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Abstract

Total intracranial volume (TICV) and posterior fossa volume (PFV) are essential covariates for 

brain volumetric analyses with structural magnetic resonance imaging (MRI). Detailed whole 

brain segmentation provides a noninvasive way to measure brain regions. Furthermore, increasing 

neuroimaging data are distributed in a skull-stripped manner for privacy protection. Therefore, 

generalizing deep learning brain segmentation for skull removal and intracranial measurements 

is an appealing task. However, data availability is challenging due to a limited set of manually 

traced atlases with whole brain and TICV/PFV labels. In this paper, we employ U-Net tiles 

to achieve automatic TICV estimation and whole brain segmentation simultaneously on brains 

w/and w/o the skull. To overcome the scarcity of manually traced whole brain volumes, a 

transfer learning method is introduced to estimate additional TICV and PFV labels during whole 

brain segmentation in T1-weighted MRI. Specifically, U-Net tiles are first pre-trained using 

large-scale BrainCOLOR atlases without TICV and PFV labels, which are created by multi-atlas 

segmentation. Then the pre-trained models are refined by training the additional TICV and PFV 

labels using limited BrainCOLOR atlases. We also extend our method to handle skull-stripped 

brain MR images. From the results, our method provides promising whole brain segmentation 

and volume estimation results for both brains w/and w/o skull in terms of mean Dice similarity 

coefficients and mean surface distance and absolute volume similarity. This method has been made 

available in open source (https://github.com/MASILab/SLANTbrainSeg_skullstripped).
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1. Introduction

Whole brain segmentation from structural magnetic resonance imaging (MRI) is essential 

in understanding the human brain with quantitative volumetry. TICV is the total volume 

of gray matter, white matter and cerebrospinal fluid (CSF) and meninges [1], which has 

been widely used as a covariate in regional and whole brain volumetric analyses [2–8]. 

The PFV is essential in investigating the clinical conditions of the cerebellum [9–11]. 

Therefore, achieving TICV and PFV estimation and whole brain segmentation in a single 

pipeline would be an interesting topic. Furthermore, for privacy protection, the skull is 

increasingly removed in neuroimaging data. Hence, it is also appealing to design a pipeline 

for skull-stripped brains.

The manual delineation of the cranial vault and brain sub-regions is the gold standard for 

measuring volume. However, manual delineation of large-scale cohorts is computationally 

demanding. Atlas-based segmentation is one of the most popular segmentation approaches 

due to high accuracy [12–14]. This technique propagates labels from atlases to a previously 

unseen image using deformation field. However, atlas-based segmentation is a highly 

time-consuming task that limits its application to large-scale cohorts [12,15]. To achieve 

more efficient segmentation and to utilize the large-scale cohorts, deep learning-based brain 

segmentation methods have been widely developed [16–26]. One common way to address 

whole brain segmentation is to label all brain structures with a 3D segmentation network, for 

example, 3D U-Net [16] or V-Net [17]. However, a full-resolution whole brain segmentation 

with over 100 labels is still challenging due to hardware constraints and limited availability 

in training data. Huo et al., overcame this limitation by proposing a tile-based method 

called 3D spatially localized atlas network tiles (SLANT), which segmented T1-weighted 

brain MRIs into 132 sub-regions [27]. To avoid GPU memory restriction, SLANT used 

3D subspaces with separate U-Nets to predict individual tiles. Huo et al. also used 5111 

multi-site scans as auxiliary data to pre-train each U-Net [27]. Although many previous 

works could handle whole brain segmentation task [19,21,22,25], they mainly focus on brain 

segmentation without estimating TICV and PFV.

In terms of TICV estimation, one type of approaches directly uses skull-stripping techniques 

for TICV estimation, by taking the total volume of the CSF and brain tissues as TICV. For 

example, the brain extraction tool (BET) and the brain surface extractor (BSE) achieved 

accurate TICV estimation using proton density (PD) images [28]. However, in some 

modalities, the low contrast between CSF and skull (such as in T1-weighted images) might 

result in less accurate TICV estimation. Some previous efforts have been made to address 

this problem [29–38]. Among them, three popular methods are integrated in FreeSurfer 

[39], FSL [38] and Statistical Parametric Mapping (SPM12) [40], which are well validated 

and widely accepted TICV estimation software packages. However, they do not estimate 

TICV by directly segmenting the intracranial cavity and counting the voxels inside skull, 

which is a natural way of calculating TICV. Therefore, they might not be applied to skull-

stripped brains and estimate PFV. Recently, Huo et al. proposed a non-local spatial STAPLE 

label fusion (NLSS)-based simultaneous TICV and PFV estimation method from a single 

MR T1w image [41]. In their work, TICV and PFV labels are added to the widely used 
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BrainCOLOR atlases [42,43]. However, their methods mainly focus on volume estimation 

without whole brain segmentation.

In this work, we generalize deep learning brain segmentation for skull removal and 

intracranial volume measurements. The proposed method uses the modified BrainCOLOR 

atlases with manually traced whole brain as well as TICV and PFV labels from [41] as the 

training data. However, the number of modified BrainCOLOR atlases is limited for deep 

learning. With the limited data, directly training a 3D deep learning network for whole 

brain segmentation with TICV and PFV labels is difficult. To overcome this problem, a 

transfer learning-based method is introduced to estimate TICV and PFV during whole brain 

segmentation in this work. Specifically, we use 5111 auxiliary scans with only whole brain 

labels to pre-train the U-Net tiles. After pre-training, we get reasonable model parameters 

for whole brain segmentation. Then we add two additional output channels for TICV and 

PFV labels to the pre-trained tiles and use the modified BrainCOLOR atlases to fine-tune the 

pre-trained networks. The main contributions of this work are: (1) To our knowledge, this is 

a relatively new work to achieve TICV and PFV estimation during whole brain segmentation 

with over 100 labels in a single pipeline. (2) We generalize the whole brain segmentation as 

well as TICV and PFV estimation on both skull-stripped and non-skull-stripped brains.

2. Methods

In this section, we present a new pipeline that generalizes SLANT [27] for intracranial 

volume measurements. Here, we combined whole brain segmentation and TICV estimation 

together in a single pipeline for both skull-stripped and non-skull-stripped brains. We 

proposed two versions of SLANT in this section, which are non-skull-stripped SLANT 

(nssSLANT) and skull-stripped SLANT (ssSLANT). The detailed procedures of ssSLANT 

and nssSLANT are introduced in this section. In Section 2.1, we introduce the preprocessing 

including registration to MNI305 space, N4 bias field correction, intensity normalization and 

skull-stripping method. In Section 2.2, we introduce the details of U-Net tiles and transfer 

learning procedure proposed in this work. Section 2.3 gives the description of majority 

voting and inverse registration of segmentation from MNI305 space to target space.

2.1. Preprocessing and Skull-stripping

The input of our pipeline is a single 3D T1w MRI whose dimensions might be variable. 

Therefore, the first step in our method is an affine registration from the target image to 

the MNI305 template [44] using NiftyReg [45]. Then, an N4 bias field correction [46] 

is performed to alleviate the bias from the imaging procedure. Since the intensities of 

acquired scans varies across different scanners, intensity normalization is introduced to 

reduce the effect caused by various intensities across different scans as in [27]. Moreover, 

we generalize the original SLANT to skull removal brains by including skull-stripping 

procedure. To remove skull, we first inflated the whole brain label as a brain mask and then 

multiplied the raw T1 image with its corresponding mask. After multiplication, the skull 

is filtered out. The whole skull-stripping procedure is shown in Fig. 1. In nssSLANT and 

ssSLANT, the preprocessing procedure is the same, except for the skull removal step. In 

nssSLANT, skull-stripping step is not required.
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2.2. U-Net-based segmentation with transfer learning

After the preprocessing step, both skull-stripped and non-skull-stripped brain volumes are 

mapped to MNI305 space, which has 172 × 220 × 156 voxels with 1 mm isotropic 

resolution. We then trained UNet with the preprocessed brain volumes. Due to limited 

memory capacity of GPU, U-Net tiles were trained similarly as SLANT. In [27], the authors 

show that 27 tiles lead to better results compared with 8 overlapped tiles. Hence, in our 

pipeline, the entire images are divided into 27 overlapped subspaces. Let j, (j = 1,…,27) 

denotes the indices of subspaces and Pj denotes the jth subspace with the size of (dx,dy,dz). 

The corner coordinate of each tile is denoted as (xj,yj,zj). Therefore, the jth tile is denoted as 

Pj = [xj : (xj+dx),yj : (yj+dy),zj : (zj+dz)]. In this paper, each subspace covered 96 × 128 × 88 

voxels and we trained 27 U-Net tiles for 27 subspaces respectively.

Our goal is to estimate TICV and PFV during whole brain segmentation. However, forty-five 

modified BrainCOLOR atlases with TICV and PFV labels are available, which is limited. 

In order to enhance the segmentation capability with limited data, we introduce transfer 

learning into our pipeline. The whole procedure of transfer learning is shown in Fig. 2. 

We have pre-training and fine-tuning stage for segmentation. Note that, Fig. 2 only shows 

the procedure of ssSLANT. In terms of nssSLANT, the skull-stripping step is excluded. 

Meanwhile, the remainder procedure is the same.

In the pre-training stage, we pre-trained each tile with 5111 auxiliary scans with 132 brain 

structure labels (no TICV and PFV labels). As in the original SLANT, the pre-training 

dataset with 5111 auxiliary scans is obtained using NLSS-based multi-atlas segmentation 

pipeline [47] on initially unlabeled MRIs. After pre-training, each network tile could 

segment the whole brain into 132 structures except for TICV and PFV. The original SLANT 

has 133 output channels which predict 132 brain structures and background individually. 

However, the 132 brain structures segmentation is not precise enough by using NLSS 

segmentation results as ground truth. In order to obtain more precise segmentation results 

of 132 structures as well as estimate TICV and PFV jointly, we transferred parameters in 

pre-trained U-Net tiles to new U-Net tiles with two additional output channels. Specifically, 

in addition to the original 132 output channels, we added two more output channels in the 

last layer for TICV and PFV prediction in our pipeline. The weights for these two channels 

were randomly initialized. The new SLANT in this paper could predict 132 brain structures 

as well as TICV and PFV.

In the fine-tuning stage, we refined parameters of each tile with modified BrainCOLOR 

atlases (132 brain structures with TICV and PFV labels). The fine-tuning dataset which 

consists of 45 modified BrainCOLOR atlases with TICV and PFV labels is obtained from 

[41]. In [41], TICV and PFV labels are added to the widely used BrainCOLOR atlases 

which consists of 45 T1-weighted (T1w) MRI scans from Open Access Series on Imaging 

Studies (OASIS) dataset [48] with BrainCOLOR labeling protocol [43]. The fine-tuning 

with modified BrainCOLOR atlases not only improved segmentation accuracy but also 

estimated TICV and PFV simultaneously. As shown in Fig. 2, during the fine-tuning stage, 

we added two additional output layers to U-Net and kept other parameters fixed. Network 

tiles were trained without freezing any layers. The parameters of new added layers were 

randomly initialized.
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2.3. Majority voting

As mentioned above, segmentation was performed on 27 overlapped image subspaces using 

27 U-Net tiles. In the overlapped region, each voxel has more than one label. In order to fuse 

h labels for a single voxel, majority voting was employed after U-Net-based segmentation in 

our pipeline. After majority vote, the final segmentation result of voxel i is given by

SMNI(i) = argmax
l ∈ 0, 1, …, L − 1

1
ℎ ∑

n = 1

ℎ
p l ∣ Sn, i (1)

where L is the total number of labels, and h denotes the total number of overlapped 

subspaces at voxel i. p(l|Sn, i) = 1 if Sn(i) = l, and 0, otherwise. In the majority voting, 

outliers in each subspace are reduced by label fusion. The final segmentation SMNI is in the 

MNI space. An inverse transformation was employed to register segmentation result SMNI in 

MNI305 space back to the original space.

3. Results

In this work, we extended the original SLANT to total intracranial and posterior fossa 

volume estimation. In this section, we show that the proposed ssSLANT and nssSLANT 

methods can estimate TICV and PFV promisingly in both skull-stripped and non-skull-

stripped brains. Simultaneously, our methods can also achieve whole brain segmentation.

3.1. Data

The large-scale pre-training dataset contains 5111 MRI T1w 3D volumes, which is obtained 

from multiple sites. The 5111 MRIs are segmented into 132 ROIs by NLSS [47].

The fine-tuning dataset consists of 45 T1w MRIs from Open Access Series on Imaging 

Studies (OASIS) dataset [48]. Each T1w MRI in the fine-tuning dataset has 134 ROIs 

including 132 brain structures as well as TICV and PFV labels. The 132 brain structures are 

manually traced by the BrainCOLOR labeling protocol [43]. The TICV and PFV labels are 

added to BrainCOLOR protocol by Huo et al. [41].

3.2. Evaluation metrics

We mainly employed Dice similarity coefficients (DSC) (a ratio from 0 to 1, higher is better) 

to evaluate the performance of our methods in this work. DSC is calculated as the ratio 

between the intersection and union of the segmented volume H and ground truth volume G:

DSC = 2 H ∩ G
H + G . (2)

Distance measurements are complimentary metrics to evaluate the performance of our 

method. Specifically, we use M and A to denote the vertices on the manual segmentation and 

automatic segmentation. The mean surface distance (MSD) (a ratio larger than 0, lower is 

better) between M and A is:
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MSD(M, A) = avginf
m ∈ Ma ∈ A

d(M, A) (3)

where avg presents the average and inf presents the infimum. The above DSC and MSD are 

used to evaluate the segmentation accuracy. Besides the segmentation accuracy, in this work, 

we also aim at conducting volumetric analyses. In particular, we employed the absolute 

volume similarity (ASIM) (a ratio from −1 to 1, higher is better) to evaluate the volumetric 

similarity between the proposed method and the ground truth. ASIM is given by:

ASIM = 1 − V 1 − V 2

0.5 V 1 + V 2
(4)

where V1 and V2 are the volume of manual segmentation and automatic segmentation, 

respectively. The differences between methods were evaluated by t-test using false discovery 

rate (FDR) [49] at q = 0.05 and the difference was significant means p < 0.05 in this paper.

3.3. Experimental settings

The performance and effectiveness of the original SLANT compared with several baselines 

are shown in [27]. In order to evaluate the performance of SLANT for skull-stripped 

brains and volume estimation, in this work, we compared the qualitative and quantitative 

performance of ssSLANT and nssSLANT on segmentation accuracy and volume estimation. 

After preprocessing for both pre-training and fine-tuning datasets, all brain volumes were 

mapped to the MNI 305 standard space. For each U-Net tile, the input resolution was 96 × 

128 × 88 and the input channel was 1. The output channel was 133 in the pre-training stage 

and 135 in the fine-tuning stage. The optimizer was Adam and the learning rate was set to 

0.0001. The experiments were performed on an NVIDIA Titan GPU with 12 GB memory. 

For pre-training using 5111 scans, the number of epochs was set to six and each epoch 

took four hours. As mentioned in [27], the best pre-training performance is from epoch 5. 

Therefore, we used the same initial parameters for fine-tuning. The fine-tuning epoch was 

set to 35 in this work. We reported the mean DSC, MSD and ASIM taken over five-fold 

cross-validation. The cross validation was performed on 45 modified BrainCOLOR atlases 

with TICV and PFV during the fine-tuning stage.

3.4. Whole brain segmentation

In this section, we evaluate the whole brain segmentation results of ssSLANT and 

nssSLANT. Qualitative results of whole brain segmentation with the sagittal, coronal 

and axial views are shown in Fig. 3. The proposed method achieves simultaneous brain 

structures, TICV and PFV labeling. Hence, in Fig. 3, we show both 132 brain structures, 

TICV and PFV labels simultaneously. Most details in the manual tracing are well preserved 

by ssSLANT and nssSLANT. The boundaries of the automatic segmentations are smooth. 

In order to inspect the segmentation for each ROI. Fig. 4 shows the comparison of the 

mean DSC across all folds for each ROI. The name of each ROI in BrainCOLOR protocol 

is listed in the table in the supplementary material. From Fig. 3 and Fig. 4, nssSLANT 

and ssSLANT show comparable performance on whole brain segmentation. After removing 

the skull, SLANT could still achieve promising whole brain segmentations. Table 1 shows 
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the detailed median, mean and standard deviation of DSC and MSD. The mean values are 

computed across all folds and all ROIs. From Table 1 we can see that the ssSLANT and 

nssSLANT show comparable whole brain segmentation performance in terms of mean and 

median DSC and MSD. We conducted t-test using false discovery rate (FDR) [49] over all 

132 ROIs at q = 0.05. No significant difference (p > 0.05) is observed between the two 

methods, which suggests that removing skull has no significant influence on segmentation 

results.

3.5. TICV and PFV estimation

In this section, we investigate the volume estimation performance of ssSLANT and 

nssSLANT. In order to evaluate the labeling results of total intracranial cavity and posterior 

fossa, we combined all white matter, gray matter structures, cerebrospinal fluid, and 

meninges as total intracranial cavity and combined brainstem and cerebellum as posterior 

fossa. The combined labeling results are shown in Fig. 5. From Fig. 5, ssSLANT and 

nssSLANT show promising labeling results compared with the manual labeling. The 

proposed methods can delineate the TICV and PFV preciously. We compared the TICV and 

PFV labeling performance of our method with the existing methods including FreeSurfer 

(FS), SPM12, majority vote (MV) and NLSS in Table 2–3 using DSC and MSD metrics. We 

observed significant difference between the previous methods (FS, SPM12, MV and NLSS) 

and the proposed methods on DSC and MSD. Meanwhile, ssSLANT and nssSLANT show 

no significant difference on DSC and MSD, in terms of TICV and PFV labeling results.

In the volume analysis, we compare our method with existing methods including FS, 

SPM12, MV and NLSS in Table 4. In addition to DSC and MSD metrics for segmentation 

accuracy in Table 2–3, we show ASIM value for volume analysis in Table 4. None of 

FS and SPM12 estimates TICV by counting the voxels inside skull, while our method 

estimated the volume by counting voxels. Therefore, FS and SPM12 do not work on 

skull-stripped brains and estimate PFV. From Table 4, we can see that our methods show 

better performance on volume estimation, compared with widely used FS, SPM12 packages 

and typical label fusion methods (MV and NLSS). Furthermore, after statistical analysis, 

nssSLANT and ssSLANT show no significant difference on ASIM for volume estimation. 

This suggests that the proposed pipeline could provide reliable TICV and PFV estimation 

for both skull-stripped brain and non-skull-stripped brains. We also observed significant 

difference between the previous methods (FS, SPM12, MV and NLSS) and the proposed 

methods on ASIM.

4. Discussion

In this work, we proposed a simultaneous whole brain segmentation and volume estimation 

method for both skull-stripped and non-skull-stripped brains. Different from some existing 

methods, the proposed method estimates TICV and PFV by counting the voxels. Therefore, 

it could be applied in skull-stripped scenarios. The proposed method is quantitatively 

evaluated using DSC, MSD and ASIM for segmentation and volume estimation. The 

proposed method is compared with Free-Surfer, SPM12 and atlas-based methods for volume 

estimation.
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After removing skull, the performance of segmentation and volume estimation have no 

significant changes (Tables 1–4). The details of whole brain segmentation and volume 

segmentation are well preserved for isolated brains (Figs. 3 and 5). Compared with other 

brain segmentation and total intracranial volume estimation methods: (1) Our method 

achieves simultaneous brain segmentation and total intracranial volume estimation. (2) Our 

method could be applied for both brains w/and w/o the skull with no significant differences. 

(3) Our method shows significant differences with other previous methods.

4.1. Simultaneous segmentation and volume estimation

Several previous studies focus on either brain segmentation or volume estimation. We 

combine the two tasks in a single pipeline. We compared our method to previous volume 

estimation methods in Table 2–4. None of FS and SPM12 estimates TICV by segmenting 

the intracranial cavity and counting the voxels. Therefore, FS and SPM12 do not estimate 

PFV and do not work on skull-stripped brains.

Atlas-based methods such as MV and NLSS not only provide TICV estimation, but also 

estimate PFV simultaneously. Meanwhile, atlas-based methods show higher accuracy in 

TICV estimation than FS and SPM12. However, they still show significant difference 

with our methods in terms of volume estimation (Table 2–4). Also, previous atlas-based 

methods do not focus on both segmentation and volume estimation tasks in a single pipeline. 

Furthermore, one of the major limitations of atlas-based methods is the high computational 

consumption. Hence, atlas-based methods usually utilize a small number of atlases, which 

may hinder higher accuracy. In order to utilize the large number of labeled training data, we 

proposed a deep learning-based method in this work.

4.2. Containerized implementation

Our pipeline consists of several steps including preprocessing, segmentation and label 

fusion etc. In order to make it easy for researchers to obtain results, we containerized 

the implementation using singularity technique (https://singularity.lbl.gov/). In this way, our 

pipeline could be deployed on any T1w scans with one command line. The singularity 

containers and command lines for both nssSLANT and ssSLANT could be found in https://

github.com/MASILab/SLANTbrainSeg_skullstripped.

4.3. Robustness and generalization

In this work, the pre-training datasets contains 5111 multi-site scans which are from 

different gender, age (5–96 years) and health states (Attention Deficit Hyperactivity 

Disorder and Alzheimer’s disease) [27]. The fine-tuning data are from OASIS dataset which 

contains subjects aged 18–96 and subjects over the age of 60 have been clinically diagnosed 

with mild to moderate Alzheimer’s disease. Forty-five modified BrainCOLOR atlases with 

TICV and PFV labels are used as fine-tuning data and we report the results taken over 

five-fold cross-validation. We do not test our method on infants or newborns, because the 

manually traced ground truth is not available currently on them. Testing with different 

cohorts might better prove the generalization of the proposed pipeline. Our future work 

would be to test the robustness of our method on various cohorts.
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5. Conclusion

In this work, we generalize deep learning whole brain segmentation for skull removal brain 

and intracranial measurements. The whole pipeline consists of three stages: preprocessing, 

U-Net-based segmentation and postprocessing. In the preprocessing stage, the target images 

are registered to the MNI305 space using affine transformation. Then, an N4 bias field 

correction is employed to reduce the bias during the imaging procedure. Finally, intensity 

normalization is introduced to reduce the effect caused by various intensities across different 

scans. In the U-Net-based segmentation stage, we crop the preprocessed image into 27 

subspaces and train 27 U-Net tiles. We pre-train each tile with 5111 images from multi-site 

and then fine-tune them with 45 modified OASIS BrainCOLOR atlases with TICV and 

PFV labels. In the postprocessing stage, we use majority voting to fuse the segmentation 

results of all 27 tiles to a single segmentation. Then we inverse register the segmentation 

from MNI305 space to original space. Finally, we obtain the automatic segmentation results 

in target space. The overall pipeline is shown in Fig. 2. We not only get the whole brain 

segmentation, but also achieve TICV and PFV estimation in a single pipeline (Figs. 3 and 

5). We also take isolated brain into consideration and get promising results, compared to the 

existing methods (FreeSurfer, SPM12 and atlas-based methods) in Table 1–4.
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enhanced/ (NKI Rockland); http://www.oasis-brains.org/ (OASIS).
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Fig. 1. 
The whole procedure of skull-stripping. (a) The raw T1 image and its corresponding 

manually traced label image. (b) The brain mask is obtained by inflating the label image. (c) 

The skull-stripped image is obtained by multiplying brain mask with raw T1 image.
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Fig. 2. 
The whole procedure of transfer learning on ssSLANT (skull-stripped SLANT). The gray 

part (skull-stripping step) is excluded in nssSLANT. In the pre-training stage, the original 

SLANT is trained on 5111 skull-stripped brains with a whole brain labeling obtained from 

multi-atlas segmentation. Next, in order to achieve TICV and PFV estimation, additional 

two output layers are added to the original SLANT for TICV and PFV. The parameters of 

new added layers are randomly initialized. Then, OASIS BrainCOLOR atlases with TICV 

and PFV labels are used to fine-tune the pre-trained SLANT with 135 outputs (including 

background). The procedure of nssSLANT is the same, except for the skull-stripping step.
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Fig. 3. 
Qualitative results of nssSLANT and ssSLANT methods with three views for whole brain 

as well as TICV and PFV labels. Most details in the manual tracing are well preserved by 

ssSLANT and nssSLANT. The boundaries of the automatic segmentations are smooth. From 

(c) and (e), nssSLANT and ssSLANT show comparable performance.
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Fig. 4. 
Quantitative results of nssSLANT and ssSLANT methods on whole brain segmentation (132 

ROIs). The mean DSC between ground truth and our methods across all folds are shown as 

bar graph. No significant difference is observed between the two methods, which suggests 

that removing skull has no significant influence on segmentation results.
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Fig. 5. 
Qualitative results of nssSLANT and ssSLANT with three views for TICV and PFV 

labeling. The first two rows show nssSLANT and ssSLANT volume labeling results, 

respectively. The third row shows the manual labeling. Compared with the manual labeling, 

our methods show promising performance.
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Table 1

Mean and median DSC and MSD (mm) across all ROIs. The proposed ssSLANT and nssSLANT methods 

show comparable whole brain segmentation performance in terms of mean and median DSC and MSD, with 

no significant difference.

Methods DSC MSD

Mean±std Median Mean±std Median

nssSLANT 0.782±0.014 0.785 0.919±0.067 0.915

ssSLANT 0.778±0.043 0.789 0.944±0.031 0.947
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Table 2

Comparison results on TICV segmentation. Our methods outperform existing methods in terms of mean DSC 

and MSD. It is worth noting that FreeSurfer and SPM12 do not generate hard total intracranial segmentation. 

Therefore, the results of FS and SPM12 on DSC and MSD are N/A. The statistical analyses were conducted 

between the previous methods and the proposed methods.

Methods FreeSurfer SPM12 MV* NLSS* nssSLANT ssSLANT

DSC N/A N/A 0.977 0.983 0.987 0.989

MSD N/A N/A 0.968 0.743 0.491 0.489

The methods with significant difference (p < 0.05) are marked with ‘*’. All benchmarks are run on brain with skull.
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Table 3

Comparison results on PFV segmentation. Our methods outperform existing methods in terms of mean DSC 

and MSD. The statistical analyses were conducted between the previous methods and the proposed methods.

Methods FreeSurfer SPM12 MV* NLSS* nssSLANT ssSLANT

DSC N/A N/A 0.960 0.968 0.975 0.977

MSD N/A N/A 0.847 0.675 0.554 0.542

The methods with significant difference (p < 0.05) are marked with ‘*’. The statistical analysis is not conducted on FS and SPM12 in this Table, 
since they do not provide hard posterior fossa segmentation. All benchmarks were run on brain with skull.
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Table 4

Comparison results on ASIM. Our methods outperform existing methods in terms of mean ASIM. The 

statistical analyses were conducted between the previous methods and the proposed methods.

Methods FreeSurfer* SPM12* MV* NLSS* nssSLANT ssSLANT

TICV 0.941 0.964 0.976 0.986 0.991 0.991

PFV N/A N/A 0.975 0.984 0.992 0.993

The methods with significant difference (p < 0.05) are marked with ‘*’. The statistical analysis is not conducted on FreeSurfer and SPM12 in terms 
of PFV, since they do not provide PFV estimation. All benchmarks are run on brain with skull.
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