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Abstract

Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive 

stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical 

development and aging processes. A robust and widely implemented method to map CVR involves 

using a breath-hold task during a BOLD fMRI scan Recording end-tidal CO2 (PETCO2) changes 

during the breath-hold task is recommended to be used as a reference signal for modeling CVR 

amplitude in standard units (%BOLD/mmHg) and CVR delay in seconds. However obtaining 

reliable PETCO2 recordings requires equipment and task compliance that may not be achievable 

in all settings. To address this challenge, we investigated two alternative reference signals to map 

CVR amplitude and delay in a lagged general linear model (lagged-GLM) framework: respiration 

volume per time (RVT) and average gray matter BOLD response (GM-BOLD). In 8 healthy 
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adults with multiple scan sessions, we compare spatial agreement of CVR maps from RVT 

and GM-BOLD to those generated with PETCO2. We define a threshold to determine whether 

a PETCO2 recording has “sufficient” quality for CVR mapping and perform these comparisons 

in 16 datasets with sufficient PETCO2 and 6 datasets with insufficient PETCO2. When PETCO2 

quality is sufficient, both RVT and GM-BOLD produce CVR amplitude maps that are nearly 

identical to those from PETCO2 (after accounting for differences in scale), with the caveat they 

are not in standard units to facilitate between-group comparisons. CVR delays are comparable 

to PETCO2 with an RVT regressor but may be underestimated with the average GM-BOLD 

regressor. Importantly, when PETCO2 quality is insufficient, RVT and GM-BOLD CVR recover 

reasonable CVR amplitude and delay maps, provided the participant attempted the breath-hold 

task. Therefore, our framework offers a solution for achieving high quality CVR maps in both 

retrospective and prospective studies where sufficient PETCO2 recordings are not available and 

especially in populations where obtaining reliable measurements is a known challenge (e.g., 

children). Our results have the potential to improve the accessibility of CVR mapping and to 

increase the prevalence of this promising metric of vascular health.
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1. Introduction

The regulation of cerebral blood flow (CBF) is critical to maintain proper brain function. 

One mechanism that allows for tight regulation of CBF is the dilation and constriction 

of arterioles to increase or decrease blood flow, respectively. This mechanism can be 

characterized by a metric called cerebrovascular reactivity (CVR), defined as the CBF 

response to a vasoactive stimulus. It represents the ability of the brain’s blood vessels to 

dilate or constrict and is thus an indicator of vascular health. CVR has gained attention in 

recent years as an imaging biomarker in a range of pathologies, including stroke (Krainik 

et al., 2005), atherosclerotic disease (Donahue et al., 2014), multiple sclerosis (Marshall 

et al., 2014), moyamoya disease (Mikulis et al., 2005), sickle cell anemia (Václavů et al., 

2019), and brain tumors (Fierstra et al., 2018), among others. In addition, changes in CVR 

throughout developmental (Leung et al., 2016b) and aging (McKetton et al., 2018) processes 

have been reported.

CVR measurements require two components: 1) a vasoactive stimulus to elicit a change in 

blood flow, and 2) a measure of the CBF response. There are a range of different vasoactive 

stimuli and neuroimaging methods to record the CBF response, each with unique advantages 

and limitations. Several excellent review articles explore the rationale and methodological 

considerations for CVR mapping (Fierstra et al., 2013; Liu et al., 2019; Sleight et al., 2021; 

Williams et al., 2021), and we direct the reader to these sources for more details. We will 

focus on an established approach for CVR measurements, which involves a breath-hold task 

during a blood oxygenation level dependent (BOLD) MRI scan (Urback et al., 2017). The 

breath-hold task modulates endogenous levels of carbon dioxide (CO2), which serves as a 

vasodilator, causing a systemic increase in blood flow. The resulting blood flow response 
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throughout the brain is detected by the BOLD MRI contrast, a surrogate measure of CBF 

(Pinto et al., 2021).

Although breath-holds are widely used in CVR mapping (Urback et al., 2017), including 

in populations with known task-compliance challenges (Dlamini et al., 2018; Handwerker 

et al., 2007; Thomason et al., 2005), there are nuances to obtaining accurate CVR 

measurements with this experimental design. Guidance for exemplar CVR measurements 

involves characterizing CO2 changes throughout the task. Commonly, end-tidal CO2, the 

partial pressure of CO2 at the end of an exhale, is measured as a surrogate for arterial 

CO2 (McSwain et al., 2010; Peebles et al., 2007). This allows CVR to be reported in 

normalized, standard units as the blood flow response per unit change of CO2 (%BOLD/

mmHg). However, end-tidal CO2 measurements require external physiological monitoring 

equipment (e.g., gas analyzer), which may not be available in all clinical or research imaging 

centers. Additionally, there are challenges in achieving reliable CO2 recordings. Therefore, 

obtaining end-tidal CO2 measurements, which is critical for standard CVR measurements, 

may not be achieved in all subjects or settings.

The primary complication with end-tidal CO2 data quality in breath-hold tasks is obtaining 

measurements both before and after the breath-hold, which is critical for modeling CVR 

(Bright and Murphy, 2013; Murphy et al., 2011). This can be achieved by designing the 

breath-hold task with expirations both before and after the breath-hold period (Pinto et 

al., 2021). Unreliable estimates of these expiration end-tidal CO2 values may occur if the 

participant simply does not execute them as instructed, for example, by performing a brief 

inspiration instead. In addition, end-tidal CO2 measurements are typically acquired via a 

nasal cannula, which requires a participant to breathe through their nose for the duration 

of the experiment. Lapses in nose-breathing or variations in the pressure of exhaled air 

may also lead to inaccurate end-tidal values. Even in healthy adults, there are challenges 

in achieving successful end-tidal CO2 recordings. In a recent study of 10 healthy adults 

(Moia et al., 2021), 3 subjects were excluded due to poor CO2 data quality. There are 

added difficulties with cooperation in patient cohorts, particularly in those with cognitive 

impairments who may struggle to execute commands (Pujol et al., 1998; Schouwenaars 

et al., 2021). Obtaining high-quality data in younger participants also tends to be more 

challenging, with inconsistent performance of breathing tasks reported among children and 

adolescents (Stickland et al., 2021).

In this work, we aimed to find alternative strategies for mapping CVR that could be used 

in cases where end-tidal CO2 measurements are unavailable or unreliable. Specifically, we 

wanted to develop a method that considers not only the amplitude, but also the timing of the 

blood flow response (Bright et al., 2009; Chang et al., 2008; Duffin et al., 2015; Moia et al., 

2020a). Variations in the response time may occur due to regional variations in the timing 

of arterial blood arrival and local regulation of vessel diameter (Donahue et al., 2016). 

Accounting for this “CVR delay” is not only important to achieve accurate CVR amplitudes 

but also serves as a separate metric of vascular health that is sensitive to cerebrovascular 

pathology (Donahue et al., 2016; Leung et al., 2016a; Sam et al., 2016; Stickland et al., 

2021; Thomas et al., 2014; Thrippleton et al., 2018). We approached this problem in breath-

hold task data using a lagged-general linear model (lagged-GLM approach) (Moia et al., 
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2021, 2020a; Stickland et al., 2021). We then compared results using end-tidal CO2, or two 

alternative regressors (reference signals), in the lagged-GLM (Table 1). These alternatives 

were selected based on the hypothesis they would be less susceptible to events that critically 

disrupt data quality compared to end-tidal CO2.

First, we investigated another measure of respiratory physiology, respiration volume per 

time (RVT) (Birn et al., 2008, 2006). RVT represents changes in both the rate and depth of 

breathing and is obtained by continuously measuring chest position via a pressure-sensitive 

belt worn around the chest or abdomen. RVT is an attractive alternative to end-tidal CO2 

because it also captures whether the participant attempts the breath-hold task. Even if the 

end-tidal CO2 measurements do not reflect a change during the apnea period, there will be a 

decrease in RVT due to the pause in breathing. RVT and end-tidal CO2 are highly correlated, 

have similar overlap in the variance they explain in the BOLD signal, and consistent 

latencies at which they affect the BOLD signal (Chang and Glover, 2009). Additionally, 

a respiration belt is commonly found in most scanner set-ups, making it potentially more 

accessible than end-tidal CO2 measurements.

Second, we investigated a data-driven regressor using the average gray matter BOLD 

timeseries (GM-BOLD). The main advantage of the GM-BOLD signal is that no external 

monitoring equipment is required. Changes in the BOLD timeseries should be evident 

provided the participant attempted the breath-hold and achieved periods of hypercapnia 

(Bright and Murphy, 2013; Stickland et al., 2021). While the global BOLD signal 

or “refined” GM-BOLD regressors have been used in other CVR methods, including 

techniques that capture both amplitude and delay (Geranmayeh et al., 2015; Liu et al., 

2017; Tong et al., 2011; Tong and Frederick, 2014; van Niftrik et al., 2016), our proposed 

approach simultaneously models other regressors (e.g., motion confounds) when searching 

for the optimum delay of the reference signal and outputs amplitude maps normalized to the 

input regressor amplitude (Moia et al., 2020a).

The aim of this work was to test if RVT or GM-BOLD timeseries can be used in a 

lagged-GLM framework to achieve estimates of CVR amplitude and delay that are spatially 

similar to those generated with the gold standard of end-tidal CO2, with the caveat that these 

alternative CVR amplitude measurements will no longer be in the standard, normalized units 

(%BOLD/mmHg) that are recommended for CVR comparisons across people and sessions 

(Kastrup et al., 2001; Murphy et al., 2011; Pinto et al., 2021; Sleight et al., 2021). We 

assess the agreement between CVR amplitude and delay maps in breath-hold fMRI datasets 

with high-quality or “sufficient” end-tidal CO2 data, and in those where end-tidal CO2 

measurements were sub-optimal or “insufficient”. We hypothesized that in a lagged-GLM 

framework, using RVT and GM-BOLD as reference signals would produce CVR amplitude 

and delay measurements that are highly correlated with those produced by high-quality 

end-tidal CO2 measurements. In cases with unreliable end-tidal CO2 measurements, we 

hypothesized that RVT or GM-BOLD timeseries could be used to recover reasonable CVR 

amplitude and delay maps, provided that the participant attempted the breath-hold task.
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2. Methods

2.1. Participants

A subset of the imaging and physiological data used in this manuscript have been published 

previously (Moia et al., 2021, 2020b). The full dataset includes ten healthy subjects (5F, 24–

40y at the start of the experiment) with no history of psychiatric or neurological disorders. 

All subjects completed ten MRI sessions, which were scheduled exactly one week apart at 

the same time of day. MRI scanning took place using a 3T Siemens PrismaFit scanner with 

a 64-channel head coil. The study was approved by the Basque Center on Cognition, Brain 

and Language ethics committee. Informed consent was obtained before each MRI session.

Eight of the ten subjects were included in this analysis (sub-002, sub-003, sub-004, sub-006, 

sub-007, sub-008, sub-009, sub-010), based on those with sufficient data quality in the 

same two consecutive sessions (ses-02 and ses-03). Two additional sessions were included 

from three of the subjects (sub-006, sub-009, sub-010) to capture two consecutive sessions 

(ses-07 and ses-08 for sub-006 and sub-010; ses-08 and ses-09 for sub-009) with insufficient 

end-tidal CO2 timeseries (i.e., low power in the dominant frequency range of the breath-hold 

task, described in greater detail in Section 2.4.1). These eight subjects have similar demo-

graphics to the complete ten (4F, 27–40y).

2.2. Data collection

2.2.1. Magnetic resonance imaging—Subjects underwent a variety of task-based 

and resting-state acquisitions during each MRI session, but the current study focuses 

on the multi-echo fMRI acquisition during a breath-hold (BH) task. The multi-echo 

fMRI protocol was a T2* -weighted, simultaneous multislice (multiband, or MB), gradient-

echo echo planar imaging sequence provided by the Center for Magnetic Resonance 

Research (CMRR, Minnesota) with the following parameters: 340 vol, TR = 1.5 s, TEs 

= 10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°, MB acceleration factor = 4, GRAPPA 

= 2, 52 slices with inter-leaved acquisition, partial Fourier = 6/8, FoV = 211 × 211 mm2, 

voxel size = 2.4 × 2.4 × 3 mm3, phase encoding = AP, band-width = 2470 Hz/px, LeakBlock 

kernel reconstruction (Cauley et al., 2014) and SENSE coil combination (Sotiropoulos et al., 

2013). Prior to the fMRI acquisition, single-band reference (SBRef) images were collected 

for each echo time to facilitate functional realignment and masking, and a pair of spin-echo 

echo planar images with opposite phase-encoding (AP or PA) directions and identical 

volume layout (TR = 2920 ms, TE = 28.6 ms, flip angle = 70°) were acquired to estimate 

field distortions. For anatomical co-registration and tissue segmentation, a T1-weighted 

MP2RAGE (TR = 5 s, TE = 2.98 ms, TI1 = 700 ms, TI2 = 2.5 s, flip angle 1 = 4°, flip angle 

2 = 5°, GRAPPA = 3, 176 slices, FoV read = 256 mm, voxel size = 1 × 1 × 1 mm3, TA = 

662 s) and a T2-weighted Turbo Spin Echo image (TR = 3.39 s, TE = 389 ms, GRAPPA = 

2, 176 slices, FoV read = 256 mm, voxel size = 1 × 1 × 1 mm3, TA = 300 s) were acquired. 

All DICOM files were transformed into NIFTI files with dcm2nii and formated into Brain 

Imaging Data Structure (Gorgolewski et al., 2016) with heudiconv (Halchenko et al., 2019).

2.2.2. Physiological data—During scanning, expired CO2 and O2 pressures were 

recorded via a nasal cannula (Intersurgical) and gas analyzer (ADInstruments ML206). 
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Chest position was measured with a respiratory effort transducer (BIOPAC) placed 

around the upper abdomen, on the area of highest expansion during breathing. These 

measurements were then transferred to a physiological monitoring system (BIOPAC MP150) 

that simultaneously recorded scan triggers. Physiological signals were sampled at 10 kHz, 

starting before and continuing after the fMRI scan to allow for shifting of regressors. Before 

processing, the files were converted to BIDS with phys2bids (The phys2bids developers, 

2019) and the physiological signals were decimated to 40 Hz to reduce file sizes.

2.2.3. Breath-hold task—The BH task paradigm included eight repetitions of a 58 s BH 

trial. Within each trial, there were four paced breathing cycles (1 cycle = 3 s inhale and 3 s 

exhale), a 20 s BH, 3 s exhalation, and 11 s of free recovery breathing (Bright and Murphy, 

2013). Participants were cued with visual instructions projected through a mirror on the head 

coil. A 15 s resting period was appended to the start and end of the paradigm to enable 

shifting of physiological regressors in subsequent analysis.

Prior to the scan, subjects were instructed about the importance of exhaling through their 

nose both before and after the BH period. These exhalations are critical because they provide 

end-tidal CO2 measurements to estimate arterial changes in CO 2 achieved by each BH 

(Bright and Murphy, 2013). If the exhale is not performed properly or the measurement is 

unreliable, it is not possible to obtain a standard CVR estimate in units of %BOLD/mmHg.

2.3. Data analysis

The MRI images and physiological data used in this study are available on OpenNeuro 

at doi:10.18112/openneuro.ds003192.v1.0.1 (Moia, Uruñuela, Ferrer, & Caballero-Gaudes, 

2020). All code for pre-processing of the MRI data has been prepared to be 

run in a Singularity container, which is publicly available at https://git.bcbl.eu/smoia/

euskalibur_container. The pre-processing pipeline is available at https://github.com/smoia/

EuskalIBUR_preproc. Publicly available Python scripts, peakdet (Markello & DuPre, 

2020) and phys2cvr (Moia, Vigotsky, & Zvolanek, 2022), were used for processing of 

CO2 recordings and computation of CVR parameter maps. The open-source Rapidtide 
v2.2.7 toolbox (B. deB Frederick, Salo, & Drucker, 2022) was used for exploratory 

analysis (see Discussion Section 4.3). Additional analysis code and details about how they 

were implemented for this manuscript are shared in the public GitHub repository: https://

github.com/BrightLab-ANVIL/Zvolanek_2022.

2.3.1. MRI pre-processing—Key MRI pre-processing steps are discussed here, and 

more detailed information can be found in Moia et al. (2021). MRI preprocessing was 

performed with a series of custom scripts combining FSL (Jenkinson et al., 2012), AFNI 

(Cox, 1996), and ANTs (Tustison et al., 2014) commands. The T2-weighted image was 

skull-stripped and co-registered to the MP2RAGE. The MP2RAGE was segmented into 

gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) tissues. Then, the 

MP2RAGE was normalized to a resampled version (2.5 mm resolution) of the MNI152 

6th generation template (FSL version, 1 mm resolution) (Grabner et al., 2006). The T2-

weighted image was co-registered to the skull-stripped SBRef image of the first echo. 

Volume realignment of the functional data was performed using the SBRef of the first 
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echo as the reference and applying the spatial transformation to all subsequent echoes 

(Jenkinson et al., 2002; Jenkinson and Smith, 2001). An optimal combination of the 

different echoes was created with tedana (DuPre et al., 2021, 2019), which weights each 

echo timeseries according to the voxelwise T2* value (Posse et al., 1999). Finally, the 

pair of spin-echo images with reverse phase-encoding directions was used to perform 

field distortion correction with Topup (Andersson et al., 2003). The optimally-combined, 

distortion-corrected data were used as the input for CVR modeling.

2.3.2. Reference signals—Three different reference signals were generated for each 

dataset, as depicted in Fig. 1: end-tidal CO2 (PETCO2), respiration volume per time (RVT), 

and the average gray matter BOLD signal (GM-BOLD).

End-tidal peaks were identified with a peak detection algorithm and manually reviewed. 

Linear interpolation was performed between the end-tidal peaks to create PETCO2 

timeseries. Finally, PETCO2 timeseries were convolved with the two-gamma variate 

canonical hemodynamic response function (Friston et al., 1998).

Respiration recordings were processed using a custom MATLAB script. Maxima and 

minima in the belt trace were identified with a peak detection algorithm and manually 

inspected. The computation of respiration volume per time (RVT) requires alternating 

maxima and minima (Birn et al., 2006), but in an end-exhalation BH task, there are 

two consecutive minima due to exhales before and after the hold. To address this, only 

minima preceding the BH period were included. Linear envelopes of these maxima and 

minima were used to compute RVT as previously defined (Birn et al., 2006). Briefly, the 

difference in maxima and minima is computed at each timepoint and divided by the time 

between successive maxima. The RVT timeseries were then convolved with the respiration 

response function (RRF) (Birn et al., 2008). Importantly, all convolved RVT timeseries were 

z-normalized (i.e., zero mean and unit standard deviation). The normalization procedure 

was implemented to account for the high variability in RVT amplitudes (see Supplementary 

Figure S1 and Table S2). All subsequent “RVT” results refer to the convolved, normalized 

reference signal.

The average BOLD timeseries in GM was generated from the optimally-combined, 

distortion-corrected functional data with phys2cvr (Moia et al., 2022b). An eroded version 

of the co-registered GM mask (obtained by zeroing non-zero edge voxels within a 2.5 mm 

sigma Gaussian kernel with fslmaths) was used as the ROI for the average time-course 

extraction. The reference signal was then expressed in signal percentage change.

2.3.3. CVR amplitude and delay estimation—Voxelwise hemodynamic CVR 

amplitude and delay were computed using phys2cvr (Moia et al., 2022b) to implement 

a lagged-GLM framework that has been described previously (Moia et al., 2021, 2020a; 

Stickland et al., 2021). Each reference signal was considered independently from the others, 

but the same procedures outlined below were used for each CVR model.

First, all traces were shifted to maximize the cross-correlation with the up-sampled GM-

BOLD timeseries (40 Hz to match the physiological signals). This “bulk” shift primarily 
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accounts for measurement delay in the physiological recordings. Then, 61 shifted variants 

of each regressor (including the bulk shifted regressor) were created for each reference 

signal, in 0.3 s increments (Moia et al., 2020a). These shifts ranged ±9 s from the 

bulk shift. Separate GLMs were created for each shifted variant. In each case, fMRI 

data were modelled by a design matrix consisting of the shifted reference signal and the 

following nuisance regressors: Legendre polynomials up to the fourth-order, 6 realignment 

parameters, and their 6 temporal derivatives. Each lagged-GLM was fitted via orthogonal 

least squares (Moia et al., 2020a). The lagged-GLM with the maximum full model R2 was 

identified for each voxel; its corresponding shift (in seconds) determined the CVR delay, 

and its associated beta coefficient was extracted and rescaled to be expressed in percentage 

BOLD signal change (%BOLD). Therefore, the lagged-GLM generated two maps for each 

reference signal, as depicted in Fig. 1: CVR amplitude (in units of %BOLD normalized 

to the amplitude of the input regressor) and CVR delay (in seconds). Delay maps were 

centered on the median delay across GM voxels. Both CVR amplitude and delay maps were 

thresholded to remove voxels at or adjacent to boundary conditions (delay = −9, −8.7, + 

8.7, +9 s) because they were considered not optimized by the lagged-GLM (Moia et al., 

2020a). CVR amplitude and delay maps were normalized via nearest neighbor interpolation 

to the MNI152 6th generation template (FSL version, 1 mm resolution) resampled to 2.5 

mm resolution.

2.4. Data summaries and comparisons

2.4.1. Determining sufficient reference signal quality—The quality of reference 

signals for each dataset was assessed by computing the relative power in the dominant 

frequency range of the BH task (0.014 to 0.020 Hz). This range is centered around 0.017 

Hz, which corresponds to the 58 s BH cycle. MATLAB’s bandpower function was used to 

compute the total power between 0.014 to 0.020 Hz, as well as the total power in the signal, 

between 0 Hz and the Nyquist frequency (i.e., 20 Hz). Relative power was then calculated 

using the following equation:

Relative power (%) = Power in BH frequency range
Total Power × 100

Reference signals with greater than 50% power in the BH range were deemed “sufficient”, 

as more than half of the signal power is in the frequency range of interest. In the time 

domain, this relative power threshold corresponds to reference signals with clear signal 

changes during each BH cycle (Fig. 2). Reference signals with less than 50% power were 

categorized as “insufficient”.

2.4.2. Reference signal cross-correlations—Relationships between the reference 

signals for each dataset were assessed by computing the cross-correlation between each 

pair. The “bulk shifted” PETCO2 and RVT signals were used for these comparisons, which 

had already been shifted to maximize the cross-correlation with the GM-BOLD signal 

during CVR modeling (see Section 2.3.3). The additional cross-correlation was performed 

to understand the relationships between signals going into the lagged-GLM and to check for 

any remaining offsets that may explain differences in resulting CVR maps. The GM-BOLD 
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signal was up-sampled to 40 Hz to match the temporal resolution of the physiological 

signals. Using MATLAB’s xcorr function, cross-correlations between each pair of reference 

signals were computed at 0.025 s increments (i.e., 40 Hz) within a range of ±9 s. Pearson 

correlations (r) were transformed to Fisher’s Z values to facilitate group averaging and 

comparisons.

2.4.3. CVR amplitude and delay values—The 98th percentile of brain voxels in each 

CVR amplitude map (after thresholding of voxels at the boundary) was computed using 

the fslstats function in FSL. For each reference signal, the kernel density estimation of 

the distribution of CVR amplitude and CVR delay values was computed with MATLAB’s 

ksdensity function. Distributions were computed in gray matter using the eroded tissue mask 

(see Section 2.3.2).

2.4.4. Spatial correlations between CVR parameter maps—CVR amplitude 

and delay maps for each reference signal were parcellated using FSL’s Harvard-Oxford 

cortical atlas in MNI space (https://identifiers.org/neurovault.collection:262, HarvardOxford-

cortmaxprob-thr25–1 mm), resampled to 2.5 mm resolution. This atlas consists of 48 

cortical parcels and was further split into left and right hemispheres to generate a total of 

96 cortical parcels. Then, the median CVR parameter (i.e., amplitude or delay) within each 

parcel was computed. The 96 median values from any two corresponding CVR parameter 

maps (e.g., two CVR amplitude maps) were then input to determine “spatial” correlations 

(i.e., at the level of the parcels).

Two different types of spatial correlations were performed:

1. Inter-reference: Between CVR parameter maps from different reference signals, 

within the same subject and session (e.g., between PETCO2 CVR amplitude and 

RVT CVR amplitude for sub-002 ses-02),

2. Inter-quality: Between CVR parameter maps from datasets with sufficient 

PETCO2 quality and insufficient PETCO2 quality, for a given reference signal 

and subject (e.g., between a sufficient PETCO2 CVR amplitude map and an 

insufficient PETCO2 CVR amplitude map for sub-006).

For all spatial correlations, the Pearson correlation coefficients were computed and 

transformed to Fisher’s Z. A linear model was fitted, and the beta-coefficients describing 

the slope were extracted. The intercept of the linear model was allowed to vary for both 

CVR amplitude and delay to account for potential offsets between the two inputs.

3. Results

In the following sections, we first describe the reference signals from all datasets in 

our study and distinguish those with sufficient vs. insufficient quality. Then, we show 

inter-reference comparisons for datasets in which all three reference signals have sufficient 

quality. Next, we show inter-quality results (from two sessions) that incorporate one session 

with insufficient PETCO2 quality. Finally, we present the inter-reference comparisons from 

only sessions with insufficient PETCO2 quality. All comparisons are repeated for both CVR 

amplitude and CVR delay.
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3.1. Reference signals

Table 2 summarizes relative power at the BH task frequency for PETCO2, RVT, and GM-

BOLD in all datasets included in our study. We chose a subset of the available data, such 

that 16 datasets included in our study have sufficient PETCO2 quality, and 6 datasets have 

insufficient PETCO2 quality, with relative power below the 50% threshold and reaching as 

low as 4.33% (sub-009 ses-08). Across all datasets considered, insufficient PETCO2 traces 

have 21.1 ± 11.2% relative power (mean±stdev across subjects), while sufficient PETCO2 

traces have 68.0 ± 6.57% relative power. Note that all RVT and GM-BOLD signals have 

greater than 50% relative power, with most far exceeding the threshold. Relative power in 

RVT and GM-BOLD signals is also generally higher than in PETCO2, with relative power at 

86.6 ± 9.4% in RVT signals and 78.7 ± 8.4% in GM-BOLD signals.

The PETCO2, RVT, and GM-BOLD signals for all datasets, in addition to group averages, 

are shown in Fig. 2. For sufficient PETCO2 traces as well as all RVT and GM-BOLD traces, 

there are clear peaks associated with each BH cycle (indicated by the gray bars). These 

signal changes are expected due to periods of apnea, which increase PETCO2 and elicit 

a cerebrovascular response that is detectable by BOLD fMRI. In contrast, the insufficient 

PETCO2 traces lack consistent peaks for each BH cycle, and the magnitude of PETCO2 

changes is smaller. These signal characteristics likely indicate a failure to perform an 

exhalation before and after the BH, or exhalation through the mouth rather than the nose, 

which would not be captured by the nasal cannula. In these datasets, insufficient PETCO2 

traces are not due to a failure to complete the BH task, because these subjects also have clear 

cyclic changes in their RVT signals, indicating long durations of a stable chest position (i.e., 

periods of apnea).

Fig. 2B illustrates the power spectra corresponding to the reference signals in Fig. 2A. The 

BH frequency range is indicated by a dashed rectangle, where most of the signal power is 

expected. There are clear peaks within this window for sufficient PETCO2 signals, as well as 

for all RVT and GM-BOLD signals. However, a peak within the BH frequency range is not 

evident for insufficient PETCO2 signals, which is consistent with the lack of periodic signal 

changes for each BH cycle in the time domain. These power spectra also support the low 

relative power reported for insufficient PETCO2 datasets in Table 2.

All reference signals are highly correlated in datasets with sufficient PETCO2, while 

correlations with insufficient PETCO2 timeseries are much lower. Relationships between 

each pair of reference signals were characterized by cross-correlations. These results are 

summarized in Supplementary Table S1. Datasets with sufficient PETCO2 have large, 

positive cross-correlation amplitudes for the three reference signal comparisons (reported 

as mean±stdev Fisher’s Z values across subjects): PETCO2 & RVT: 0.97±0.23, PETCO2 & 

GM-BOLD: 1.19±0.22, GM-BOLD & RVT: 1.08±0.20. As expected, cross-correlations of 

PETCO2 with RVT and GM-BOLD are lower in datasets with insufficient PETCO2, while the 

correlation between RVT and GM-BOLD is preserved (PETCO2 & RVT: 0.38±0.13, PETCO2 

& GM-BOLD: 0.42±0.15, GM-BOLD & RVT: 1.20±0.22).
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3.2. Sufficient PETCO2 datasets: CVR amplitude comparisons

3.2.1. Inter-reference comparisons—CVR amplitude maps are spatially similar for 

all reference signals, after accounting for differences in scale, in datasets with sufficient 

PETCO2 quality (Fig. 3). For each CVR map, the 98th percentile of CVR amplitude across 

all brain voxels was computed (Supplementary Table S3), and this magnitude was used 

as the positive and negative limits of the color scale. With this scaling method, the CVR 

amplitude maps look nearly identical, though there are small differences particularly in 

voxel clusters throughout WM and CSF regions. The same relative spatial patterns are 

observed in all maps: higher amplitudes in cortical GM, lower amplitudes in WM, and 

negative amplitudes in CSF-filled regions. However, it is important to draw attention to the 

fact that the absolute magnitude and units of these CVR amplitudes are different between 

methods. For example, the 98th percentile CVR amplitudes are 0.78±0.22 %BOLD/mmHg 

for PETCO2 CVR, 2.02±0.40 %BOLD/a.u. for RVT CVR, and 2.31±0.21 %BOLD/%BOLD 

for GM-BOLD CVR.

As expected from the qualitative similarity of the CVR amplitude maps, the distributions of 

CVR amplitude are similar across GM voxels for each method, though they span a different 

range of values (Fig. 4). For all reference signals, the distributions of CVR amplitude are 

consistent both within and between subjects. Note that it may not be appropriate to interpret 

the range of the CVR amplitude distributions, because only PETCO2 CVR amplitude is in 

meaningful units. Normalization of the RVT signal is critical to achieving these similarities 

in CVR amplitude, as the amplitude of the RVT measurement itself is arbitrary, with high 

variability even between two sessions of the same subject (see Supplementary Figure S1 

and Table S2). Supplementary Figure S2 shows the distribution of CVR amplitudes without 

normalizing RVT and illustrates the impact on the resulting unscaled amplitude maps.

CVR amplitudes from each reference signal are highly correlated in datasets with sufficient 

PETCO2 quality. Fig. 5A shows the spatial correlations between CVR amplitude values 

generated by each reference signal (inter-reference correlations) and a visual comparison 

of these spatial correlations from session-to-session for each subject. The correlation 

coefficients, Fisher’s Z transformed correlations, and slopes for the lines-of-best fit are 

also summarized in Supplementary Table S4. All group average inter-reference spatial 

correlations are significantly different from zero (PETCO2 & RVT: Z = 2.15, p<0.001; 

PETCO2 & GM-BOLD: Z = 2.26, p<0.001; GM-BOLD & RVT: Z = 2.25, p<0.001). There 

is no significant difference between the strength of the CVR amplitude spatial correlations 

for each pairwise comparison between reference signals, based on a t-test adjusted for 

non-independent correlations (Howell, 2010) (PETCO2 & RVT vs. PET CO2 & GM-BOLD: 

T(13)=0.48, p = 0.64; PETCO2 & GM-BOLD vs. GM-BOLD & RVT: T(13)=0.01, p = 0.99; 

PETCO2 & RVT vs. GM-BOLD & RVT: T(13)=0.47, p = 0.65).

There is variability in the slope of the relationship between CVR amplitudes, with the best 

reliability between PETCO2 and RVT. In general, RVT and GM-BOLD CVR amplitudes 

are 2–3 times larger than for PETCO2 (average slopes of 2.42±0.65 for PETCO2 & RVT, 

2.91±0.73 for PETCO2 & GM-BOLD). However, the magnitudes may not be meaningful 

due to the arbitrary units in RVT and GM-BOLD CVR. The reliability of these slopes was 
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assessed with an intraclass correlation (using a two-way random effects model of absolute 

agreement), with the following results: ICC(2,1)=0.62 for PETCO2 & RVT, ICC(2,1)=0.44 

for PETCO2 and GM-BOLD, and ICC(2,1)=0.41 for GM-BOLD and RVT. Thus, there is 

good reliability for PETCO2 & RVT CVR amplitudes, and fair reliability for the other 

inter-reference relationships. However, these estimates may be limited by the small number 

of repeated measurements and subjects.

3.3. Sufficient PETCO2 datasets: CVR delay comparisons

3.3.1. Inter-reference comparisons—The CVR delay maps generated by PETCO2 

and RVT reference signals show similar spatial variation, while GM-BOLD delay maps 

have smaller delay magnitudes and reduced contrast, among datasets with sufficient PETCO2 

quality (Fig. 6). Since CVR delay is expressed in quantitative units of seconds for all 

reference signals, CVR delay maps are centered around the GM median to fairly compare 

between reference signals. In general, PETCO2 and RVT delay maps characterize more 

extreme relative delays than GM-BOLD delay maps (indicated by more yellow and violet 

voxels throughout PETCO2 and RVT maps).

The distributions of CVR delay for each reference signal (Fig.7) support the observation that 

PETCO2 and RVT CVR delay maps show similar spatial variation while there is reduced 

contrast in GM-BOLD delay maps. The shape of PETCO2 and RVT delay distributions are 

generally similar: both are slightly right skewed and centered just below 0 s. On the other 

hand, GM-BOLD delay distributions are narrower and zero-centered, with a high proportion 

of voxels exhibiting delay values near 0 s. In addition, the GM-BOLD delay distributions 

are less smooth, with several small peaks apparent for some datasets (e.g., sub-003 ses-02, 

indicated by the orange trace). Finally, PETCO2 and RVT distributions are more variable 

between subjects, while GM-BOLD distributions have a relatively consistent shape.

The slopes of inter-reference relationships (Fig. 8A) further illustrate the narrower range 

of delays observed with the GM-BOLD reference signal (Figs 6 and 7). PETCO2 and RVT 

delay values are nearly proportional, with an average slope of 0.97±0.29. Excluding the 

outlier of sub-002 ses-02, the average slope becomes 1.01±−0.23. However, as demonstrated 

in the maps, GM-BOLD delay values tend to underestimate delay relative to PETCO2 and 

RVT. See middle and right columns of Fig. 8A, respectively, and note the switch in axes; this 

manifests as slopes < 1 for GM-BOLD with PETCO2 and slopes > 1 for GM-BOLD with 

RVT.

When comparing maps of CVR delay across the three reference signals (Fig. 8A), we see 

significant spatial correlations for all comparisons, although they are weaker on average 

compared to the spatial correlations of CVR amplitude (Fig. 5A). The corresponding spatial 

correlation coefficients, Fisher’s Z transformed correlations, and slopes for the lines-of-best 

fit are summarized in Supplementary Table S6. All group average inter-reference spatial 

correlations are significantly different from zero (PETCO2 & RVT: Z = 1.24, p<0.001; 

PETCO2 & GM-BOLD: Z = 1.35, p<0.001; GM-BOLD & RVT: Z = 1.12, p<0.001). There 

were no significant differences in the average spatial correlations between each pair of 

reference signals, based on a t -test adjusted for non-independent correlations (Howell, 

2010) (PETCO2 & RVT vs. PETCO2 & GM-BOLD: T(13)=0.38, p = 0.72; PETCO2 & 
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GM-BOLD vs. GM-BOLD & RVT: T(13)=0.92, p = 0.38; PETCO2 & RVT vs. GM-BOLD 

& RVT:T(13)=0.54, p = 0.60).

The slope of the relationship between CVR delay values from a given pair of reference 

signals is generally more consistent compared to CVR amplitudes, consistent with the 

common quantitative units (seconds) of CVR delay achieved with all three methods. This is 

demonstrated by the inter-subject consistency of slopes for each best-fit line in Fig. 8A. In 

addition, the inter-session reliability of the slopes was assessed with an intraclass correlation 

(using a two-way random effects model of absolute agreement). There is good reliability 

between PETCO2 and GM-BOLD delays (ICC(2,1) = 0.73) and between GM-BOLD and 

RVT delays (ICC(2,1)=0.63). However, there is poor reliability between PETCO2 and RVT 

delays (ICC(2,1)=0.35). As with CVR amplitude, these ICC estimates may be limited by the 

small number of repeated measurements and subjects.

To further characterize the bias of CVR delays estimated by RVT and GM-BOLD relative 

to PETCO2 delays, a Bland-Altman analysis was performed in each dataset with sufficient 

PETCO2 quality. On average, the differences in CVR delay are on the order of the shift 

increment used in our lagged-GLM approach (RVT=0.07±0.42 s; GM-BOLD=0.28±0.55 

s). Additionally, 95% of all CVR delay differences fall within ±1.5 s for RVT (−1.38 to 

1.45 s) and GM-BOLD (−1.40 to 0.83 s). More details on the Bland-Altman analysis and 

subject-level results can be found in Supplemental Material Section 3.1, Figure S3, and 

Table S8.

3.4. Insufficient PETCO2 datasets

3.4.1. Inter-quality comparisons—As described in Section 3.1, a total of 6 datasets 

were identified as having insufficient PETCO2 quality, based on the relative power content 

at the BH task frequency. Fig. 9 shows the reference signals, power spectra, and resulting 

CVR maps from datasets with sufficient and insufficient PETCO2 quality within the same 

example subject (inter-quality comparison). Not surprisingly, the CVR amplitude and delay 

maps generated by an insufficient PETCO2 timeseries do not show physiologically plausible 

spatial variations (Fig. 9B). Despite the insufficient task-related information within the 

PETCO2 timeseries, the RVT and GM-BOLD timeseries still demonstrate modulations 

consistent with the 8 cycles of the BH task and clear peaks in their power spectra. Therefore, 

consistent with our hypothesis, the resulting RVT and GM-BOLD CVR parameter maps are 

comparable to those from the dataset with sufficient PETCO2 quality.

The inter-quality spatial correlations between CVR parameter maps from insufficient and 

sufficient quality datasets support the qualitative observations in Fig. 9, in that the maps 

generated by RVT and GM-BOLD timeseries recover spatial information that is lost by 

those from the insufficient PETCO2 trace. For each reference signal’s CVR map from 

an insufficient PETCO2 session, a spatial correlation was performed with the respective 

parameter map from the first sufficient PETCO2 session (ses-02) in the same subject. Table 

3 summarizes the Fisher’s Z transformed spatial correlation coefficients and the slope of 

the best-fit line between these data. When the reference signal is “insufficient PETCO2”, the 

average spatial correlations with a map computed using sufficient PETCO2 data acquired 

in a different scan session are not significant for either CVR amplitude (Z = 1.11±0.53) 
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or CVR delay (Z = 0.25±0.53), using Zcrit =1.13 for N = 6 at alpha=0.05. In contrast, 

the inter-quality spatial correlations for RVT and GM-BOLD CVR amplitude and delay 

maps are significant between sufficient and insufficient datasets. This is expected, since 

the categorization of “sufficient” datasets was based on PETCO2 quality, with RVT and 

GM-BOLD signals surpassing the relative power criterion in all datasets.

However, it is important to note the differences in PETCO2 CVR maps are not as 

dramatic for all datasets with insufficient PETCO2 quality. These maps are presented in 

Supplementary Figure S4. Specifically, amplitude maps from some insufficient PETCO2 

traces have reasonable quality, while the delay maps remain noisy. For example, the CVR 

amplitude maps obtained with insufficient PETCO2 are similar to those obtained with RVT 

and GM-BOLD for sub-006 ses-07, sub-009 ses09, and sub-010 ses-08. These datasets 

also have higher inter-quality spatial correlations, as indicated by the Fisher’s Z values 

in Table 3. The relative power in the insufficient PETCO2 signals for these three datasets 

(Table 2) far exceeds the relative power of 4.33% in the example case highlighted in Fig. 9, 

indicating that there may have been some sufficient BH trials to generate reasonably good 

CVR amplitude maps. While some insufficient PETCO2 CVR amplitude maps are similar, 

the CVR de-lay maps still have noticeable regional differences (e.g., more negative delays 

and reduced tissue contrast), though less extreme than shown in Fig. 9.

3.4.2. Inter-reference comparisons—Similarly, the inter-reference spatial 

correlations within each insufficient PETCO2 dataset demonstrate the corrupted CVR 

amplitude and CVR delay maps generated by the PETCO2 traces (Supplementary Table 

S10). Correlations of PETCO2 CVR amplitude with RVT and GM-BOLD CVR amplitude 

are expectedly lower (Z = 1.44±0.73 and Z = 1.41±0.69, respectively) compared to those 

between GM-BOLD and RVT (Z = 2.56±0.13), which still have sufficient power at the task 

frequency. This difference is especially apparent in sub-009 ses-08 and sub-010 ses-07. The 

same pattern of low spatial correlations with results derived from PETCO2 is evident in the 

CVR delay values (Z = 0.75±0.38 for correlation of delays with insufficient PETCO2 and 

RVT; Z = 0.66±0.37 with insufficient PETCO2 and GM-BOLD; Z = 1.34±0.22 with RVT 

and GM-BOLD).

4. Discussion

In this study, we tested whether RVT or GM-BOLD can be used in a lagged-GLM 

framework to achieve estimates of CVR amplitude and delay that are spatially correlated 

with estimates from PETCO2. We tested this in breath-hold data in healthy adults, including 

datasets where PETCO2, RVT, and GM-BOLD reference signals had sufficient power (> 

50%) at the task frequency, and datasets where only the PETCO2 timeseries had insufficient 

power. We found that in datasets with sufficient quality, all reference signals are highly 

correlated. Correspondingly, CVR amplitude maps are spatially similar for all reference 

signals, after accounting for differences in scale. However, both RVT and GM-BOLD CVR 

amplitudes are not in standard CVR units of %BOLD/mmHg. Regarding CVR delay, the 

maps generated by PETCO2 and RVT show similar spatial variation, while GM-BOLD delay 

maps have a smaller range and reduced contrast. Finally, when PETCO2 is insufficient, 

RVT and GM-BOLD can be used to recover spatially similar CVR amplitude and delay 
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maps, provided that the participant attempted the breath-hold task. We explore each of these 

findings in further detail in the following sections.

4.1. Reference signals are highly correlated in breath-hold data with sufficient PETCO2 

quality

The high cross-correlation amplitudes observed between PETCO2, RVT, and GM-BOLD 

signals are expected and consistent with previous reports in the literature. Each of these 

signals captures the physiological processes occurring during a breath-hold, marked by 

a cessation of breathing, increased arterial CO2 concentration, increased CBF, and an 

increased BOLD signal that eventually returns to baseline (Bright et al., 2009; Kastrup 

et al., 1999; Thomason et al., 2005). PETCO2 and RVT have separately been shown to 

correlate with the resting-state BOLD timeseries (Birn et al., 2008, 2006; Wise et al., 2004). 

Additionally, PETCO2 and RVT (convolved with the respiration response function) are 

highly correlated and account for similar spatial and temporal variations in the resting-state 

BOLD signal (Chang and Glover, 2009).

In breath-hold data, these cross-correlations are magnified due to the alternating periods 

of task and rest, which lead to large coupled amplitude fluctuations in PETCO2, RVT, and 

GM-BOLD that are approximately sinusoidal at the task frequency (Pinto et al., 2021). 

These quasisinusoidal variations are critical to our approach for determining sufficient 

PETCO2 based on relative power at the task frequency. While this strategy can be easily 

implemented to quality check PETCO2 recordings, it requires periodic breathing modulation 

and thus cannot easily be translated to evaluate the quality of natural PETCO2 fluctuations in 

resting-state data.

The reference signals we considered are not exhaustive. The nearsinusoidal fluctuations in 

the BOLD response during a quasi-periodic breath-hold task can be modeled using a Fourier 

series, with a sinecosine pair at the task frequency and additional harmonics, to estimate 

both CVR amplitude and delay (Lipp et al., 2015; Murphy et al., 2011; Pinto et al., 2016; 

van Niftrik et al., 2016). Additionally, many studies use different variations of a global 

BOLD signal to model CVR, rather than a respiratory-derived signal, due to the known 

influence of arterial CO2 fluctuations on the BOLD signal (Geranmayeh et al., 2015; Liu 

et al., 2017; Tong et al., 2011; Tong and Frederick, 2014; van Niftrik et al., 2016). As we 

have demonstrated with GM-BOLD, there are clear breath-hold effects in the average BOLD 

response, leading to CVR measurements that are comparable to those derived from PETCO2.

4.2. CVR amplitude maps are comparable between reference signals, but RVT and GM-
BOLD amplitudes are not in standard CVR units

Based on the high cross-correlations between input reference signals, it is not surprising 

that the resulting CVR amplitude maps are also highly correlated. In fact, CVR maps 

from each reference signal look nearly identical when scaled to the 98th percentile CVR 

amplitude. Regardless of the method used to model CVR, this visualization scaling approach 

may facilitate qualitative comparisons of CVR maps, longitudinally, between cohorts, and 

between protocols. Our CVR visualization approach also indicates the method used to 

model CVR may not be critical for qualitative comparisons, which is consistent with the 
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current ethos regarding the “multiverse” of analysis pipelines in the functional neuroimaging 

community (Botvinik-Nezer et al., 2020; Dafflon et al., 2022; Steegen et al., 2016; Taylor et 

al., 2022).

Despite the qualitative similarities between CVR maps, there are important differences 

in the absolute magnitudes of CVR amplitude. Both RVT and GM-BOLD CVR are not 

in standard CVR units, which is an important caveat, particularly for comparing CVR 

between cohorts or with literature values. In these cases, it is still best to use PETCO2 

as a reference signal, because the resulting CVR amplitude in units of %BOLD/mmHg is 

physiologically meaningful. There is also between-subject variability in the slope of the 

relationship between CVR amplitudes, likely driven in part by the arbitrary units of RVT 

and GM-BOLD CVR. Overall, RVT CVR had the most reliable relationship with PETCO2 

CVR amplitude, suggesting that this might be a better alternative than GM-BOLD to capture 

differences in CVR amplitude.

However, our results indicate that RVT and GM-BOLD would still be useful in many cases, 

such as making relative comparisons between brain regions within a subject and identifying 

focal pathology. In addition, the CVR maps for RVT and GM-BOLD were consistent 

between scan sessions (Appendix A). With these steady measurements, it could be possible 

to compare longitudinally within a subject, provided that a breath-hold task is used to induce 

modulations and there is sufficient power at the task frequency.

We observed that normalizing the RVT timeseries before inputting it to the lagged-GLM 

is critical to achieve reasonable CVR amplitude values. RVT is reported in arbitrary units 

(a.u.) because the magnitude of RVT varies across experimental setups and is sensitive 

to the tightness of the respiration belt and its placement on the body (i.e., chest vs. 

abdomen). Thus, there is high variability in the scale of RVT fluctuations across datasets 

(Supplementary Fig. S1 and Table S2). The resulting CVR amplitude maps are impacted by 

this variability because they are scaled to the amplitude of the reference signal. If RVT is 

not normalized, there are large differences in the range of amplitude values, which could be 

misleading if CVR maps are plotted on a fixed scale (Supplementary Fig. S2).

4.3. CVR delay maps are comparable for PETCO2 and RVT, but GM-BOLD may 
underestimate delay variability

In datasets with sufficient PETCO2 quality, RVT and GM-BOLD both produce delay maps 

that are highly correlated with those from PETCO2. However, there are differences in the 

consistency between delay maps for some subjects, particularly between PETCO2 and RVT 

(Figs. 6 and 7). These differences may be attributed to lower relative power in the input 

reference signals, particularly if the PETCO2 trace is closer to the 50% threshold. The 

response functions we used to model PETCO2 and RVT might not be optimal for the breath-

hold response, potentially introducing differences in CVR delay with regional patterns 

(see Section 4.8). More subtle physiological contributions may also play a role, since intra-

thoracic pressure, heart rate, neural activity patterns, and other factors that influence the 

BOLD signal may be time-locked to the breath-hold task with different spatial signatures.
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Delay magnitudes also tend to be smaller when GM-BOLD is the reference signal. This 

is evident in the narrower distributions of GM-BOLD delay values (Fig. 7) and in the 

biased slopes from inter-reference spatial correlations with PETCO2 and RVT delays (Fig. 

8A). Thus, GM-BOLD may underestimate the true delay value, particularly for voxels with 

larger absolute PETCO2 delays. This may be influenced by our decision to normalize delay 

maps to the GM median to compare between reference signals and participants. Many 

GM voxels will be well-characterized by the average BOLD timeseries and have similar 

delay values that are reduced to zero after this spatial normalization step. Additionally, the 

GM-BOLD signal (after the T2-weighted combination of the echoes) might be more affected 

by motion-related effects than other reference signals (Moia et al., 2021). For example, 

peaks or slow drifts in the GM-BOLD timeseries due to head motion could bias the optimum 

delay estimated for a given voxel. More likely, the GM-BOLD signal is “blurring” the 

breath-hold response due to the wide variation in relative timing across the brain (Tong 

et al., 2019). This has been addressed previously with the concept of making a “refined” 

or “dynamic” global signal regressor that accounts for voxel-specific variations in delay to 

recover a source signal (Erdoğan et al., 2016; Frederick et al., 2012; Tong and Frederick, 

2014). Our approach using the average response across GM voxels is well-established but 

more simplistic and may have restricted the sensitivity to a wider range of delays. An 

average signal from the cerebellum (Donahue et al., 2016; Liu et al., 2021), sagittal sinus 

(Pillai and Mikulis, 2015; van Niftrik et al., 2016), or other small ROIs (Erdo ğan et al., 

2016) could also be used to mitigate this issue. However, the cerebellum is sensitive to noise 

(Diedrichsen et al., 2010; van der Zwaag et al., 2015) and these ROIs are arbitrary for CVR 

analysis.

To address limitations attributed to the GM-BOLD regressor, we performed a post hoc 

exploratory analysis to compare CVR delays using a “refined” GM-BOLD approach. The 

refined GM-BOLD regressor used in this analysis was generated by Rapidtide v2.2.7, a 

data-driven algorithm that uses the refined GM-BOLD timeseries as a regressor, for which 

it iteratively considers a voxel-by-voxel fit across a range of temporal offsets using a 

cross-correlation method (Frederick et al., 2012, 2016). We considered a temporal range 

of ±9 s with 0.3 s increments to match the lagged-GLM (specific command options are 

detailed in Table S11, and we refer the reader to the Rapidtide documentation (Frederick 

et al., 2022a) to explore more in-depth details about the settings). This algorithm further 

differs from the lagged-GLM processing method by also temporally smoothing the average 

GM-BOLD response with a band-pass filter (0.009–0.15 Hz) and “despeckling” using a 

spatial median filter to correct erroneous time delays due to autocorrelation in the probe 

regressor (Frederick, 2017). Additionally, motion parameters and Legendre polynomials are 

regressed from the data before the cross-correlation fit, in contrast to being included in 

the lagged-GLM. Fig. 10 shows a comparison between the original GM-BOLD approach 

and a refined GM-BOLD approach for a representative subject (sub-008). Results for all 

subjects with sufficient PETCO2 data quality can be found in Supplementary (Figures S6–

S10, Table S12). The refined GM-BOLD regressor is similar to the GM-BOLD time series 

yet smoother, with high frequencies removed (Fig. 10A).

CVR delay maps generated using the refined GM-BOLD approach depict greater visual 

contrast between gray matter and white matter in comparison to the CVR delay maps 
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generated with the average GM-BOLD approach (Fig. 10B). Furthermore, the distribution 

of delays generated from a CVR delay map using the refined GM-BOLD approach show 

a skewness towards larger positive delays (Fig. 10C). The delay values from both methods 

are highly correlated and the slopes of the spatial correlations are greater than 1, indicating 

that the refined GM-BOLD approach depicts more extreme delays across most of the cortex 

in comparison to the GM-BOLD approach (Fig. 10D). Thus, using a refined GM-BOLD 

timeseries as a regressor may partially compensate for the smaller distribution in delays 

attributed to the lagged-GLM with a standard GM-BOLD timeseries.

4.4. When PETCO2 quality is insufficient, maps of CVR amplitude and delay can be 
achieved with RVT or GM-BOLD as reference signals

We have demonstrated that in breath-hold fMRI data, if a participant attempts the task but 

PETCO2 quality is poor, RVT or GM-BOLD can be used to create CVR amplitude and 

delay maps. Based on comparisons with sufficient PETCO2 quality data, RVT seems the best 

alternative to generate CVR amplitude and delay maps that are highly correlated and have 

consistent relationships with those obtained with PETCO2 measurements. In addition, RVT 

still generates CVR measurements that are normalized to a respiratory-derived measure. If 

opting for a global signal like GM-BOLD, it would be best to use a refined GM-BOLD 

regressor to account for potential under-estimation of CVR delay.

We also proposed a method to define a “sufficient” PETCO2 trace for CVR mapping, using 

a relative power threshold >50% at the breath-hold task frequency. However, this threshold 

is slightly arbitrary and may need to be adjusted for specific cases, with a holistic evaluation 

of reference signals and their resulting CVR amplitude and delay maps. In fact, some of 

the datasets with insufficient PETCO2 still showed reasonably good CVR amplitude maps 

(Fig. S4). However, the corresponding CVR delay maps are less similar to those generated 

by sufficient quality timeseries and should give cause for caution when interpreting the 

CVR amplitude maps, due to potential mis-fitting of the reference signal. For example, there 

are several regions of negative CVR amplitudes in the map for sub-010 ses-07 (indicated 

by blue voxels in the corresponding map of Fig. S4), which resemble the vascular “steal” 

phenomenon and could be mis-characterized as pathology (Conklin et al., 2010; Poublanc et 

al., 2013; Sam et al., 2016). Therefore, insufficient PETCO2 CVR maps should be interpreted 

carefully, particularly in clinical cases.

Although these are promising results to recover CVR maps retrospectively or in low 

resource settings, we still recommend trying to obtain sufficient PETCO2 estimates from 

a breathing modulation for the highest quality CVR maps. There are suggestions throughout 

the literature on how to implement robust breath-hold tasks (Bright and Murphy, 2013; 

Murphy et al., 2011; Pinto et al., 2021; Scouten and Schwarzbauer, 2008; Urback et al., 

2017). In brief, it is strongly recommended to incorporate a training session before the scan 

to ensure that participants understand and comply with task instructions (Kannurpatti et al., 

2010; Magon et al., 2009; Zacà et al., 2014). Monitoring respiratory signals throughout the 

task is also encouraged to ensure quality of the recording and assess task performance (Bulte 

and Wartolowska, 2017). In addition, cueing strategies (e.g., text, symbolic, or auditory) 

should be carefully considered to make instructions intuitive for the target population. 
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Lastly, other breathing tasks might be more feasible than a breath-hold, such as intermittent 

breath modulation (Liu et al., 2020) or paced deep breathing (Bright et al., 2009; Sousa 

et al., 2014; Stickland et al., 2021). With these alternative methods, a similar approach 

to determine relative power at the task frequency could still be implemented, though the 

limitations of extending our findings to other breathing modulations are discussed in Section 

4.7.

4.5. Potential impacts and examples of utility

The use of alternative reference signals to generate CVR amplitude and delay maps has 

a range of potential impacts. The framework proposed here using RVT or GM-BOLD 

reference signals makes prospective CVR mapping accessible to any imaging centers that 

lack the equipment and personnel necessary to monitor and post-process respiratory gas 

recordings. A respiration belt should be integrated with most scanning set-ups, and the 

GM-BOLD signal requires no additional monitoring. All lagged-GLM regression analyses, 

with the exception of the RVT computation, are based on open-source software (peakdet, 

phys2cvr, and rapidtide) to facilitate the modeling steps for future applications. In addition, 

these findings present the opportunity to retrospectively generate CVR maps in breath-hold 

data where PETCO2 data was not collected or had insufficient quality.

Potentially most impactful, a method to acquire robust CVR amplitude and delay maps 

even in datasets with insufficient PETCO2 quality has important implications for populations 

where it may be difficult to obtain reliable end-tidal measurements. This includes children, 

where previous work has demonstrated reasonable task compliance but poor PETCO2 

quality, either due to mouth breathing or failure to perform end-exhales. It also includes 

aging cohorts and clinical populations (both pediatric and adults), who may similarly have 

difficulty following the steps needed for sufficient quality PETCO2 (Handwerker et al., 

2007; Thomason et al., 2005). However, further systematic comparisons are necessary for 

translation of these methods in other cohorts (see Section 4.7).

Overall, improved accessibility to CVR mapping can increase the prevalence of this 

informative metric of vascular health. Several reviews have described the utility of CVR 

mapping for understanding disease mechanisms and as a biomarker to triage patients for 

therapeutic interventions and track the efficacy of these interventions (Blair et al., 2015; 

Gupta et al., 2012; Juttukonda and Donahue, 2019; Pillai and Mikulis, 2015; Sleight et 

al., 2021; Smeeing et al., 2016). Aside from clinical populations, CVR mapping is also 

recommended in healthy cohorts to isolate differences in the BOLD response that may 

be due to differences in vascular rather than neural processes (Handwerker et al., 2007; 

Thomason et al., 2007; Tsvetanov et al., 2015).

4.6. Limitations of generalizability

The comparisons laid out in this study are valid only for breath-hold task fMRI data 

in healthy individuals. Further optimization and testing are needed to determine if these 

alternative reference signals can be used for CVR mapping with other populations and 

experimental designs. It is unclear if this framework can be generalized to clinical 
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populations, and particularly those with cerebrovascular pathology. We highlight key 

limitations to the generalizability of our proposed framework below.

First, there are several limitations of RVT as a reference signal. Because RVT is not 

a quantitative measure, it does not account for variability in the voluntary control of 

ventilation, including neuronal control, breath-hold depths, ventilatory rate, and breathing 

patterns (e.g., abdominal vs. thoracic). Therefore, RVT-based measurements may have 

limited sensitivity to inter-session CVR differences and may be inappropriate for clinical 

populations with altered respiratory control, such as those with autonomic nervous system 

dysfunction (Weese-Mayer et al., 2006). Furthermore, RVT and the RRF have not been 

systematically optimized for modeling breath-holds and may need to be revised for this 

purpose (see Section 4.7). Power et al. (2020) have also demonstrated that RVT is less 

sensitive to some respiratory events in resting-state fMRI data compared to other respiratory 

metrics derived from belt recordings (envelope of the waveform, respiration variation). 

These metrics may also be more sensitive in breath-hold data.

In addition, there are limitations to using GM-BOLD as a reference signal in any cohort 

where BOLD response patterns might be atypical, such as in cerebrovascular disease or 

healthy aging. For example, in certain pathologies, the average gray matter signal may be 

biased by regions with atypical perfusion dynamics. This could be addressed by averaging 

across normal-appearing tissue, or by using global signal refinement procedures as described 

in Section 4.3 (Frederick et al., 2012, 2016), which correct for wide delay ranges. However, 

in conditions where most gray matter regions are affected, these procedures may not be 

sufficient to correct the GM-BOLD signal and using it as a reference may lead to inaccurate 

estimates of CVR amplitude and delay.

Additionally, careful consideration should be given to the lagged-GLM approach and 

interpretation of CVR delay values in participants with cerebrovascular pathology. Using the 

lagged-GLM approach, hemodynamic delays in the range of ±9 s are consistently reported 

for healthy individuals (Bright et al., 2009; Donahue et al., 2016; Moia et al., 2021, 2020a; 

Sousa et al., 2014; Stickland et al., 2021), while in a case of unilateral moyamoya, delays 

exceeded 10 s in the affected hemisphere (Stickland et al., 2021). The delay range used in 

the lagged-GLM should be modified to reflect those that are physiologically plausible for a 

given condition. Hemodynamic delays on the order of 10 to 20 s have also been reported in 

other pathologies, including steno-occlusive, small vessel disease, and dementia (Atwi et al., 

2019; Duffin et al., 2015; Hartkamp et al., 2012; Holmes et al., 2020; McKetton et al., 2019; 

Thrippleton et al., 2018). In these conditions, the expected delays are an order of magnitude 

larger than the bias introduced by using RVT or GM-BOLD as reference signals, relative 

to the gold standard of PETCO2 (RVT = 0.07±0.42 s; GM-BOLD = 0.28±0.55 s, Table 

S8). See Supplementary Section 3.1 for more details on this Bland-Altman error analysis. 

However, in some pathologies, differences in CVR delay may be more subtle and on the 

same scale of these inter-reference errors. Thus, the framework proposed here is likely to be 

more appropriate in cases where hemodynamic delays are more extreme.

It is also important to acknowledge that our dataset is exceptional in terms of participant 

compliance and signal quality. All participants attempted the breath-hold task with repeated 
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periods of apnea. The respiration belt recordings successfully captured these changes in 

chest position, which are necessary to generate an RVT signal that has sufficient power at 

the task frequency. Similarly, the periods of apnea are required to induce a rise in arterial 

CO2 levels and the successive increase in CBF detected by the GM-BOLD signal. Achieving 

this level of task compliance could be difficult in some cohorts, although there is a breadth 

of literature demonstrating successful use of breath-hold tasks (Pinto et al., 2021; Urback 

et al., 2017). The GM-BOLD signal used in our study also benefits from the boost in 

SNR achieved from the optimal combination of 5 echoes (Cohen and Wang, 2019; Moia 

et al., 2021). If a multi-echo fMRI approach is not feasible, spatial smoothing or cortical 

parcellation could be used as alternatives to boost SNR at the cost of spatial definition. CVR 

maps from any reference signal will also be influenced by the quality of the input fMRI 

data, from acquisition to the pre-processing and denoising steps applied (Caballero-Gaudes 

and Reynolds, 2017). As with all fMRI acquisitions, we recommend mitigating motion 

confounds during the scan and modeling these noise sources in the lagged-GLM (Moia et 

al., 2021).

Lastly, the alternative reference signals considered here may not be highly correlated with 

PETCO2 in paced deep breathing tasks and may have insufficient variability in resting 

state to produce reasonable CVR maps. Using a paced hyperventilation task to induce 

hypocapnia, Vogt et al. (2011) found that RVT convolved with the respiration response 

function was less strongly correlated to BOLD signal changes than PETCO2 convolved 

with an empirically derived response function. They conjectured that the uncoupling of the 

signals was due to the higher rate of CO2 reduction during hyperventilation relative to the 

slower rate of metabolic CO2 production, which is captured by the PETCO2 regressor but not 

in the canonical respiration response (Vogt et al., 2011). This could potentially be addressed 

with optimization of the respiration response function for hypocapnia.

4.7. Alternative approaches to address compliance challenges in CVR mapping

While we ideally recommend using a breathing task and respiratory-derived signal for CVR 

mapping, alternative methods without end-tidal CO2 recordings or in resting-state have 

been proposed to address the challenges associated with breathing tasks. These methods are 

reviewed in detail by Pinto et al., 2021, but we discuss key comparisons. As described in 

Section 4.4, the Rapidtide algorithm can generate a probe regressor from the global BOLD 

signal or another reference timeseries and use temporal cross-correlation with each voxel 

timeseries to determine maximum correlations and corresponding time delays (Frederick 

et al., 2016) (Tong and Frederick, 2014). The correlation metrics are surrogates for CVR, 

although the outputs are not in the standard CVR units (%BOLD/mmHg) that allow for 

comparison across subjects, particularly if the global signal is used as the probe. With 

a PETCO2 probe, the Rapidtide outputs could potentially be modified to obtain CVR 

amplitude in normalized units.

From resting-state data, the global BOLD signal can be bandpass filtered to approximate 

arterial CO2 fluctuations and used as a regressor to estimate CVR (Liu et al., 2017). In 

addition, resting-state metrics such as the amplitude of low frequency fluctuations (ALFF) 

or fractional ALFF (fALFF) have demonstrated high correlations with CVR derived from 
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CO2 challenges (Di et al., 2013; Golestani et al., 2016; Kazan et al., 2016). However, this 

relationship is controversial (Moia et al., 2022a). For instance, in the same dataset used in 

this study, Moia et al. (2022a) shows that resting-state metrics (RSFA, ALFF, fALFF) have 

highly variable inter-subject relationships with breath-hold CVR measures.

Additionally, the lagged-GLM has been previously performed with PETCO2 from resting-

state data, but the delay optimization procedure was less successful, leading to noisy 

estimates of CVR amplitude and delay (Stickland et al., 2021). This was hypothesized 

to be due to the smaller fluctuations in the resting-state signal relative to a breathing task 

and the confounds of low-frequency oscillations from neural activity and other physiological 

processes that may disrupt the optimization procedure (Caballero-Gaudes and Reynolds, 

2017; Liu, 2016; Murphy et al., 2013). The increased BOLD sensitivity and data quality 

associated with the multi-echo acquisition in our study also helps to improve the CVR 

estimates (Moia et al., 2021). Similar results would be expected for alternative resting-state 

reference signals.

Although these alternative methods provide some insight into cerebrovascular physiology, 

each is missing a key characteristic of robust CVR measurements. Namely, none of these 

methods simultaneously use a breathing modulation to challenge the vascular system, 

normalize the BOLD changes to a reference signal that accounts for variability in breathing 

task performance, and correct for regional delays in CVR response time (Stickland et al., 

2021).

4.8. Future work

CVR map quality and accuracy could be further improved by refining the response functions 

used to model the effects of PETCO2 and respiration fluctuations on the BOLD signal. We 

assumed canonical response functions for the HRF (Friston et al., 1998) and RRF (Birn 

et al., 2008) used to model PETCO2 and RVT, respectively. However, the BOLD response 

to PETCO2 fluctuations may exhibit a slightly different temporal pattern than the canonical 

HRF (Golestani et al., 2015; Vogt et al., 2011). While we have accounted for regional 

variations in the timing of these responses, we have not incorporated flexible response 

shapes. Spatial heterogeneity in the amplitude and timing of BOLD responses to respiratory 

variation is apparent in resting-state data, with notable differences between primary sensory 

regions and frontoparietal regions (Chen et al., 2020; Pinto et al., 2017). The inclusion of 

basis sets in the lagged-GLM as described by Chen et al., 2020 may better account for this 

variability.

In addition, response functions have been shown to vary between subjects and even 

between sessions from the same subject (Kassinopoulos and Mitsis, 2019). Kassinopoulos 

and Mitsis (2019) proposed a framework to estimate subject-specific response functions 

by using a combination of optimization techniques to estimate parameters of the double 

gamma functions, which could also be implemented to generate more accurate reference 

signals. Similarly, they could be estimated from the subject-specific global or GM-BOLD 

signals (Falahpour et al., 2013), but importantly the estimated response functions should 

be tested in other datasets to avoid circularity. Regardless of the approach, differences in 

response functions are especially important to consider in cohorts that may have atypical 
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hemodynamics, as in older adults and cerebrovascular pathology (D’Esposito et al., 2003). 

Future work should re-evaluate consistency between CVR maps with region-specific and/or 

subject-specific response functions.

We encourage collaboration among stakeholders in the CVR community and suggest 

integration among the existing approaches that aim to address the feasibility of 

physiological modeling and CVR mapping. For example, a refined GM-BOLD regressor 

could be extracted from existing algorithms such as Rapidtide (Frederick et al., 

2022b) or seeVR (Bhogal, 2022) and incorporated into the lagged-GLM. Alternatively, 

standard implementations of CVR modeling algorithms, including Rapidtide, seeVR, and 

quantiphyse (Craig et al., 2022), could be modified to input RVT as a reference signal if 

not already supported. Machine learning may also be a promising tool to address challenges 

with reference signal quality. For example, Agrawal et al., 2022 successfully used the 

respiratory waveform in resting-state data to predict CO2 and derive PETCO2 using a 

fully convolutional neural network (Agrawal et al., 2022). However, their method does 

not maintain PET CO2 in quantitative units of mmHg either, which would be preferred for 

modeling CVR amplitude. A separate study proposed two deep learning architectures (again 

a convolutional neural network and a fully connected single-unit network) to reconstruct 

respiratory variation signals from the fMRI data itself (Salas et al., 2021). Future work could 

adapt these models to predict a “sufficient” PETCO2 trace from insufficient PETCO2 data, 

from a respiration trace, or from the fMRI data in the context of a breath-hold task. This 

would be especially promising if the algorithm is able to scale the resulting PETCO2 signal 

in standard units (i.e., %BOLD/mmHg).

5. Conclusion

End-tidal CO2 (PETCO2) is commonly used as a reference signal to facilitate modeling 

of cerebrovascular reactivity (CVR) in BOLD fMRI data, but the PETCO2 recordings may 

be unavailable or unreliable in many settings. We demonstrate that respiration volume 

per time (RVT) or the average gray matter BOLD response during a breath-hold task 

can be used in a lagged general linear model framework to obtain estimates of CVR 

amplitude and delay. Furthermore, CVR maps from these reference signals have good 

spatial agreement with those from the gold standard reference of PETCO2. In datasets 

with sub-optimal or “insufficient” PETCO2 recordings, RVT and GM-BOLD can also be 

used to recover reasonable CVR amplitude and delay maps, provided that the participant 

achieved periods of apnea during the breath-hold task. This framework offers a solution to 

obtain non-quantitative CVR amplitude and quantitative delay maps when reliable PETCO2 

recordings are unavailable due to limitations in resources or participant compliance.
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Refer to Web version on PubMed Central for supplementary material.
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Data and code availability statement

(Included verbatim in Methods Section 2.3) The MRI images and physiological data used 

in this study are available on OpenNeuro at doi:10.18112/openneuro.ds003192.v1.0.1 (Moia, 

Uruñuela, Ferrer, & Caballero-Gaudes, 2020). All code for preprocessing of the MRI data 

has been prepared to be run in a Singularity container, which is publicly available at 

https://git.bcbl.eu/smoia/euskalibur_container. The pre-processing pipeline is available at 

https://github.com/smoia/EuskalIBUR_preproc. Publicly available Python scripts, peakdet 

(Markello & DuPre, 2020) and phys2cvr (Moia, Vigotsky, & Zvolanek, 2022), were used 

for processing of CO2 recordings and computation of CVR parameter maps. The open-

source Rapidtide v2.2.7 toolbox (B. deB Frederick, Salo, & Drucker, 2022) was used for 

exploratory analysis (see Discussion Section 4.3). Additional analysis code and details about 

how they were implemented for this manuscript are shared in the public GitHub repository: 

https://github.com/BrightLab-ANVIL/Zvolanek_2022.

Appendix A: Consistency of CVR amplitude and delay maps between 

sessions

The consistency of CVR parameter maps was evaluated by performing “inter-session” 

spatial correlations. These correlations were performed between CVR parameter maps from 

two consecutive sessions, for a given subject and reference signal (e.g., between PETCO2 

CVR amplitude maps from ses-02 and ses-03 for sub-002). The same methods described in 

Section 2.4.4 for “inter-reference” and “inter-quality” spatial correlations were applied here. 

In brief, CVR maps were parcellated into 96 cortical parcels. The median values from each 

parcel were input into spatial correlations. Pearson correlation coefficients were computed 

and transformed to Fisher’s Z. A linear model was also fitted to determine the slope of the 

relationship.

CVR amplitude inter-session comparisons: For all reference signals, the resulting CVR 

amplitude maps are highly similar between sessions, provided there was sufficient PETCO2 

data in each subject. Inter-session spatial correlations were similar for each reference signal 

with no significant differences in average Fisher’s Z across subjects (PETCO2: Z = 1.62, 

RVT: Z = 1.50, GM-BOLD: Z = 1.75). The inter-session spatial correlations are depicted in 

Fig. A.1 and summarized in Supplementary Table S5. There is nearly a 1:1 relationship in 

the CVR amplitude maps between consecutive sessions for each reference signal (average 

slopes: PETCO2 = 1.00±0.23, RVT = 0.91±0.26, GM-BOLD=0.95±0.07). Excluding the 

outlier of sub-006, the average slope for RVT increases to 0.97±0.21.
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CVR delay inter-session comparisons: CVR delay maps for each reference signal are also 

highly spatially correlated between two consecutive sessions, provided the PETCO2 quality 

was sufficient. These inter-session spatial correlations for CVR delay are summarized in Fig. 

A.2 and Supplementary Table S7. There were no significant differences in average Fisher’s 

Z across subjects (PETCO2: Z = 1.11, RVT: Z = 1.14, GM-BOLD: Z = 1.21). The average 

slope between delays from consecutive sessions is also similar for each reference signal 

(average slope for PETCO2: 0.83±0.22, RVT: 0.81±0.21, GM-BOLD: 0.87±0.11).

Refined GM-BOLD inter-session comparisons: The between-scan consistency of Refined 

GM-BOLD delay maps (described in Discussion Section 4.3) was also evaluated for 

comparison to GM-BOLD. While the delay maps generated from the Refined GM-BOLD 

signal are highly similar across sessions (Z = 0.99±0.32), the inter-session spatial 

correlations are lower relative to GM-BOLD (Z = 1.21±0.19). However, these correlations 

were not statistically different in average Fisher’s Z, and sub-003 may be an outlier reducing 

the average Refined GM-BOLD correlation (Z = 1.07±0.23 without sub-003). The Refined 

GM-BOLD inter-session spatial correlations are visualized in Supplementary Fig. S10, and 

Supplementary Table S13 summarizes these correlations.

Fig. A.1. 
Inter-session spatial correlations between CVR amplitude maps from the same reference 

signal between two consecutive sessions (summarized in Supplementary Table S5). The 

unity line (y = x) is plotted in gray for reference. All correlations were computed using the 

median CVR amplitude in 96 cortical parcels, identified from the Harvard-Oxford cortical 

atlas and separated by hemisphere. Each dot in a sub-plot represents the median CVR 

amplitude in one cortical parcel. Lines-of-best-fit are shown between each pair of CVR 

amplitude maps. Pearson correlation coefficients (r) are listed in the top left corner and 

slopes for the lines-of-best-fit (β) are displayed in the bottom right corner.
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Fig. A.2. 
Inter-session spatial correlations between CVR delay maps from the same reference signal 

between two consecutive sessions (summarized in Supplementary Table S7). The unity line 

(y = x) is plotted in gray for reference. All correlations were computed using the median 

CVR delay in 96 cortical parcels, identified from the Harvard-Oxford cortical atlas and 

separated by hemisphere. Each dot in a sub-plot represents the median CVR delay in one 

cortical parcel. Lines-of-best-fit are shown between each pair of CVR delay maps. Pearson 

correlation coefficients (r) are listed in the top left corner and slopes for the lines-of-best-fit 

(β) are displayed in the bottom right corner.

Abbreviation:

CVR cerebrovascular reactivity

BOLD blood oxygenation level dependent

BH breath-hold

PETCO2 partial pressure of end-tidal CO2

RVT respiration volume per time

GM gray matter

GM-BOLD average gray matter BOLD response

fMRI functional magnetic resonance imaging

HRF hemodynamic response function

RRF respiration response function
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Fig. 1. 
Key steps of the CVR modeling methods compared in this manuscript. Reference timeseries 

are generated via external recordings or the BOLD MRI data. PETCO2 and RVT timeseries 

are convolved with canonical response functions. For all methods, modeling is repeated 

for shifted variations of each reference time signal. On a voxelwise basis, the shift that 

optimizes the full model R2 is selected. Maps of amplitude and delay are then generated 

using these parameters. PETCO2 = partial pressure of end-tidal CO2, RVT = respiration 

volume per time, BOLD = blood oxygenation level dependent, GM = gray matter, HRF = 

hemodynamic response function, RRF = respiration response function.
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Fig. 2. 
A) Reference signals for each dataset (thin lines) and the group average (thick lines). 

Gray bars indicate each 20 second breath-hold (BH) cycle. Reference signals from the 

three compared methods are depicted: partial pressure of end-tidal CO2 convolved with 

the hemodynamic response function (PETCO2), respiration volume per time convolved 

with the respiration response function and normalized to unit variance (RVT), and average 

BOLD signal percentage change in gray matter (GM-BOLD). Sufficient PETCO2 datasets 

(top) indicate those where the PETCO2 timeseries has relative power > 50% in the BH 

frequency range, while insufficient PETCO2 datasets (bottom) indicate those where the 
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PETCO2 timeseries has relative power < 50%. B) Power spectra for each dataset (thin lines) 

and the group average (thick lines), corresponding to the reference signals plotted in panel 

A. Dashed rectangles indicate the BH frequency range (0.014 to 0.020 Hz). Note that there 

is no peak in this range for the datasets with insufficient PETCO2 timeseries, while a peak is 

visible for all other reference signals.

Zvolanek et al. Page 37

Neuroimage. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Delay-optimized CVR amplitude maps for all 16 datasets with sufficient PETCO2 quality 

transformed to the MNI152 6th generation template space. For each subject, maps from 

session 02 are shown on the left and maps from session 03 are shown on the right. A single 

axial slice of the CVR map from each reference signal is shown in each column. Each CVR 

map is plotted on a separate color scale. The 98th percentile CVR amplitude value across 

all voxels was computed for each map (see Table S2 for the magnitudes) and used as the 

positive and negative limits of the color scale. Voxels with delays at the boundary conditions 

have been removed. Note the different units of CVR amplitude for each reference signal.
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Fig. 4. 
Distributions of CVR amplitude across gray matter (GM) voxels in all sufficient PETCO2 

datasets. For each subject, distributions from session 02 are plotted in orange and session 

03 are plotted in teal. Each row shows the distribution of CVR amplitude for a different 

reference signal, with PETCO2 CVR on top, RVT CVR in the middle, and GM-BOLD CVR 

on the bottom. Note that skewness of the PETCO2 CVR distributions is different from those 

of the RVT CVR and GM-BOLD CVR because of the range of the plots (from −2 to +2) 

which matches closer to the 98th percentiles of the latter.
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Fig. 5. 
Inter-reference spatial correlations between PETCO2, RVT, and GM-BOLD CVR amplitude 

maps, for each subject and session (summarized in Supplementary Table S4). Each 

of the three pairwise comparisons are plotted in a different column. All correlations 

were computed using the median CVR amplitude in 96 cortical parcels, identified from 

the Harvard-Oxford cortical atlas and separated by hemisphere. Each dot in a sub-plot 

represents the median CVR amplitude in one cortical parcel. Lines-of-best-fit are shown 

between each pair of CVR amplitude maps. Pearson correlation coefficients (r) are listed in 
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the top left corner and slopes for the lines-of-best-fit (β) are displayed in the bottom right 

corner.
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Fig. 6. 
CVR delay maps for all datasets with sufficient PETCO2 quality, transformed to the MNI152 

6th generation template space. For each subject, maps from session 02 are shown on the 

left and maps from session 03 are shown on the right. A single axial slice of the CVR 

delay map from each reference signal is shown in each column. CVR delay maps have 

been normalized to the median delay in gray matter (GM). Voxels at boundary conditions 

(absolute delay = ± 8.7 s, 9 s) have also been removed. Negative values indicate regions with 

earlier hemodynamic responses relative to the median delay in GM, while positive values 

indicate those with later responses.
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Fig. 7. 
Distributions of CVR delay for each reference signal in all datasets with sufficient PETCO2 

quality. CVR delay values have been normalized to the median delay in gray matter. For 

each subject, distributions from session 02 are plotted in orange and session 03 are plotted 

in teal. Each row shows the distribution of CVR delay for a different reference signal, with 

PETCO2 delay on top, RVT delay in the middle, and GM-BOLD delay on the bottom.
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Fig. 8. 
Inter-reference spatial correlations between PETCO2, RVT, and GM-BOLD CVR delay 

maps, for each subject and session (summarized in Supplementary Table S6). Each of the 

three pairwise comparisons are plotted in a different column. The unity line (y = x) is 

plotted in gray for reference. All correlations were computed using the median CVR delay 

in 96 cortical parcels, identified from the Harvard-Oxford cortical atlas and separated by 

hemisphere. Each dot in a sub-plot represents the median CVR delay in one cortical parcel. 

Lines-of-best-fit are shown between each pair of CVR delay maps. Pearson correlation 

Zvolanek et al. Page 44

Neuroimage. Author manuscript; available in PMC 2023 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coefficients (r) are listed in the top left corner and slopes for the lines-of-best-fit (β) are 

displayed in the bottom right corner.
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Fig. 9. 
Example reference signals, power spectra, and CVR maps for two datasets in the same 

subject (sub-009) with A) sufficient PETCO2 quality (ses-02) and B) insufficient PETCO2 

quality (ses-08). The insufficient PETCO2 timeseries can be distinguished by the absence 

of a peak in the power spectrum at the breath-hold task frequency (0.014 to 0.020 Hz, 

indicated by dashed lines). CVR amplitude and delay maps are comparable between the two 

datasets, for all reference signals except insufficient PETCO2. Note that the RVT timeseries 

and power spectra are plotted on different scales for visualization purposes. CVR maps are 

scaled to 98th percentile values, which can be found in Table S2. Also note that only the 

PETCO2 CVR amplitude map is in quantitative units (%BOLD/mmHg), compared to RVT 

CVR (%BOLD/a.u.) and GM-BOLD CVR (%BOLD/%BOLD).
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Fig. 10. 
A) Reference signal for sub-008 from GM-BOLD (blue) and Refined GM-BOLD (yellow) 

in ses-02 (top) and ses-03 (bottom). B) CVR delay maps for sub-008, transformed to MNI 

space. An axial slice from two compared methods is shown in each column: GM-BOLD 

(left) and Refined GM-BOLD (right). CVR delay maps using the GM-BOLD approach 

have been normalized to the GM median delay with voxels at boundary conditions removed 

(absolute delay =±8.7 s, 9 s). Refined GM-BOLD delay maps are re-centered to 0 s and 

exclude voxels where the similarity function failed (Frederick et al., 2022a). C) CVR delay 

distributions for sub-008 across GM-BOLD (solid line) and Refined-GM (dashed line) from 

ses-02 (orange) and ses-03 (teal). D) Inter-reference spatial correlation between GM-BOLD 

and Refined GM-BOLD delay maps for sub-008 in ses-02 (orange) and ses-03 (teal) with 

respective best-fit-lines and an identity line (black) for comparison. Each point represents 

the median delay value in one of the 96 cortical parcels from the Harvard-Oxford cortical 

atlas. Correlation coefficient (R) for each session is listed on the top left, and the slopes for 

the lines-of-best-fit (β) for each session are listed on the bottom right.
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Table 2

Classification of reference signals as “sufficient” or “insufficient” based on relative power in the breath-hold 

frequency range. “Sufficient” PETCO2 classification is based on relative power >50%.

Subject Session Classification of PETCO2 Quality

Relative Power (%) in BH Frequency Range (0.014 –0.020 Hz)

PETCO2 RVT GM-BOLD

sub-002 ses-02 Sufficient 72.5 87.4 74.9

ses-03 Sufficient 56.5 90.2 69.2

sub-003 ses-02 Sufficient 69.5 88.7 87.2

ses-03 Sufficient 61.1 92.5 87.4

sub-004 ses-02 Sufficient 69.1 85.9 85.2

ses-03 Sufficient 73.9 54.1 84.7

sub-006 ses-02 Sufficient 81.5 87.0 83.3

ses-03 Sufficient 62.3 87.3 81.5

ses-07 Insufficient 14.5 79.5 80.8

ses-08 Insufficient 31.2 73.0 80.0

sub-007 ses-02 Sufficient 69.6 95.1 82.1

ses-03 Sufficient 73.7 94.8 85.7

sub-008 ses-02 Sufficient 61.5 87.2 79.5

ses-03 Sufficient 68.2 82.3 68.4

sub-009 ses-02 Sufficient 67.4 95.0 85.8

ses-03 Sufficient 74.5 94.6 86.7

ses-08 Insufficient 4.33 94.0 85.4

ses-09 Insufficient 18.2 91.1 77.3

sub-010 ses-02 Sufficient 66.4 88.5 56.1

ses-03 Sufficient 59.5 84.6 65.1

ses-07 Insufficient 23.7 88.8 70.5

ses-08 Insufficient 34.7 93.6 74.5
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