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Crystal structure prediction is becoming an increasingly valuable tool for assessing
polymorphism of crystalline molecular compounds, yet invariably, it overpredicts the
number of polymorphs. One of the causes for this overprediction is in neglecting the
coalescence of potential energy minima, separated by relatively small energy barriers,
into a single basin at finite temperature. Considering this, we demonstrate a method
underpinned by the threshold algorithm for clustering potential energy minima into
basins, thereby identifying kinetically stable polymorphs and reducing overprediction.
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The structure of crystalline molecular materials is crucial to applications ranging from
pharmaceuticals to organic semiconductors. Polymorphs, crystals of the same compound
with different structures, are consequently of great interest as they can significantly alter
the physical properties, either to enhance or diminish them (1–3). Over the past decades,
there has been considerable effort to improve our understanding of polymorphism.
However, determining the accessible polymorphs of a given compound still relies mostly
on screening crystallizations under a wide range of conditions, including different
solvents, temperatures, additives, humidities, and pressures (4).

Crystal structure prediction (CSP) has demonstrated potential to augment polymorph
screens, indicating the propensity of a compound to exhibit polymorphism and directing
experimental efforts toward conditions that favor specific proposed polymorphs (5–11).
The aim of conventional CSP is to locate all thermodynamically stable structures of
a given compound by searching the crystal packing space and energy minimizing the
resulting structures to the nearest local minimum on the energy surface (12–14). The
unique structures are then ranked by a fitness function, typically potential energy, to
identify plausible polymorphs. Due to the thousands of putative structures required to
sufficiently sample the high-dimensional energy surface, the initial energy minimizations
are generally at the force field level, though recently it has become common to further
refine the rankings of the lowest energy structures through more accurate, but more
costly, dispersion-corrected density functional theory (DFT+D) calculations (15–17).
CSP results are often presented in an energies vs. densities (or other structural feature)
plot with the assumption that the lowest energy structures correspond to potentially
observable polymorphs. Typically, an energy cutoff from the global energy minimum
is applied to identify the set of plausible polymorphs. The exact cutoff varies; however,
studies using force fields fitted for organic crystals have shown that 95% of polymorphs are
within 7.2 kJ mol−1, with many polymorphs being separated by much smaller energies
(18, 19).

A recurring pattern throughout the history of CSP is that many more polymorphs are
predicted than are experimentally observed (20, 21). This is observed for simple systems,
such as small rigid molecules, as well as larger, more complex molecules, and even
those that have been subjected to extensive experimental polymorph screening (22–25).
Overprediction of polymorphs is not, in general, due to limitations of energy models used
in CSP and is not remedied by applying high-level reoptimization of predicted crystal
structures, such as by DFT+D (24, 25). Furthermore, this overprediction has become a
key limitation on applying CSP to materials discovery since it can suggest promising
structures exist that in reality are not accessible, potentially wasting experimental
resources. While a number of factors have been reasonably proposed to contribute
to the overprediction, including neglecting crystallization kinetics and disorder, one
of the better-understood causes is in the lack of finite temperature effects. The static
lattice energy surface that underlies conventional CSP effectively describes the system
at 0 K, and therefore successful prediction relies on there being a one-to-one mapping
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between this energy surface and the free energy surface at the
finite temperatures at which crystallization occurs experimentally.
However, it is well known that the potential energy surface
is typically much rougher than the free energy surface since
including thermal energy allows minima separated by small
energy barriers, on the order of kT, to coalesce into a single
free energy basin (26–28). Hence, it has been found that free
energy basins typically correspond not to a single potential energy
minimum but rather an ensemble of minima with the size of the
ensemble related to conformational flexibility and temperature
(29).

The prominence of overprediction in CSP has led to efforts to
systematically reduce the number of candidate structures from the
initial CSP landscape toward a smaller set of structures more likely
to be observed experimentally. Methods based on arguments
of crystallization kinetics (30, 31) and packing similarity (32)
have been proposed. However, the most developed methodology
involves a series of molecular dynamics (MD) and enhanced
sampling simulations to group the CSP structures into free energy
clusters (33–40). This method has a strong physical basis and has
been successfully applied to a variety of systems. Nevertheless,
the protocol has not become widely adopted primarily due to its
complexity, both in the simulations and in the processing and
analysis of the results. Furthermore, many of the studies reported
are limited by using common MD force fields rather than the
more elaborate and accurate energy models typically required for
CSP. Consequently, the results are from a different energy surface
than that of the original CSP leading to ambiguity regarding the
connection between the two.

An alternative method for exploring energy landscapes is the
threshold algorithm (41, 42), which we recently extended to
molecular crystals (43). This algorithm, based on Monte Carlo
(MC) simulations, estimates energy barriers between minima on
a continuous energy surface using discrete energy thresholds, also
called lids. An initial point on the landscape is required as the
starting configuration for each threshold simulation, from which
a random walk is initiated with steps being accepted strictly if
the energy of the resulting configuration is below the current
energy threshold. In the case of molecular crystals, the available
MC moves include molecular translation and rotation, as well
as unit cell changes. Due to the energy threshold, the trajectory
of the random walk is constrained to explore only minima that
can be reached by a path wherein the maximum energy barrier is
less than the threshold energy. In this way, when a new structure
is discovered through energy minimizing an accepted structure,
the upper limit of the corresponding energy barrier between it
and the initial structure can be estimated as being within the
current threshold energy. By iteratively increasing the threshold
energy, the previous energy then becomes a lower bound on the
estimated barrier, allowing for more precise estimates of energy
barriers. In our earlier paper, we explored applying the threshold
algorithm to estimate energy barriers between known polymorphs
or organic molecules, but not to entire CSP landscapes. This was
illustrated through disconnectivity graphs, which group minima
into basins based on their energy barrier from the initial structure
or structures.

Beyond visualizing the connections between minima, the
information in disconnectivity graphs has previously been applied
to simplify energy surfaces (44, 45). With this in mind, we
suspected a similar approach could be applied to CSP landscapes
to account for the coalescence of potential energy minima under
thermal effects, thereby reducing overprediction. Identification
of very low-energy pathways between structures using threshold

MC sampling was not explored in our previous work (43), which
studied observed polymorphs, which must occupy sufficiently
deep energy wells to not interconvert at ambient temperatures.
Herein, we present the realization of applying the approach
to finite-temperature clustering in a method termed threshold
clustering, implemented as an alternative application of the
threshold algorithm and intended as a postprocessing workflow
for CSP landscapes. We demonstrate the workflow on calculated
CSP landscapes for benzene, acrylic acid, and resorcinol—three
systems of varying intermolecular interactions and conforma-
tional flexibility—to investigate the effectiveness at identifying
low-energy connections between CSP structures. The results
show threshold clustering can significantly reduce the number
of candidate structures on CSP landscapes, transforming them to
basin minima on the basis of average thermal energy at ambient
temperature. This is achieved without a complex workflow and
moreover on the same energy surface as the original CSP,
therefore eliminating any ambiguity regarding the connection
between the reduced structure set and the original landscape.

Threshold Clustering Workflow

As illustrated in Fig. 1, the workflow for threshold clustering
begins from a predicted CSP landscape. The lowest energy struc-
tures are selected and for each structure threshold simulations
are initiated with small energy lids, on the order of RT to 2RT
(at 298 K, ca. 2.5 to 5.0 kJ mol−1). Details are provided in SI
Appendix. All MC trajectories are performed in the original unit
cells; it is possible that lower energy pathways could be located
in supercells of the CSP structures, but we are initially interested
in the effectiveness of sampling with the smallest possible unit
cells. Accepted structures from the MC trajectories are energy
minimized to identify the unique minima explored by each
trajectory. The optimized structures are subsequently compared
pairwise to remove duplicates and identify mutual structures
between trajectories, which represent connections between the
trajectories and therefore initial structures. Connected trajectories
represent a basin, and if a connection is found to a trajectory
within a basin, this becomes a connection to the basin. Through
this, basins can be connected to form larger basins. Construction
of disconnectivity graphs from threshold simulations is discussed
in further detail in reference (43).

Accurate structure comparisons are important, and here, we
employ a two-stage procedure consisting of constrained dynamic
time warping (46) comparisons of simulated powder X-ray
diffraction patterns generated by PLATON (47) followed by fur-
ther molecular cluster overlay comparisons of the resulting unique
structures using the COMPACK algorithm (48) implementation
within the Cambridge Structural Database python API (49).
COMPACK is widely used for structure comparison in CSP,
such as in the blind tests of CSP (50). This multistage procedure
allows high throughput while retaining high confidence in the
final results. With the connections in hand, the disconnectivity
graph can be constructed. While this is not strictly necessary, the
graph provides useful insights into the clustering and introduces
minimal cost. From the connectivity, the grouping of structures
into basins separated by small energy barriers is revealed. The
clustered landscape is then produced by selecting the lowest
energy structure in each basin.

Results

To demonstrate threshold clustering initial CSP landscapes were
generated for benzene, acrylic acid, and resorcinol using our
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Fig. 1. The workflow for threshold clustering: structures are selected from the CSP landscape and the local region around the corresponding minima sampled
by threshold Monte Carlo trajectories with a small energy lid proportional to average thermal energy. Accepted structures from the threshold trajectories are
energy minimized revealing the minima visited by each trajectory. Structure comparisons of these optimized structures identify mutual, connecting structures
between trajectories. Connected structures are then grouped into basins and the disconnectivity graph is constructed. Finally, the basin minima are extracted
to yield the clustered landscape. Below a hypothetical energy surface containing two basins and the corresponding disconnectivity graph from sampling the
local area (blue) with threshold Monte Carlo trajectories and two lids illustrates how the seven minima could be reduced to the two basin minima (colored
green).

GLEE program (15). Further details are specified in Materials
andMethods. Notably, for benzene and acrylic acid the molecular
geometries were constrained to be rigid, and the threshold
simulations used the same intermolecular force field energy
model as the CSP. In the case of resorcinol, to account for
the molecule’s conformational flexibility, the predicted structures
were relaxed using dispersion-corrected third-order tight-binding
density functional theory (DFTB3-D3), and this energy surface
was used in the subsequent threshold simulations.

Our first threshold clustering simulations were performed
on crystalline benzene, a system that has been well-studied
within the CSP literature, including in studies into reducing
overprediction (33, 39). Experimentally two forms have been
fully characterized: the ambient pressure form I and the high-
pressure form III. Other high-pressure forms have been proposed
but have not yet been conclusively determined (51). The 100
lowest energy predicted structures, representing an energy cutoff
of 7.5 kJ mol−1 from the global minimum and including matches
to both experimental polymorphs, were selected from the CSP
landscape. Simulations were run with two energy lids, first at
2.5 then at 5.0 kJ mol−1 from each of these 100 structures.
The results from the threshold simulations show a significant
elaboration of the low-energy region, the number of unique
structures increasing to nearly six times that of the initial set.
This filling-in of the landscape is a notable benefit of sampling
the regions around CSP structures and augments the sampling
of the original CSP method. Moreover, because the space group
symmetry is removed before the threshold simulations (to avoid
symmetry constraints on the transitions between structures), new
structures are located in space groups outside the initial CSP
search. In the case of benzene, the initial CSP searched 25 space
groups. However, using PLATON (47) to add symmetry to the

unique structures from the threshold simulations, we find 39
space groups represented. A further consequence of removing
the space group symmetry is some of the CSP structures are
no longer at minima on the energy surface (28), hence there
are differences between the initial structures before and after
the threshold simulations, including a small number of minima
coalescing; this is described further in SI Appendix.

The disconnectivity graphs from the threshold simulations at
both 2.5 (SI Appendix, Fig. S3) and 5.0 kJ mol−1 (Fig. 2C ) indi-
cate a high degree of connectivity between the sampled benzene
structures. Even restricting to connections below 2.5 kJ mol−1,
only eight distinct basins are observed, and increasing the
energy threshold to 5.0 kJ mol−1 connects the entire low-energy
region into a single basin. The energy minimum of this basin
corresponds to the ambient pressure form I structure. Notably,
the high-pressure form III structure is indicated to not be stable
at the ambient pressure of the calculations and transitions to form
I as expected. Therefore, clustering the landscape into the basin
minima yields a reduced landscape consisting of only the form I
polymorph.

While the results for benzene are undoubtedly an impressive
result, it is worth noting that the interactions in crystalline
benzene are mostly weak dispersion interactions, and thus low-
energy barriers between structures are expected. By contrast,
modern organic CSP targets typically have a range of interactions
of different strengths, including notably hydrogen bonds. Indeed,
finding transitions between hydrogen bonding motifs has been
a challenge for MD-based methods since these generally tend
toward sampling transitions via the weakest interactions (34).
Consequently, connections are found largely between structures
with the same hydrogen bonding motif. Monte Carlo methods
are less inhibited in this regard due to the sampling not being
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Fig. 2. The progression of the predicted landscape for benzene from the initial CSP landscape (A) to the clustered low-energy region (B). The connectivity
between the CSP structures is detailed in the disconnectivity graph (C) constructed from the results of the threshold simulations with energy lids at 2.5 and
5.0 kJ mol−1. The overall landscape from the threshold simulations (D) indicates both the initial structures (CSP) and those found during the MC sampling (MC)
along with the basin minima from both the 2.5 and 5.0 kJ mol−1 lids. Structures matching the experimental ambient pressure form I and high-pressure form
III are indicated. The MC structures have been omitted from the disconnectivity graph for clarity.

directed by the gradient of the energy surface, and we see this as
a potential advantage of threshold clustering.

To investigate this point, we next applied threshold clustering
to the CSP landscape of acrylic acid, which features a number
of hydrogen bonding motifs, including dimers, chains, and even
tetramers, and includes matches to both of the experimental
forms, I and II. The results of the threshold simulations on the
100 lowest energy structures, which represent an energy cutoff of
5.0 kJ mol−1 from the global energy minimum, with an energy
lid of 5.0 kJ mol−1 are shown in Fig. 3. The disconnectivity graph
reveals a larger number of basins than seen for benzene, consistent
with the stronger interactions leading to higher energy barriers,
and moreover, by coloring the structures that correspond to either
dimer or chain hydrogen bonding motifs, it is apparent the basins
are largely distinguished by these motifs. However, there are
notable exceptions in a number of the dimer basins where mixed
dimer-chain structures are observed (SI Appendix, Fig. S4). In
one basin, we even identify pathways from dimer structures to
chain structures. The mixed structures are particularly interesting
as they present a situation in which half of the unit cell has
shifted from the dimer motif to the chain motif, a possible
intermediate stage between chain and dimer structures. These
transitions between hydrogen-bonded chain and dimer structures
are only observed in trajectories initiated from structures where
the carboxylic acid groups are arranged in columns (Fig. 3C ),
each group directly above and below another. No transitions are
observed for dimer structures where the carboxylic acid groups

are surrounded by alkene groups (Fig. 3D), which appears to
inhibit facile interconversion.

Reducing the original CSP landscape to the basin minima
identified in the threshold simulations shows a significant
reduction in the number of putative structures, yet the matches
to both experimental forms are retained. The fact that the
two experimental forms do not cluster together despite having
the same hydrogen bonding motif is encouraging. There is
experimental evidence that the high-pressure form II has a degree
of kinetic stability at lower pressures, suggesting the barrier
between the forms is not negligible (52). This result is thus a
good illustration of how basins with the same structural motif
will not necessarily have a low-energy pathway between them.

The previous two systems were studied using rigid molecules
on an energy surface calculated from an intermolecular potential.
However, there have been significant advances in CSP to account
for crystal structures of conformationally flexible molecules
(50), which are especially significant for pharmaceuticals. To
investigate these systems, we have modified our original threshold
algorithm implementation to allow for torsional moves and to
use energy models that account for not only the intermolecular
energy but also the intramolecular energy. With this in hand,
we could investigate threshold clustering on a system involving
conformationally flexible molecules, in this case, resorcinol.

Crystalline resorcinol has been well-studied due to being
an early example of polymorphism and one of the simplest
examples of conformational polymorphism. The α form is stable
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Fig. 3. Threshold clustering results of the 100 lowest energy crystal structures predicted for acrylic acid showing the disconnectivity graph from connections
within 5.0 kJ mol−1 (A), and the predicted landscape (B). The disconnectivity graph is colored by the corresponding hydrogen bonding motif. Structures that
are not purely dimer or chain have been colored gray. Matches to the experimental forms I and II are indicated. The crystal structures of forms I (C) and II
(D) illustrate the two common dimer packings, differentiated by the carboxylic acid groups being either stacked (form I) or else surrounded by alkenes (form II).
MC Structures that were not part of the initial CSP have been omitted from the disconnectivity graph for clarity.

at low temperatures and consists of molecules in an anti-anti
conformation whereas the β form is stable at high temperature
with the molecules adopting an anti-syn conformation. A third
form, ε, has been reported, grown concomitant with β and with
a similar conformation (53). The α and β forms both have a
single molecule in the asymmetric unit (i.e., Z′ = 1) and good
matches are found by the CSP search. The ε form, being Z′ = 2,
was not located by the search, which was restricted to Z′ = 1 and
the Pna21 space group.

The results of the threshold simulations on the 50 lowest
energy structures predicted for resorcinol, ranked by DFTB3-D3,
are presented in Fig. 4. The first observation from these results
is that the internal degrees of freedom dramatically increase the
number of energy minima found beyond the initial structure
set (i.e., MC structures). Overall, from the threshold simulation
trajectories a total of 2,696 unique structures were identified;
the underlying potential energy surface of crystalline resorcinol is
very rugged. Nevertheless, significant reduction is still observed
after threshold clustering, yielding 18 distinct basins. Considering
the landscape following threshold clustering, it is evident that the
basin minima tend toward the higher density predicted packings.
However, it is notable that again the two experimentally observed
polymorphs are retained. Further insight is revealed by coloring
the disconnectivity graph, this time according to whether the
conformations in each structure are closer to the anti–syn or
anti–anti conformation. From this, it is apparent that the basins
are distinguished by the conformation and no transitions are
observed from the anti–anti to the anti–syn or vice versa below the
5.0 kJ mol−1 lid. This is consistent with the expected difficulty of

the transition, involving rotating multiple hydroxyl groups 180◦
while breaking and forming hydrogen bonds. We do find several
packings that are amenable to the hydrogen bonding of both
conformations (SI Appendix, Fig. S6), and we suspect that these
may have lower energy transitions between the conformations
than other packings that are only favorable for one conformation.
Although tight-binding DFT is not expected to be generally
reliable for final energies of CSP structures (54, 55), the results
for resorcinol demonstrate that threshold clustering could be
effective after an intermediate optimization using DFTB3+D3,
in advance of higher-level DFT reoptimization.

Discussion

Overall, the results presented for benzene, acrylic acid, and
resorcinol demonstrate threshold clustering can meaningfully
reduce overprediction in CSP landscapes. However, we do not
expect that every structure in the resulting landscapes will be an
observable polymorph. The accuracy of the threshold clustering
will depend on the completeness of the sampling, as well as the
accuracy of the energy model and thus the resulting estimated
energy surface. Structures that are poorly ranked are likely to
be clustered out, including experimental structures that are not
the lowest energy minimum within their basin. Additionally,
most CSP energy models, including those used here, yield
potential energy surfaces. The energetic reranking due to lattice
dynamical contributions to entropy and even zero-point energy
can be significant compared to the potential energy differences
between CSP structures (19, 56). These could be considered
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Fig. 4. The disconnectivity graph constructed from threshold simulations on
the 50 lowest energy predicted resorcinol crystal structures with an energy
threshold of 5.0 kJ mol−1 (A). The basin minima from the disconnectivity graph
are identified on the predicted landscape (B) and matches to the experimental
� and � forms are indicated. MC Structures that were not part of the initial
CSP have been omitted from the disconnectivity graph for clarity.

when identifying the basin minima and, in the case of zero-point
energy, could be considered when assessing the magnitude of
energy barriers. Consequently, compared to threshold clustering,
a benefit of MD methods is that they inherently operate on the
free energy surface. Of course, this is not strictly an issue with
the threshold clustering algorithm and, assuming a suitable free
energy model can be supplied, we expect the approach will work
equally well.

Beyond the energy model, an important consideration for
threshold clustering is how the structures from the overlapping
trajectories are clustered. In this study, we simply clustered
together all structures that could be reached through any series
of transitions as long as each step in the path did not exceed
the energy threshold. Besides the issue of how feasible a series
of single-crystal to single-crystal transitions is, it is also possible
to imagine, if trajectories are initiated from minima close to
the top of the basin, a trajectory may climb out of the basin
and into another. With the clustering used here, this would
cause the two basins to be erroneously clustered into a single
basin. The results detailed here, however, are not indicative of
overclustering, and moreover, there are clear similarities between
many of the clustered structures. We expect that this is due to the
majority of the CSP minima sampled being relatively low in the

basins, possibly reflecting asymmetric area distributions among
the energy minima, wherein lower energy minima have larger
basins of attraction than higher energy minima and so are more
likely to be found by a uniform sampling of the energy surface
(57). Nevertheless, if ergodicity is achieved from minima within
the threshold energy to the top of the basin, the possibility of
overclustering with the current clustering approach remains. To
avoid this entirely will thus require either changing the clustering
to only group structures within a specified energy from the lowest
energy structure in each basin (higher energy structures that
connect to the basin being discarded) or generating the initial
CSP landscape with methods that target basin minima, such as
basin-hopping and simulated annealing.

With these considerations in mind, there are a number of
benefits we see with the threshold clustering approach that
warrant further development of the method. Foremost is the ease
of implementation with a large range of energy models, especially
those common in CSP, allowing direct comparison between the
reduced structure set and the original predicted landscape. While
enhanced sampling MD approaches could also be implemented
with any energy model, the computational expense of dynamics
simulations is much more limiting than the basic requirement of
single-point energy evaluations within the threshold algorithm.
A further and perhaps less obvious benefit is the simplicity of
the method. Indeed, the primary obstruction to wider adoption
of methods for reducing overprediction, especially the MD and
enhanced sampling approach, is the added complexity and cost
over performing the initial CSP. The proposed workflow for
postprocessing of a CSP ensemble of structures is relatively
simple, highly parallelizable, and avoids the need to define
collective variables to enhance sampling in MD workflows, which
requires expert knowledge. Indeed, the general trend in reported
CSP studies is toward investing resources in more accurate energy
rankings as opposed to reducing candidate structures. However,
the cost of threshold clustering is reasonable, the bulk being in
the lattice energy minimizations as opposed to the Monte Carlo
trajectories, which can be relatively short due to the small, highly
constrained search space. This is further emphasized considering
the convergence of our simulations (SI Appendix, Fig. S7), which
suggests we could have achieved almost identical results with a
third or less of the computational cost. Despite erring on the side
of oversampling in the current study, the benzene and acrylic
acid results were still produced in one day using moderate high-
performance computing resources SI Appendix, and the resorcinol
results, using DFTB3-D3, in less than three days. We expect this
small cost to make threshold clustering practical and appealing
to CSP researchers and practitioners alike.

In conclusion, we have presented an application of the
threshold algorithm for molecular crystals: reducing CSP over-
prediction. We demonstrated this method, termed threshold
clustering, on three systems with varying intermolecular in-
teractions, conformational flexibility, and energy models with
the results showing that it can significantly reduce the number
of candidate structures on CSP landscapes without discard-
ing matches to experimental structures. Specifically, using a
5 kJ mol−1 threshold, for benzene 100 initial CSP structures
were reduced to 1, for acrylic acid a reduction of 100 to 30
structures was achieved, and for resorcinol 50 initial structures
were reduced to 18. While threshold clustering does not represent
a singular solution for overprediction, and many of the factors
that contribute to overprediction, in particular crystallization
kinetics, will still need to be addressed, we see threshold clustering
as a valuable addition to the toolset for identifying observable
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polymorphs. We expect the reduced set of structures to combine
synergistically with methods such as DFT+D calculations to more
accurately determine energy rankings, dynamics simulations to
probe thermal stability and thermal averaging, and rugosity
calculations (32) to estimate the relative ease of crystallization.
Ongoing studies are investigating a number of optimizations and
improvements to the algorithm, including convergence criteria
to improve sampling efficiency and more system-specific energy
models, such as machine-learned and tailor-made force fields, to
improve the accuracy of the underlying energy surface. Overall,
we believe the commonalities with CSP methods and the modest
cost to be key benefits of the method. Undoubtedly, advancing
methods for reducing overprediction that are simple and more
accessible is an essential step toward the ultimate objective of
accurately predicting observable crystal structures.

Materials and Methods

The initial CSP landscapes for benzene, acrylic acid, and resorcinol were
generated using our GLEE program (15). For the CSPs of benzene and acrylic acid,
we followed our previously described methodology based on rigid-body lattice
optimizations using an empirically parametrized intermolecular atom–atom
exp-6 potential combined with atomic multipole electrostatics. The molecular
geometries were optimized at the B3LYP/6-311G(d,p) level and held fixed
throughout. A quasi-random search of the lattice packing space with one
molecule in the asymmetric unit was then conducted in selected space groups.
For benzene and acrylic acid, the 25 most common space groups for organic

crystals were searched. Valid structures were lattice energy minimized using the
intermolecular force field. The 100 lowest energy CSP structures for each system
were submitted to the threshold clustering workflow using the same energy
model.

In the case of resorcinol, to account for conformational flexibility, the CSP
was conducted with a precalculated pool of rigid conformations, and trial crystal
structures were generated by randomly selecting a conformation from the pool.
The pool of conformations was created by fixing one of the –OH group torsions in
an anti position while stepping the other through 360◦ in 40◦ increments. The
conformations were then geometry optimized at the B3LYP/6-311G(d,p) with
the –OH torsions fixed. The CSP of resorcinol was restricted to the space group of
the experimental α and β forms, Pna21, and one molecule in the asymmetric
unit. Valid structures were initially minimized using the same intermolecular
force field energy model described for benzene and resorcinol. Thereafter, the
unique structures were fully relaxed with DFTB3-D3. The threshold simulations
were then conducted from each of the resulting 50 lowest energy structures using
the DFTB3-D3 energy model. Full details of the CSPs and threshold simulations
are provided in SI Appendix.

Data, Materials, and Software Availability. .cif files data have been
deposited in PURE (58).
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