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Significance

Social science research and policy 
increasingly rely on predictive risk 
assessment instruments (RAIs), 
including those using machine-
learning algorithms. This paper 
shows that the relationships 
between risk factors and future 
arrest are unstable over time 
when measured across 
sequential birth cohorts. As a 
result, prediction models that rely 
on risk factors are prone to 
systematic and substantial error. 
Such cohort bias, arising from the 
dynamics of social change, 
requires algorithmic updating 
and accounting for social factors 
affecting entire cohorts. Cohort 
bias can generate inequality in 
criminal justice contacts distinct 
from racial bias and has 
implications not only for the 
tailoring of RAIs but also for 
efforts aiming to provide 
preventative interventions to 
high-risk groups targeted based 
on individual-level risk factors 
alone.
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Risk assessment instruments (RAIs) are widely used to aid high-stakes decision-making 
in criminal justice settings and other areas such as health care and child welfare. These 
tools, whether using machine learning or simpler algorithms, typically assume a 
time-invariant relationship between predictors and outcome. Because societies are 
themselves changing and not just individuals, this assumption may be violated in 
many behavioral settings, generating what we call cohort bias. Analyzing criminal 
histories in a cohort-sequential longitudinal study of children, we demonstrate that 
regardless of model type or predictor sets, a tool trained to predict the likelihood of 
arrest between the ages of 17 and 24 y on older birth cohorts systematically over-
predicts the likelihood of arrest for younger birth cohorts over the period 1995 to 
2020. Cohort bias is found for both relative and absolute risks, and it persists for 
all racial groups and within groups at highest risk for arrest. The results imply that 
cohort bias is an underappreciated mechanism generating inequality in contacts with 
the criminal legal system that is distinct from racial bias. Cohort bias is a challenge 
not only for predictive instruments with respect to crime and justice, but also for 
RAIs more broadly.

risk assessment | criminal justice | bias | cohort | social change

Prediction is a central goal in the science of human behavior (1, 2). Risk assessment 
instruments (RAIs), whether based on simple scoring tools or sophisticated machine-learning 
algorithms, are widely used to aid high-stakes decision-making in diverse domains includ-
ing health care (3), child welfare (4), and crime (5–9). RAIs are used in making life-altering 
treatment and disposition decisions in medical and judicial settings and may have similar 
life-altering impacts when used by social service agencies to determine whom to target 
for interventions. In predicting criminal behavior and legal system involvement, RAIs 
typically predict future risk using a combination of features measuring individual char-
acteristics, family background, and prior criminal history (7–11).

In this paper, we argue that RAIs are challenged by a crucial but commonly neglected 
fact: As time goes on, it is not just individuals who age and develop, but societies them-
selves contemporaneously change. This fact implies that individuals’ future behaviors are 
not only a function of their stable traits, earlier-life circumstances, prior behaviors, and 
age, but also ongoing social change affecting all members of a birth cohort. That an algo-
rithm’s performance can degrade over time is known, but implications of ongoing change 
are typically not recognized in real-world implementations of RAIs and more generally 
in the conceptualization of future risk. We therefore examine the power of social change 
to impact the performance of RAIs.

Processes of social change pose distinct challenges to the performance of RAIs because, 
regardless of how an RAI is built and used, the accuracy of its predictions relies on the 
fundamental assumption that the relationships between predictors and outcomes of inter-
est are stable over time. Social change may undermine that stability in complex and 
unpredictable ways for people who grew up in different times, leading to what we term 
“cohort bias” in predictive risk assessments. Our analysis focuses on predicting official 
arrest; societal-wide change, however, is not particular to this outcome.

We test the implications of this argument with a study of the calibration and 
rank-ordering performance of models trained to predict arrest in early adulthood across 
multiple birth cohorts who came of age at different times over the period from 1995 to 
2020. Arrest is both the first formal point of entry to criminal legal processing and a widely 
used measure of the risk of future criminal behavior and criminal legal involvement (12). 
Arrest prediction is thus a typical application of RAIs in criminal justice settings (11, 13, 
14). Such predictions exemplify a high-stakes application of RAIs in that false negatives 
may allow damaging crimes to occur, and false positives may result in harmful and unfair 
targeting of individuals for crimes they were never going to commit. We demonstrate that 
cohort bias is present in both relative and absolute levels of risk. Cohort bias in risk level 
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is particularly important because the social costs of predictive 
errors depend on biases in risk level.

Research Questions about Cohort Bias

Much research on crime has centered on identifying early-life, 
individual-level, psychosocial, and neighborhood predictors of 
criminal involvement in adolescence and beyond. Such predictors 
include personal circumstances such as family instability and pov-
erty, psychological characteristics such as low self-control, and 
growing up in poor neighborhoods (15). While the association 
between many such features with later-life criminal involvement 
is well established, whether the predictive strength of these features 
is constant across historical periods is uncertain. This is an impor-
tant gap given that societal-level crime rates and broader social 
conditions are highly variable, as evidenced by the sustained drop 
in crime beginning in the early 1990s in the United States and 
other countries across the world (16, 17).

Researchers using data from a multi-cohort study, the Project 
on Human Development in Chicago Neighborhoods (PHDCN), 
have demonstrated large differences in age-specific arrest fre-
quency and prevalence between birth cohorts separated by as 
little as 10 y (18, 19). They also show that well-established pre-
dictors of crime, such as growing up in poverty, self-control, sex, 
and race/ethnicity, cannot explain these cohort differences in 
arrest patterns. The cohort effects they identify are as large or in 
most cases larger than these individual-level risk factors in pre-
dicting arrest prevalence in young adulthood. The results suggest 
that the dynamics of social change are an important but neglected 
factor in the explanation and prediction of future involvement 
in crime.

Our research builds upon and extends these analyses by exam-
ining whether an RAI trained on individual-level features of an 
older age cohort accurately predicts the likelihood of arrest of a 
younger cohort. We define systematic differences between the 
actual arrest patterns of the younger cohort compared to their 
predicted arrest patterns based on RAIs trained on the data of an 
older cohort as cohort bias.

We address three questions. First, is there evidence of cohort 
bias? We test for this bias in both relative and absolute risk pre-
dictions. Not only do we find cohort bias, but it is substantial. 
The RAIs trained on the older cohort, regardless of model type 
and feature set specification that include variables measured from 
early life to late adolescence, overpredict the probability of arrest 
of the younger cohort by as much as 89%. Second, how is this 
cohort bias related to racial bias, a more commonly studied form 
of bias in machine-learning research (8, 9, 20)? We find substantial 
cohort bias within all the three racial–ethnic groups studied—
White and others, Latinos, and Blacks—which establishes that 
cohort bias is distinct from racial biases. Third, we ask whether 
cohort bias can be mitigated by targeting high-risk groups either 
by accounting for arrest in adolescence or limiting predictions to 
those with low levels of self-control. We find that cohort bias 
persists even when measures of arrest from immediately before the 
ages for which we predict arrest are included as predictors and 
even when limiting analysis to high-risk participants.

Our aim is to help improve the science and use of RAIs in 
justice and other high-stakes contexts regarding human behavior. 
To identify possible mitigation strategies of cohort bias arising 
from social change in RAIs, we investigate whether the statistical 
relationship between predictors and arrest prevalence is stable 
across cohorts. We find that it is not, which implies that correcting 
for cohort bias requires more than an intercept adjustment to 
account for the overall trend in crime rates (21).

In high-stakes decision contexts, RAIs have the potential to do 
harm if not well calibrated. While human judgement is also 
fraught with biases, an RAI can make millions more judgments 
in its “lifetime,” amplifying its impact. Though our analysis uses 
population data with a criminal legal outcome, it is likely that the 
effects of social change are far reaching, implying that cohort bias 
may be found in RAIs used to predict recidivism among offending 
populations as well as those used to target individuals for early 
interventions.

Materials and Methods

The data used come from an extension of the PHDCN and include 1,057 indi-
viduals from four different age cohorts (22). The study began in the mid-1990s 
with a representative sample of children, ranging from newborn to 18  y old, 
drawn from a representative sample of Chicago neighborhoods. Detailed in-home 
assessments were conducted to collect data on these children, their families, and 
their neighborhoods. Two further waves of data collection were conducted over 
approximately 2.5-y intervals.

Our work uses data from four age cohorts that were randomly sampled from 
wave three participants and reinterviewed for a fourth wave between 2011 and 
2013, and on whom criminal records were later collected through 2020. These 
participants were 0, 9, 12, and 15 y old when the study began. We refer to the 
infant or age “0” cohort as the younger cohort; participants in the younger cohort 
were born in the mid-1990s. The 9-, 12-, and 15-y-old age cohorts are combined 
into the older cohort, which contains individuals born between 1979 and 1988, 
creating a 6- to 17-y age difference between individuals in the younger cohort and 
any individual in the older cohort. The fourth wave interview collected detailed 
information on a wide array of topics including information about behavior on 
the, by then adolescent, younger cohort. Adult respondents provided written or 
verbal consent to interviews. The Harvard University institutional review board 
approved data collection and analyses. Arrest records were collected from the 
Criminal History Record Information in Illinois that covered the period 1995 
through 2020. They were matched to wave four participants by name and date 
of birth. The study followed Department of Justice human subject protection 
regulation 28 CFR Part 46.

The combined dataset includes rich features related to participants’ personal, 
early-life family, and neighborhood characteristics as well as arrest data for all 
participants, in all cohorts, between the ages of 17 and 24 y. The primary depend-
ent variable is a binary variable indicating whether the individual was arrested 
as a young adult, between the ages of 17 and 24 y for feature sets without arrest 
history indicators, and between the ages of 19 and 24 y for feature sets with arrest 
history indicators. While arrests are not a direct measure of criminal involvement, 
they are commonly used in criminological research and are frequently the target 
of prediction applications in criminal justice settings (11).

Independent variables, or features in the machine-learning nomenclature, 
include sociodemographic information about the participant (sex, race/ethnic-
ity, and caretaker’s immigrant generation), psychosocial characteristics (anxiety/
depression, aggression, and low self-control), family characteristics (such as family 
size, household income, and parental education level), and neighborhood charac-
teristics (such as poverty rates, college education rates, and violent crime rates). 
SI Appendix, Table S1 provides further information on the measures as well as 
respondents’ ages when the data were collected. Except for the time-invariant fea-
tures, all features were measured at approximately the same ages across cohorts. 
The features span a period from childhood to just prior to the initial age of the 
outcome variable being predicted, arrest between 17 and 24. Furthermore, the 
dataset includes many of the classic childhood, family, and neighborhood predic-
tors of crime (15, 23, 24). There were initially four categories of race and ethnicity: 
White, Black, Latino, and Other. Because there were few “Other” observations 
(n = 44), that category was combined with White. Descriptive data on the main 
feature set by cohort are shown in SI Appendix, Table S2.

Missing data are infrequent and there are no missing values in the dependent 
variable. Over 58% of the participants have no missing values, and an additional 
12% are missing information on only one item. Only 78 participants (7%) have 
substantial missing information, in that they are missing values for more than 
20% of the items. The variable with the highest level of missingness is household 
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income; it is missing 142 values, 13% of the sample. No other variable is miss-
ing for more than 10% of the participants. Missing data were imputed using a 
k-nearest neighbor algorithm with k = 5.

Model Estimation. To identify the impact of different sets of covariates on 
observed cohort bias, two feature sets were created. We call one of these sets 
the classic risk-factor feature set, which is classic in the sense that it includes 
features that prior literature has identified as strongly correlated with crime and 
legal system involvement (23–25). These features measure characteristics of the 
individuals themselves and their immediate family and community environment. 
The classic risk-factor feature set includes sex, race, adolescent self-control, family 
poverty (as indicated by the receipt of Temporary Assistance for Needy Families, or 
TANF), caregiver marital status, and caregiver immigrant generation. The second 
feature set, which we call the full set, consists of thirty-five features including 
the classic risk-factor set plus other established, early-life indicators of future 
criminal involvement, individual psychosocial characteristics, as well as childhood 
community-level characteristics. Measures such as these are often used alongside 
criminal record histories as predictors for real-world RAIs (10).

Binary classification models were trained on the older cohort to predict 
whether respondents were arrested between the ages of 17 and 24 y. Models eval-
uated include logistic regression, lasso and ridge regularized logistic regressions, 
and random forests (26). Lasso and ridge regression are methods of shrinking 
coefficients associated with collinear predictors. These methods are designed 
to improve predictive performance for new cases by preventing models from 
overfitting, that is, fitting noise in the training sample. Random forests are a 
form of ensemble decision tree algorithm that allows for highly nonlinear and 
interactive predictions with low likelihood of overfitting.

Model performance on both younger and older cohorts was evaluated in sev-
eral ways. Analyses rely primarily on calibration plots based on linear regressions 
to evaluate shifts in predictive accuracy for models trained on the older cohort 
when performance is evaluated on the younger as opposed to the older cohorts.

Results

Assessing the Degree of Cohort Bias. Regardless of the method 
used or features included in the model, cohort bias is consistently 
found when predicting arrest from ages 17 to 24 y and also as 
described below other age ranges. For parsimony, we report results 
for logistic regression using the classic risk-factor feature set and 
the lasso logistic regression applied to the full set of predictive 
features. Sensitivity tests, including random forest and ridge 
regression models, yield similar results (SI Appendix, Fig. S1).

Fig. 1 reports receiver operating characteristic (ROC) curves 
for the classic risk-factor logistic regression model (Fig. 1A) and 
the full lasso logistic regression model (Fig. 1B). Each panel reports 
two ROC curves, one for the model trained on the older cohort 
applied to the older cohort and another for that same model 
applied to the younger cohort. Based on area under the curve 
(AUC) values, our models perform as well or better than those 
used in practice (13, 27). The classic risk-factor regression in the 
top panel has an AUC of 0.726 when applied to the older cohort, 
while the full model has an only slightly higher AUC of 0.730. 
These same models have lower AUC values when applied to the 
younger cohort, 0.669 and 0.712, respectively. These results sug-
gest that little predictive capacity is gained by adding features 
beyond those already included in the classic risk-factor model.

Our purpose, however, is not to compare the predictive capa-
bilities of alternative prediction methods but to test for cohort 
bias. Fig. 2 addresses this question with calibration plots that 
compare predictions of the probability of arrest from ages 17 to 
24 y with the proportion arrested at those ages. Each plot is con-
structed by regressing the actual outcome of arrest between ages 
17 and 24 y on the predicted probability for a slope-only regres-
sion. For a perfectly calibrated model, this line would fall on the 
black 45° line and have a slope of 1. The first row in Fig. 2 shows 
the calibration results of the classic risk-factor logistic regression, 

and the second row shows the results from the full lasso logistic 
regression. The first column shows the calibration of a model 
trained on the older cohort for the older cohort, and the second 
column shows the calibration of the same model when used to 
generate predictions for the younger cohort.

Fig. 2 shows that the models trained on the older cohort are 
well calibrated to that cohort with slopes of 0.97 and 0.99 for the 
classic risk-factor logistic regression and the full lasso logistic 
regression, respectively. Being well calibrated means that on aver-
age the predicted probability of arrest from the model is the same 
as the proportion of participants who actually are arrested at that 
probability level.

However, when these same models are applied to the younger 
cohort, both models systematically overpredict the probability of 
arrest. For the logistic and lasso logistic regression models, the 
slope estimates are 0.53 and 0.64, respectively, which implies that 
older cohort trained models are overpredicting arrest probability 
by about 89% for the logistic regression model and 56% for the 
lasso logistic regression model. Results for the ridge logistic and 
random forest models are similar (SI Appendix, Fig. S1). Thus, 
regardless of algorithm or feature set used, there is consistently 
evidence of cohort bias. While cohort bias could produce either 
underprediction or overprediction, in this application, it results 
in a substantial overprediction of the probability of arrest. For 
reasons elaborated upon in the Discussion section, in criminal 
justice applications, the costs of such overpredictions of risk level 
are high.

We also examined whether cohort bias contaminates predic-
tions of relative risk rankings. To do so, we compared risk rankings 
of younger cohort members resulting from application of an RAI 
trained on the older cohort with rankings of an RAI trained on 
the younger cohort themselves based on a 10-fold cross validation 
design. This analysis was conducted for each of the four estimation 
methods on both the classic risk-factor feature set and the full 
feature set.

Across the resulting eight separate analyses, the average overlap 
of membership in the highest quartile of risk was only 53%, with 
a low of 44% for the logistic regression analysis conducted on the 
full feature set, to a high of 64% for the lasso logistic regression on 
the full feature set. Fig. 3 is a scatter plot of the predictions for this 
best performing model. While there is a clear positive association, 
the variability about the 45° line is large (rank-order correlation = 
0.76; correlations across the eight analyses range from 0.46 to 0.76). 
We also compared the risk rankings of the older cohort members 
using the four different methods and two different feature sets. This 
analysis produced overlaps in the top risk quartile that were much 
higher than those of the across-cohort analysis, ranging from 65 to 
98%, with corresponding rank-order correlations between 0.77 and 
0.99. This suggests that the decline in rank-ordering performance 
is due to cohort bias, rather than an inherent sensitivity of rank 
orderings across model specifications.

Assessing Whether Cohort Bias Is Distinct from Racial Bias. To 
test whether cohort bias is a separate source of bias from racial 
bias, we applied the same analyses as in the preceding section 
to three nonoverlapping racial/ethnic groups in the PHDCN 
data: Whites and others (mostly Asians) (n = 242), Blacks (n = 
386), and Latinos (n = 424). The results for the classic risk-factor 
logistic regression model are reported in Fig. 4, and the full lasso 
logistic regression results are in SI Appendix, Fig. S2. Across all 
racial groups, the models trained on the older cohort are well 
calibrated to that cohort with slope estimates of 1, 0.95, and 1 
for the logistic regression and 0.95, 0.97, and 1.1 for the lasso 
logistic regression model. However, both models systematically 
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overpredict the likelihood of arrest across racial groups with 
slope estimates of 0.45, 0.60, and 0.49 for the logistic regression 
and 0.56, 0.7, and 0.62 for the lasso logistic regression model. 
While the magnitude of cohort bias varies somewhat between 
racial groups, its persistence across groups indicates that the 
observed cohort bias cannot be a manifestation of racial biases 
in the data or algorithms. Instead, cohort bias is a distinct form 
of algorithmic bias.

Assessing Cohort Bias within High-Risk Groups. It is possible that 
the cohort bias that we observe is the product of a large decline in 
arrest prevalence for low-risk groups without substantial decline 
in arrest prevalence for high-risk groups. If so, cohort bias could 
be mitigated by training the RAI using data for the high-risk 
group or adding a feature which identifies membership in the 
high-risk group. Here, we analyze the calibration shift between 

cohorts for three different definitions of high-risk groups. The 
first method involves adding a feature to indicate prior arrest, 
which allows the model to adjust predictions for higher-risk 
participants. The second method focuses on individuals who 
score more than two SDs above the mean on tests of low self-
control, and the third method focuses on individuals in the top 
quartile of arrest probability based on a model trained on the 
older cohort.

To test whether cohort bias persisted for individuals with prior 
arrests, the feature set was expanded to include a binary indicator 
of arrest between ages 17 and 18 y in models predicting arrest 
between ages 19 and 24 y. Fig. 5 shows the calibration plots from 
these regressions. While the bias is mitigated by including prior 
arrest—a strong predictor of future arrest—cohort bias is still 
evident, as is evidenced by the slopes of the classic risk-factor (0.6) 
and lasso models (0.74), which remain well below 1.
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Fig.  1. ROC curves showing performance of logistic 
regression models. Models were trained on the older cohort. 
Performance on the older cohort is shown in red, while 
performance on the younger cohort is shown in blue. Results 
are shown for both (A) an unregularized logistic regression 
using the classic risk-factor feature set and (B) a lasso logistic 
regression using the full feature set.
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Fig.  2. Calibration plots for models trained on 
older cohort. Calibration plots for the classic risk-
factor unregularized logistic regression model 
(Top) and the full lasso logistic regression model 
(Bottom). Models were trained on the older cohort, 
and performance on the older cohort is shown 
on the Left, while performance on the younger 
cohort is shown on the Right. The regression line 
falls below the ideal 45° line indicating persistent 
overprediction of the likelihood of arrest for the 
younger cohort in both models.
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In practice, many RAIs have a smaller prediction window than 
those trained as part of this analysis (i.e., they predict fewer than 
7 y ahead) and often rely heavily on criminal history. To investigate 
the sensitivity of cohort bias to alternative specifications of arrest 
history and the dependent variable, two additional specifications 
were examined. The first shortened the prediction window to 
arrest between ages 22 and 24 y and lengthened the arrest history 
used as a predictor to include the ages from 17 to 21 y. The second 
formulation included juvenile arrest history from the ages of 10 
to 16 y as a predictor of arrest between the ages of 17 and 24 y. 

Models for this specification could only be trained on a subset of 
the older cohort (the age 9 cohort) due to incomplete juvenile 
records for some of the oldest members of the PHDCN sample. 
The results of these two formulations mirror those shown in Fig. 5 
and are available in SI Appendix, Figs. S3 and S4, respectively.

Fig. 6 reports the calibration plots for high-risk groups defined 
by individuals who score more than two SDs above the mean for 
low self-control. As before, cohort bias is evident. Similar results 
are shown in SI Appendix, Fig. S5, which reports calibration plots 
based on individuals with a high predicted probability of arrest 
(top quartile) from model covariates. Hence, regardless of how 
high-risk individuals are defined, models trained on the older 
cohort systematically overpredict the likelihood of future arrest 
for the younger cohort.

Assessing Predictive Stability of Risk Factors. One explanation 
for the observed bias is that across cohorts the prediction model’s 
intercept is changing over time, but the parameters measuring 
the predictive impact of features remain unchanged. If this 
were the case, cohort bias could be corrected in some fashion 
by accounting for the intercept drift. Alternatively, feature 
parameters themselves may be changing across cohort due to 
changes in the underlying covariance structure between features 
and the outcome, which would greatly complicate adapting the 
model.

To identify the source of cohort bias, we compared logistic 
regression models trained on the older cohort to those trained on 
the younger cohort. Table 1 reports the coefficients, SEs, and 
P-values for each of these models. While there is a significant shift 
in the intercept value, there are also statistically significant changes 
in other coefficients. Coefficients for caregiver marital status, pov-
erty, and immigrant generation, for example, change values 
between models trained on the older and younger cohorts. These 
shifts indicate that the underlying covariance relating predictors 
to arrest probability is changing over time.

Theoretically, social change could be captured by including fea-
tures connected to the time and place of the child’s development. 
However, we did not find that adding additional neighborhood 
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Fig. 3. Comparison of rankings between full lasso logistic regression models 
trained on different cohorts. Plot of younger cohort, risk rankings produced 
by the full lasso logistic regression model trained on the older cohort (x axis) 
and the same model trained on the younger cohort (y axis). Both the plot 
and the Spearman’s correlation value of 0.76 show that while the two sets of 
rankings are correlated, there are substantial ranking differences between the 
model produced by the older cohort and that produced by the younger cohort.
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Fig. 4. Calibration plots for classic risk-factor logistic regression model trained on older cohort by race. Performance on the older cohort of the classic risk-factor 
logistic regression model trained on the older cohort is shown in red, and performance on the younger cohort is shown in blue. Systematic overprediction of 
the likelihood of arrest is observed across racial groups.
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census variables (poverty rate, percent Black, percent Hispanic, 
owner-occupied rate, and percent of homes with children) collected 
at distinct ages (9, 13, and 17 y) as predictors had any mitigating 
effect on the observed cohort bias (SI Appendix, Fig. S6). Another 
possibility is that cohort bias is the result of shifting law enforce-
ment practices, particularly in highly discretionary drug arrest 
patterns. While this is a potential source of cohort bias in RAIs, 
repeating analyses but excluding drug arrests yields nearly identical 
results to analyses that include drug arrests (SI Appendix, Fig. S7).

Discussion

Societies, just like the individuals who compose them, change over 
time. Although seemingly obvious, social change poses an important 
and underappreciated challenge for predictive RAIs. The accuracy 
of their predictions depends on the assumption that the relationship 
between the outcome of interest and predictors is stable over time. 
Our analysis has shown that in predicting arrest between the ages 
of 17 and 24 y as well as other age ranges for a representative pop-
ulation sample, this assumption is consistently violated for a variety 
of model types and feature sets. The result is cohort bias between 
cohorts separated by as little as 10 y or less, producing substantial 
overestimation of the probability of arrest for younger cohorts.

We found that cohort bias exists for all racial groups. Cohort 
bias is thus a source of inequality separate from mechanisms 
related to racial or ethnic bias and must be separately considered 
and addressed. In circumstances in which cohort bias generates 
overpredictions of the risk of criminal activity, individuals may be 
denied bail, sentenced more severely, or be denied parole due to 
an inflated prediction of crime risk (28), potentially triggering 

further involvement with the criminal justice system and in turn 
exacerbating racial inequalities.

While cohort bias might be attributable to unobserved indi-
vidual- or neighborhood-level features, we judge this explanation 
unlikely not only because of the magnitude of the bias but also 
because the models we fit used an extensive set of predictors, 
including many of the most well-established risk factors for arrest. 
Furthermore, even if such unobserved characteristics are the root 
cause of the observed model degradation, knowing this would 
not solve the problem for real-world RAIs used today as they are 
constructed from much more limited feature sets and generally 
rely on administrative data (9, 10). Cohort bias when predicting 
arrests could also be driven by changing patterns of criminal 
behavior or police enforcement. A prior analysis of the data used 
in this study found that both were important in roughly equal 
proportion in producing cohort differences in arrests (18).

Our analysis is based on a population sample. The cohort differ-
ences in arrests in this sample reflect a widespread decline in arrests 
that took place in Chicago from the 1990s until recently, with major 
arrest types falling by at least two-thirds; similar declines happened 
at least through the 1990s for most of America (16, 18, 29). Many 
of these trends have since flatlined or reversed, underscoring how 
the nature of cohort bias cannot be known a priori given social 
changes, which can be abrupt and countervailing. An important 
next step is to perform similar analyses on criminal justice–involved 
samples based on arrest or conviction records to determine whether 
similar cohort biases exist in those contexts. More broadly, we expect 
that this work has implications for other public policy fields such 
as research on addiction and teen pregnancies where similarly large 
cohort rate differences are well documented (30, 31).
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Fig. 5. Calibration plots for models including 
an adolescent arrest history predictor and 
trained on older cohort. Calibration plots for 
two models which include a binary variable 
indicating arrest at age 17 or 18 y: the classic 
risk-factor logistic regression model (Top) and 
the full lasso regularized logistic regression 
model (Bottom). The left column shows the 
performance of these models on the older 
cohort on which they were trained. The right 
column shows the performance of the same 
models on the younger cohort. When arrest 
history is included as a predictor, models still 
overpredict arrest likelihood for the younger 
cohort.
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Even though in the criminal justice setting RAIs typically predict 
relative risk tiers, the costs of misclassification are a function of 
absolute risk level, a situation that holds for other areas too, such 
as health. For example, RAIs routinely used in high-stakes medical 
decision-making such as the Acute Physiology and Chronic Health 
Evaluation (APACHE) mortality score (32) and SOFA organ failure 
assessment score (33) predict mortality probability, not relative 
rankings of risk. This is because medical decisions such as the with-
drawal of life support are made based on predictions of the patient’s 
probability of survival not on the patient’s probability of survival 
relative to other patients. In the context of arrest, an algorithm that 
rank ordered properly without calibration might successfully pick 
out the highest risk people in a group even if those people did not 
actually pose a high risk. While in the current case we found cohort 
bias in both relative and absolute rankings, these examples highlight 
why it is so important to examine models’ performances in terms 
of absolute risk levels, rather than just relative ranking.

Our findings also have implications for benefit–cost analyses 
of interventions intended to avert offending. Benefit–cost analyses 
of treatment interventions assign monetary values to the difference 
in outcome between the treated and control groups, not its relative 

frequency between the treatment and control groups. A standard 
example is the benefit–cost analysis of the Perry Pre-School 
Program by (34) which concluded that participants in a preschool 
program designed to improve cognitive functioning had signifi-
cantly lower rates of adult criminal involvement compared to 
nonparticipants. The treatment and control groups were born circa 
1960 at the outset of sustained crime increases in the United 
States. Crime reduction and other benefits were estimated to 
exceed program costs by a factor of 7. Whether that ratio would 
hold for children born into a period of declining crime rates is 
uncertain. The changing prevalence across birth cohorts for crim-
inal involvement implies that the benefit–costs based on an earlier 
birth cohort may not apply to future birth cohorts.

Our purpose is not to question the value of RAIs as aids for 
decision-making. After all, the alternative to RAIs is 
decision-making by humans (such as judges) who may also suffer 
from cohort bias. We see three complementary approaches for 
mitigating, if not remedying, cohort bias to ensure that RAI tools 
are as effective and fair as possible.

The first is to find and construct measures of the social forces 
which may influence the behavior of entire cohorts and include 
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Fig. 6. Calibration plots for models trained on older cohort applied to individuals who are two SDs below the average on self-control. The Top row shows the 
calibration of the classic risk-factor logistic regression model with performance for the older cohort on the Left and performance for the younger cohort on the 
Right. The Bottom row shows the performance of full lasso logistic regression model. The deviation of the regression line from the diagonal in the right column 
indicates that when considering only individuals with low self-control, cohort bias is observed.
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those measures as model features. Identification of such measures 
is important not only for improving the predictive performance of 
RAIs but also to advance knowledge about the contextual influ-
ences of human behavior. Whether humans update their beliefs to 
account for contextual social change is a related topic for future 
work. For example, how do humans cognitively recognize and 
conceptualize cohort bias? In the present case, how do police, pros-
ecutors, judges, and risk classifiers in general develop mental mod-
els of how the world works based on their experiences and 
observations, and how good are they at recognizing that the world 
is changing over time and consequently updating their beliefs?

A second approach involves adapting the prediction instrument 
to account for changes in the covariance structure relating poten-
tial features to outcomes. Such a method could involve reweight-
ing training data based on the age of each observation to create 
an exponential smoothing effect. The precise adaptation method 
would need to be tested and validated.

Third, the most straightforward approach to mitigating cohort 
bias is to ensure that RAIs are updated frequently. While further 
research is needed to determine what update frequency is necessary, 
it is common for RAIs to go ten or even more than 15 y between 
updates. For example, the instrument used by the New York City 
Criminal Justice Agency to predict pretrial risk of nonappearance 
was developed in 2003 and used without updating until 2020 (35).

In sum, substantial social science research centers on the iden-
tification of predictive risk factors. Our analysis suggests that 

the relationships between identified risk factors and problem 
behaviors are not stable over time. By implication, the perfor-
mance of prediction models that rely on these risk factors is also 
unlikely to be stable over time. This dynamic relationship 
between risk factors and problem behaviors has important impli-
cations not only for the tailoring of RAIs but also for a large 
body of prevention research that aims to provide interventions 
to high-risk groups targeted based on individual-level risk fac-
tors. In a well-known case, changes to Google’s search algorithm 
led Google Flu Trends to severely overpredict flu patterns over 
time (36). A key lesson was that predictive models can fail when 
changes to the relationship between predictors and outcomes 
are not considered. We have shown that RAIs are likely to sim-
ilarly fail over time, for more recent cohorts, if the dynamics of 
social change are ignored.

Data, Materials, and Software Availability. Restricted-access data and rep-
lication code are available in Harvard Dataverse (https://doi.org/10.7910/DVN/
BGXN3B) (37).
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