Table 2. Benchmark performance of RaSP versus other structure-based methods on the S669 direct experimental data set (Pancotti et al., 2022).
Method | S669, direct | ||
---|---|---|---|
Pearson | RMSE [kcal/mol] | MAE [kcal/mol] | |
Structure-based | |||
ACDC-NN | 0.46 | 1.49 | 1.05 |
DDGun3D | 0.43 | 1.60 | 1.11 |
PremPS | 0.41 | 1.50 | 1.08 |
RaSP | 0.39 | 1.63 | 1.14 |
ThermoNet | 0.39 | 1.62 | 1.17 |
Rosetta | 0.39 | 2.70 | 2.08 |
Dynamut | 0.41 | 1.60 | 1.19 |
INPS3D | 0.43 | 1.50 | 1.07 |
SDM | 0.41 | 1.67 | 1.26 |
PoPMuSiC | 0.41 | 1.51 | 1.09 |
MAESTRO | 0.50 | 1.44 | 1.06 |
FoldX | 0.22 | 2.30 | 1.56 |
DUET | 0.41 | 1.52 | 1.10 |
I-Mutant3.0 | 0.36 | 1.52 | 1.12 |
mCSM | 0.36 | 1.54 | 1.13 |
Dynamut2 | 0.34 | 1.58 | 1.15 |