not involved 

into implant placement or the follow-up appointments (XR). 
Marginal bone loss (MBL) was determined as the distance 
from the implant shoulder and the interproximal bone level 
as described previously [16]. Assessments were performed 
on the mesial and distal aspect of the implant; they were 
presented as the mean of the two values for each respective 
time point.

Statistical analysis

The statistical analysis for all quantitative variables was 
conducted using SPSS Statistics (IBM, Armonk, NY). The 
Wilcoxon Signed Rank test was performed to compare the 
levels of single parameter in PICF samples between different 
time points. The Mann-Whitney U-test was used to compare 
the test and control group regarding the levels of cytokine 
concentration. Quantitative data are expressed and displayed 
as mean ± SD. P values <0.05 were considered to be statisti-
cally significant.

Results

Table 1 shows the demographic and clinical characteris-
tics of the study participants. A total of 30 implants were 
placed in 22 patients (15 females). Two patients received 
both test and control group implants. One of these patients 
was provided with two test and two control group implants. 
Another patient received two test group implants and one 
participant was provided with three control group implants. 
The mean age at the time of implant placement was 47.7 
vs. 48.1 years (range 27.1–58.5 vs. 28.9–66.7 years) for the 
test and control groups, respectively. Five study partici-
pants of the test group were smokers (≤10 cigarettes/day), 
compared to eight in the control group. Implants were most 
often placed in location 46 (n=6, 40%) in the test group, 
while location 36 (n=4, 26.7%) was most common in the 
control group.

Bone level alterations

The results for the marginal bone level (MBL) alterations are 
presented in Table 2. MBL values significantly decreased 
in both test and control group at 3-month follow-up (0.24 ± 
0.09 mm and 0.23 ± 0.14 mm, respectively, P < 0.01) and 
at the 6-month follow-up (mean 0.38 ± 0.1mm and 0.33mm 
± 0.14 mm, respectively, P<0.01) compared to T1. No sig-
nificant difference was found between the test and control 
groups at any milestone.
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PICF biomarker changes

The levels in the course of the study of both the test and con-
trol groups are presented in Fig. 3. IL-17, IL-12, IL-10, IL-2, 

IFN-γ, TGF-β, and TNF-α were below the detection limit 
in the majority of samples, and therefore, these parameters 
were not included in the analysis. In all samples, MMP-9 
was measured above the maximum detection limit; therefore, 
data were not presented.

The levels of CRP, IL-6, MIP-1α, osteopontin, and osteoac-
tivin gradually decreased at T3 compared to the assessment at 
suture removal (T1) for the test and control groups. CRP levels 
of the test group were also lower at T3 than at T2 and decreased 
in the control group from T1 to T2. IL-6 showed a reduction 
in the test group from T1 to T2 and from T2 to T3. Also, in 
the control group, IL-6 levels decreased from T1 to T2. MIP-
1α exhibited lower levels at T3 compared to T2 in the test and 

Table 1  Demographic and 
clinical characteristics for the 
test and control groups

Test group (n=15) Control group (n=15)

Age (mean ± SD [min; max]) 47.7 ± 9.1 
[27.1-
58.5]

Age (mean ± SD [min; max]) 48.1 ± 11.5 
[28.9-
66.7]

Gender (female; n [%]) 7 [46.7] Gender (female; n [%]) 8 [53.3]
Smoking status (smoker; n [%]) 5 [33.3] Smoking status (smoker; n [%]) 3 [20]
Implant location N % Implant location N %
16 0 0 16 3 20
17 0 0 17 0 0
26 2 13.3 26 2 13.3
27 1 6.7 27 2 13.3
36 4 26.7 36 1 6.7
37 1 6.7 37 1 6.7
46 6 40 46 4 26.7
47 1 6.7 47 2 13.3

Table 2  Marginal bone level (MBL) alterations at 3 and 6 months 
(T2 and T3)

Loading (3 months) 6 months

Mean ± SD Test group 0,24 ± 0,09 0,39 ± 0,1
Control group 0,23 ± 0,14 0,33 ± 0,14

p-value Test group < 0.01 < 0.01
Control group < 0.01 < 0.01

Fig. 3  Changes of PICF biomarker levels in the course of the study at T1, T2, and T3
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control groups. IL-8 expression was decreased in the test group 
at T3 compared to T1. In the control group, IL-1β and TGF-β 
showed a significantly lower detection level at T3 compared to 
T1. Osteopontin also decreased in the test group from T1 to T2 
and from T2 to T3. Osteoactivin levels diminished in the test and 
control groups from T1 to T2.

An increase in concentration was observed for IL-1α levels 
from T2 to T3 in the control group. Also, OPG and RANK lev-
els in the test group were higher at T3 compared to T1. MMP-13 
levels increased in the test and control groups from T2 to T3 and 
in the control group as well from T1 to T3.

No changes in the levels of IFN-γ, IL-2, IL-4, IL-10, IL-12, 
IL-17, and TNF-α in both groups were observed during the 
study.

Some differences in the investigated parameters were 
observed between the test and control groups. At T3, the 
PICF levels of CRP were superior in the control group 
than in the test one. Also, IL-1α, IL-1β, and MIP-1α were 
increased in the test group compared to the control at T3.

Discussion

The results of the present pilot study revealed fading soft tis-
sue inflammation in both treatment groups as well as similar 
bone remodeling during early implant healing. Some sig-
nificant intergroup differences in PICF were detected. At 6 
months, CRP was less expressed in PICF of the test group 
than of the control group. CRP is produced in the liver and 
delivered to the sulcus through saliva and or blood vessels. 
As blood levels of CRP were not measured in the present 
study participants, it cannot be ruled out that increased CRP 
levels could also be due to increased systemic levels in the 
control group. Furthermore, IL-1β, IL-1α, and MIP-1α were 
detected at higher levels in the test group compared to the 
control. IL-1β and IL-1α are pro-inflammatory proteins that 
are increased in response to growth factors and pro-inflam-
matory or stress-associated stimuli [17]. In contrast to CRP, 
production of IL-1β, IL-1α, and MIP-1α takes place locally 
in the sulcus fluid by macrophages or epithelial cells; this 
indicates a local enhancement of the inflammation process 
in PICF of implants provided with customized abutments.

In both abutment groups, a significant decrease in the 
expression of CRP, IL-6, MIP-1α, osteopontin, and osteo-
activin in PICF during the 6-month observation period was 
measured; this suggests a reduction of the inflammation pro-
cess. While CRP is known as a marker for systemic inflam-
mation, it has also been detected in PICF at peri-implan-
titis sites [18]. As a classical pro-inflammatory cytokine, 
IL-6 has been used to assess peri-implant inflammation in 
PICF [19]. MIP-1α/CCL3 is secreted by macrophages and 
plays a role in chemotaxis and stimulation of cell migra-
tion during inflammation and bone resorption. It has also 

been hypothesized to have a potential as a diagnostic tool for 
peri-implant tissue conditions, although scientific evidence 
is inconsistent [20, 21]. As a glycosylated phosphoprotein, 
osteopontin is expressed by both osteoblasts and osteoclasts 
and is involved in bone resorption and remodeling as well as 
inflammatory processes [22]. Osteoactivin enhances osteo-
blast differentiation during matrix maturation and miner-
alization in osteoblast progenitor cells [23]; however, it has 
also been associated with inflammation [24].

In contrast to the abovementioned cytokines, both groups 
showed an increase in the MMP-13 levels in PICF at 6 
months compared to suture removal. MMP-13 plays a key 
role in regulating wound granulation tissue growth and is 
involved in the expression of genes associated with inflam-
mation, proteolysis, and cell viability [25]. A promotion of 
MMP-13, therefore, might correlate with wound healing 
progression during the observation time.

In the test group, an increase in OPG and RANK has 
been observed after 6 months compared to suture removal 
following implant placement. OPG and RANK are part of 
the RANK/RANKL/OPG system, thereby triggering bone 
metabolism. RANK is an osteoclast-bound receptor, which 
is activated by its ligand RANKL, resulting in osteoclast dif-
ferentiation [26]. The present findings suggest an increase in 
bone turnover in the test group; however, it has to be consid-
ered that RANKL was not assessed in the array setting used.

Limited marginal bone loss within the first years following 
implant placement has been considered an adaptation to surgi-
cal trauma and implant loading [27]. No significant differences 
in the marginal bone levels between the two abutment groups 
could be identified during the observation period of the present 
study. Our findings are in line with a study by Moreira et al., who 
compared the placement of a definitive abutment after implant 
placement to three times disconnection and reconnection of the 
healing abutment; they reported a slightly inferior bone loss at 
6 months of 0.14 ± 0.18 mm and 0.23 ± 0.29, respectively [28]. 
However, the present study focused on early implant healing, 
and possible differences in peri-implant bone level might be 
detected at a later follow-up visit.

When discussing the present results, it has to be taken 
into account that other factors in addition to abutment 
design might also contribute to the difference in cytokine 
expression between the two abutment groups. In vitro stud-
ies have shown that surface material also determines the 
susceptibility of gingival fibroblasts toward inflammatory 
stimuli [29]. In line with these findings, the expression of 
inflammatory cytokines in PICF in clinical settings has 
been influenced by abutment material [30]. Moreover, also 
the release of titanium particles during tribocorrosion as 
a result of material degradation might enhance inflamma-
tion. Thus, assessing the specific effects of each abutment 
modality on the inflammatory process would need further 
investigation.
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This pilot study displays a certain number of limitations. 
The focus of the present investigation was limited to early 
implant healing and long-term effects were not assessed. 
Thus, there is a need for future studies to evaluate the impact 
of customized one-piece abutments on the healing process 
over the long-term. Although a broad cytokine profile was 
assessed in this study, complexity of the inflammation pro-
cess could only partly be displayed. Also, other aspects 
essential to the healing process such as angiogenesis, prolif-
eration, or host response could be subject of further studies.

Taken together, customized abutments represent an 
alternative to standard healing abutments; however, higher 
production costs and treatment time have to be considered.

Conclusion

Within the limits of this study, we did not observe substan-
tial differences between customized and standard healing 
abutments with regard to inflammatory markers and mar-
ginal bone levels. Subsequently, both treatment protocols 
can be equally recommended.
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