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Summary

CRISPR screens are used extensively to systematically interrogate the phenotype-to-genotype 

problem. In contrast to early CRISPR screens, which defined core cell fitness genes, most current 

efforts now aim to identify context-specific phenotypes that differentiate a cell line, genetic 

background or condition of interest, such as a drug treatment. While CRISPR-related technologies 

have shown great promise and a fast pace of innovation, a better understanding of standards 

and methods for quality assessment of CRISPR screen results is crucial to guide technology 

development and application. Specifically, many commonly used metrics for quantifying screen 

quality do not accurately measure the reproducibility of context-specific hits. We highlight the 

importance of reporting reproducibility statistics that directly relate to the purpose of the screen 

and suggest the use of metrics that are sensitive to context-specific signal. A record of this paper’s 

Transparent Peer Review process is included in the Supplemental Information.
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Graphical Abstract

eTOC blurb (in brief)

Reproducibility measurements are crucial for data interpretation. The signal of interest in context-

specific CRISPR screens is often sparse. We show that sparsity complicates the interpretation 

of standard reproducibility measures like replicate correlation. We provide recommendations for 

reporting reproducibility of CRISPR screens and present the WBC score as an improved metric.
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CRISPR screens see widespread use in the functional genomics community for interrogating 

gene function. Most prominently, loss-of-function CRISPR screens measure how the 

perturbation of each individual gene, across a library of targeted genes, affects cell 

fitness within a pool of cells. Each gene’s measurement in essence is composed of 

three elements: a fitness effect common to all cell types, a fitness effect specific to the 

biological context of the experiment (including cell type), and measurement error. Focusing 

on the first element, CRISPR screens completed across hundreds of different human cell 

types have now definitively identified the core genes that are essential across many cell 

types 1,2. Given that the core essential genes have been well-established, many CRISPR 

loss-of-function screens now focus on identifying genes that are essential in specific 

contexts, including different cell types, genetic backgrounds, or environmental conditions 
1,3-8. Context-specific gene essentiality is important to explore because it can potentially 

help to guide functional annotation of the majority of genes in the human genome or 
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elucidate disease mechanisms and therapy possibilities. However, the reproducibility of the 

context-specific effects discovered by CRISPR screens is inconsistently reported. Biological 

replicate screen reproducibility is typically reported using correlation measures on the level 

of normalized readcount data or fitness effects. At those processing steps, the data largely 

reflects covariation due to the gRNA representation in the library and/or the consensus (not 

context-specific) gene essentiality, respectively – neither provides an accurate estimate of 

the reproducibility of context-specific effects, which is often the main focus of the screen. 

Moreover, the interpretation of the commonly used metric, a correlation coefficient, is 

unclear due to the typical sparsity of effects in such screens.

To illustrate our point, we assess alternative reproducibility metrics across data processing 

levels of differential genome-wide CRISPR-Cas9 screens to identify genetic interactions 

(GI) with the fatty acid synthase (FASN) 9. First, we report the Pearson correlation 

coefficient (PCC) between independently replicated screens at the following points of data 

processing: starting gRNA abundance, end gRNA abundance, a fitness score reflecting the 

log-fold-change (LFC) between the end and starting gRNA abundance, the context-specific 

effect as measured by the differential LFC (dLFC; raw GI score), and finally, a fully 

normalized dLFC score (expressed as the qGI score, see 9 for details) (Figure 1a).

Within-context (FASN KO) replicate correlations were highest for starting readcounts (r 

= 0.97 for gRNA, r = 0.97 for gene-level measures), reflecting that the gRNA library 

distribution is reproducible (Figure 1b). Removing this library effect from the endpoint 

readcounts to obtain LFC fitness values also results in high PCCs at the gene-level (r = 0.92) 

and slightly lower gRNA-level PCCs of 0.82 (Figure 1b). This shows that both unwanted 

technical features of the experiment and general fitness effects are highly reproducible. 

However, in this context, we aim to identify GIs with FASN, i.e. FASN-specific fitness 

effects, and thus, all of the measures above fail to measure the reproducibility associated 

with the focus of our screen. Once dLFC values are computed between the FASN KO query 

and wild-type reference screens, the PCC between replicate screens drops substantially 

to 0.3 (gRNA-level) and 0.5 (gene-level) and further to 0.21 (gRNA-level) and 0.42 (gene-

level) when experimental artifacts are computationally normalized, which is reflected in the 

qGI score (Figure 1b). In summary, the replicate correlations decrease with more accurate 

quantification of the biological signal of interest, which is context-specific effects (in this 

case, GIs). Importantly, fitness score (LFC)-based replicate correlations cannot approximate 

context-specific effect reproducibility (Figure S1a-c), and such comparisons are particularly 

problematic for comparative evaluation of data from different sets of genes or different cell 

models.

To illustrate why focusing on the appropriate screen statistics is important for reporting 

reproducibility, we further analyzed the FASN KO, but compared it to five non-FASN 

KO screens. Under the simple assumption that biological replicates of the same genetic 

screen should exhibit more similarity than genetic screens with different query mutations, 

we computed a score that captures the similarity of two or more replicates of the same 

screen relative to the similarity of different screens, which we will subsequently refer to 

as the Within-vs-Between context replicate Correlation (WBC) score (see STAR Methods). 

Despite their high correlations, readcounts and LFC data did not distinguish within-context 
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(same KO) replicates from between-context (different KO) pairs (Figure 1c), confirming 

that the high similarity does not indicate reproducibility of the main quantity of interest. 

In contrast, despite low within-context replicate PCCs, the dLFC measure exhibited strong 

WBC scores (z > 3), and these were further improved in the qGI score (Figure 1c). We 

note that only the context-specific scores (dLFC and qGI) capture the biologically relevant 

signal in this case, which are genetic interactions with the FASN query mutation. For 

example, only dLFC and qGI scores are able to identify the gene LUR1 as a top interacting 

partner (Figure 1d), which was recently characterized as playing a functional role in lipid 

metabolism with FASN 9. Using simple replicate PCC as a measure of reproducibility, 

one would conclude that these context-specific scores are of lower quality than the less 

biologically relevant scores from earlier stages of data processing, but a context-specific 

reproducibility score such as the WBC score suggests the opposite. Both the metric 

one chooses to quantify reproducibility and the stage of data processing at which this 

measurement is taken are important for making accurate conclusions about data quality.

To demonstrate the generality of our findings beyond genetic interaction screens, we 

performed a similar analysis on the reproducibility of cell line-specific effects in 693 screens 

within the Cancer Dependency Map 1,8. We made the assumption that screens performed 

in the same cell line (replicate screens in this case), contain context (cell line)-specific 

effects that distinguish a given cell line from other cell lines, and that those effects are 

quantified by dLFC rather than LFC values. We tested how the PCC and WBC quantify 

screen replication and how those metrics change when we focus on the cell line-specific 

(dLFC) signal. Again, we found that the within-context (same cell line) replicate correlation 

decreased substantially between the fitness effect (LFC; mean r = 0.81) and the cell 

line-specific deviation from the consensus fitness profile (dLFC; mean r = 0.47) (Figure 

1e). In contrast, the WBC score indicates that the dLFC metric reflects context-specific 

signal with much higher quality (Figure 1f), which is the main goal in building such a 

cancer dependency map. Specifically, significant (z > 3) and highly significant (z > 5) 

reproducibility scores for cell line-specific effects are found for 99.9% and 91.3% of all cell 

lines by using the dLFC metric, respectively, while only 10.1% and 1.2% of cell lines reach 

the same significance level when using the LFC metric (Figure 1f). A metric like the WBC 

score provides additional resolution compared to simple correlation measures, emphasizing 

the reproducibility of context-specific effects (Figure 1g-i; Figure S1d). We note that the 

antagonistic relationship between replicate correlation and data normalization extends to 

non-CRISPR screens, including the most comprehensive GI data to date, recorded in yeast 

(Figure S2a, b) 10,11.

Perhaps one of the reasons why informative reproducibility measures are not consistently 

reported is that they tend to be relatively low, which may be viewed as evidence for poor 

quality data. How high should we expect replicate correlation to be for a high-quality 

CRISPR screen? Global metrics such as the PCC are highly impacted by the sparsity of 

the signal one is measuring, and in most cases, one would expect context-specific genetic 

effects to be rare 8-10. For instance, simulated genome-wide screening data (~18k genes) 

with normally distributed noise and 18 (0.1% density) or 180 (1% density) strong (12σ) 

true hits, densities typical of context-specific screens, would result in a PCC of 0.13 and 

0.59, respectively. In contrast, a hit-density of 10%, which is more typical for pure fitness 
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phenotypes in genome-wide screens, results in a PCC of 0.93 (Figure 1j). Thus, we should 

expect low PCC measures in genome-scale screens even where a small number of hits are 

highly reproducible due to the sparsity of context-specific fitness effects.

We note that there have been other complementary efforts to establish best practices for 

conducting CRISPR screens and analyzing the resulting data 2,12,13. In particular, Behan 

et al. recognized the challenges of computing correlation between replicate screens based 

on whole dependency profiles. Specifically, they noted that including the core essential 

genes in this calculation inflates the correlation such that replicates of the same screen are 

generally less distinguishable from replicates of different screens. Second, they noted that 

including guides targeting genes that never showed phenotypes led to pessimistic estimates 

of reproducibility due to the sparsity of signal across the dependency profile. Behan et al. 

addressed these issues by pre-processing the data to find the most variable signal (excluding 

both core essential genes and genes with no phenotypes) and to compute correlations on 

that subset of the data, which provides a more informative report of the data reproducibility. 

We address related issues here, but rather than pre-filtering of profiles, which may depend 

on the specific gRNA library used or a large collection of screens, we instead suggest that 

reproducibility analysis should be performed on scores that capture context-specific signal 

(e.g. dLFC). Furthermore, we propose a new metric, the WBC score, that is more directly 

interpretable than a correlation coefficient when applied to a sparse profile. Our suggested 

approach can be applied to a variety of CRISPR screening contexts.

In conclusion, we highlight the importance of reporting appropriate reproducibility statistics 

for CRISPR screens. Biological replicate screens should be performed to establish the 

quality of data in any screening context, and importantly, the reported statistics should 

directly relate to the purpose of the screen. In addition to standard correlation measures, we 

suggest the use of additional metrics, such as the WBC, that are sensitive to context-specific 

signal.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be 

directed to and will be fulfilled by the lead contact, Maximilian Billmann 

maximilian.billmann@gmail.com).

Materials availability—No materials have been generated for this study.

Data and code availability—All data had been publicly available prior to this study 
8,9,11. The code implementing the WBC score is provided as Supplemental Method S1. Any 

additional information required to reanalyze the data reported in this paper is available from 

the lead contact upon request.

METHODS

Replicate correlation of genome-wide CRISPR-Cas9 screens in HAP1 FASN 
KO cells—HAP1 genome-wide CRISPR-Cas9 screening data was taken from 9. The three 
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biological replicates were independently screened (including gRNA library preparation and 

transfection). The gRNA-level comparisons use values from 70,006 gRNAs that had an 

initial abundance at the start of the experiment of at least 40 readcounts. The gene-level 

comparisons use values from 17,804 genes, considering a gene whenever at least two gRNA 

sequences pass all QC thresholds. The fitness scores represent the log2-fold-change (LFC) 

between the start and endpoint gRNA abundance. The quantitative genetic interaction (qGI) 

score represents the differential fitness effect between a wildtype control and query gene 

(here FASN) knockout screen after correcting query gene-unspecific screening artifacts. 

LFC and qGI scores were generated as described in 9.

The Within-vs-Between context replicate Correlation (WBC) score—To define 

the Within-vs-Between context replicate Correlation (WBC) score for a given screen, its 

biological replicate correlation is scaled to its expected background correlation distribution: 

the mean and standard deviation of its correlation with screens performed in another context 

(e.g. query mutation). This converts the correlation coefficients into a metric with an 

unambiguous statistical interpretation that can be interpreted as a z-score. Notably, each 

context (e.g. a set of screens done in a cell line within a larger set of screens covering 

multiple cell lines) creates its own background correlation distribution. This is important, 

because even at the same data processing level, signal sparsity substantially differs between 

contexts, and the background correlation is dependent on the abundance of the within-

context signal. An example for this trend is illustrated for 693 distinct cell lines taken from 

the DepMap (Figure S3a, b).

For the example shown in detail in this work, the FASN genetic interaction screens, genome-

wide CRISPR-Cas9 screens completed in isogenic HAP1 cells were divided into those 

harboring a FASN loss-of-function mutation (n = 3) and those harboring a mutation different 

from FASN (n = 5), namely LDLR, SREBF1, SREBF2, ACACA and C12orf49/LUR1. 

At each data processing step, all pairwise Pearson correlation coefficients (PCC) within 

the FASN KO context and between FASN KO and each of the 5 remaining KO contexts 

were computed. From these comparisons, the mean PCC (ρwitℎin) and the WBC score were 

computed as follows:

W BC = ρwitℎin − ρbetween
σbetween

Where:

ρwitℎin = ∑i = 1
N ρi
N

ρbetween = ∑j = 1
M ρj
M

σbetween = ∑j = 1
M (ρj − ρbetween)2

M − 1

Here, N refers to the 3 possible pairwise comparisons between FASN replicated screens 

(within-FASN KO), and M refers to the 15 possible pairwise combinations between FASN 

replicated screens and LDLR, SREBF1, SREBF2, ACACA and C12orf49/LUR1 screens.
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While larger N and M provide more robust estimates of the WBC, we found that WBCs 

derived from any combination of 2, 3 or 4 of the LDLR, SREBF1, SREBF2, ACACA and 

C12orf49/LUR1 screens as well as only using 2 FASN KO screens provided stable measures 

of context-specific signal that distinguished scores derived from different stages of data 

processing (Figure S4a, b).

Cancer Dependency Map (DepMap) replicate screen comparison—LFC gRNA 

data (20Q3 release) was downloaded from the DepMap website [https://depmap.org/portal/

download/]. gRNA values were mapped and mean-summarized per gene to obtain gene-

level LFC data (shown in Figure 1e). Only cell lines with at least two replicates were 

considered in this analysis. To generate dLFC values, all screens were initially adjusted by 

quantilenormalizing gene-level LFC data using the R function normalizeQuantiles. Next, 

the scores for each gene across all screens were median centered at 0 so that if a gene 

was more essential in a cell line compared to its median fitness score, it had a negative 

score. The reproducibility of the cell line-specific signal was computed both on LFC and 

dLFC-level using the within-cell line PCC and the WBC comparing within-cell line PCCs to 

between-cell line PCCs.

Bin-wise replicate correlation analysis of LFC and qGI scores—To test how 

CRISPR screening fitness scores (LFC) affect the reproducibility of context-specific (qGI) 

scores, each gene was assigned to one of five bins with the intent to keep the range of qGI 

scores constant in each bin and having five incrementally increasing ranges of LFC scores in 

those bins. This was done by moving a window along the vector of qGI scores (representing 

the mean qGI score of both replicated screens). In each window, all genes had similar qGI 

but potentially different LFC scores. Genes with the most extreme LFC values were assigned 

to the first bin, genes with the next most extreme LFC values to the second bin and so on, 

thereby generating five bins with similar qGI ranges but different LFC ranges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Reproducibility metric interpretability is key for omics data analyses and 

integration

• Context-specific CRISPR screens often have low hit density

• Hit density determines the correlation coefficient range for CRISPR screen 

replicates

• The WBC score provides a hit-specific interpretation for a replicate 

correlation
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Figure 1: Reproducibility metrics for context-specific signal in CRISPR screens.
(a) Summary of the context-specific CRISPR-Cas9 screening and differential effect 

identification process. (b) Between-replicate Pearson correlation coefficients (PCC) for 

start and endpoint readcount data, the log2 foldchange (LFC) thereof and the differential 

LFC (dLFC) and qGI scores. Bars represent the mean of the three pairwise comparisons, 

dots represent the individual pairs. Screens were independently performed (starting from 

preparation and transfection of the gRNA library). (c) Within-FASN KO replicate to 

between FASN KO and non-FASN KO screen ratio of PCCs (WBC; see methods for 

details). Bars and dots represent the same as explained in (b). (d) Ranking of LUR1 

(previous C12orf49) among the 17,804 genes screened in FASN KO cells at each data 

processing step as defined in 9. Ranks are means of the three biological replicates (e, f) 
Between-replicate PCC (e) and WBC (f) of LFC and dLFC data from DepMap genome-

wide screens in 693 cell lines. (g, h) Comparison of between screen replicate PCCs on 

LFC and dLFC level for each of the 693 DepMap screens with the dLFC WBC. The four 

cell lines shown in (i) are highlighted. (i) Reproducibility of dLFC effects in four cell lines 

with different sets of replicate PCCs and WBCs. The consensus fitness is the per-gene 

mean LFC value across all replicates and 693 cell lines. The cell line-specific fitness is 
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the per-gene LFC measured in each given cell line (SKBR3 = violet, HCC1187 = purple, 

MEL202 = cyan, A2780 = green). Circle size indicates each gene’s dLFC reproducibility 

and corresponds to the per-gene dLFC product between replicate screens. (j) PCC between 

simulated screening data with normally distributed noise at increasing numbers of hits with 

weak, medium and strong amplitude. Hit strength is defined as a multiple of the standard 

deviation of the noise distribution (σ).
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Biological samples

Chemicals, peptides, and recombinant proteins

Critical commercial assays

Deposited data

CRISPR screening readcount, log2-foldchange 
and qGI data

Aregger et al.9 GEO: GSE148627

DepMap gRNA-level log-foldchange data https://depmap.org/portal/download/ 20Q3: Achilles_logfold_c hange.csv

SGA yeast fitness and genetic interaction data https://boonelab.ccbr.utoronto.ca/condition_sga11 File S3

Experimental models: Cell lines

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA

Software and algorithms

R version 4.2.1 https://www.r-project.org/ NA

Bowtie v0.12.8 http://bowtie-bio.sourceforge.net/index.shtml NA

code implementing the WBC score This Paper Supplemental Information Method S1

Other
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