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behaviours and gut-health associated alterations in a rat model
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Developmental vitamin D (DVD)-deficiency is an epidemiologically established risk factor for autism. Emerging studies also
highlight the involvement of gut microbiome/gut physiology in autism. The current study aims to examine the effect of DVD-
deficiency on a broad range of autism-relevant behavioural phenotypes and gut health. Vitamin D deficient rat dams exhibited
altered maternal care, DVD-deficient pups showed increased ultrasonic vocalizations and as adolescents, social behaviour
impairments and increased repetitive self-grooming behaviour. There were significant impacts of DVD-deficiency on gut health
demonstrated by alterations to the microbiome, decreased villi length and increased ileal propionate levels. Overall, our animal
model of this epidemiologically validated risk exposure for autism shows an expanded range of autism-related behavioural
phenotypes and now alterations in gut microbiome that correlate with social behavioural deficits raising the possibility that DVD-
deficiency induced ASD-like behaviours are due to alterations in gut health.
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INTRODUCTION
Autism Spectrum Disorders (ASD) are neurodevelopmental
disorders demonstrating early childhood onset of social, commu-
nication and behavioural impairments [1]. Epidemiological studies
have suggested an association linking vitamin D-deficiency during
pregnancy and infancy (referred to as Developmental vitamin D
(DVD)-deficiency) with risk of autism in the offspring [2–5].
However in populations with a high proportion of vitamin D
sufficiency this relationship has become difficult to test [6, 7]
indicating ASD-risk for DVD-deficiency operates via a clinical
threshold rather than as a continuous measure [8].
Our laboratory was the first to establish a rat model of DVD-

deficiency to examine brain-related outcomes in offspring [9].
Since then, we (and others) have published numerous studies
showing the impact of DVD-deficiency on brain development [10].
Recent behavioural and molecular studies in DVD-deficient rats
from our laboratory have revealed ASD-related behavioural
alterations [11], placental immune dysregulation [12] and elevated
testosterone levels in male embryonic brains [13], all potentially
relevant to autism.
Previous studies from our lab demonstrated DVD-deficiency

induced alterations in pup vocalisations [11]. Pup vocalisations
are thought to influence maternal care, a factor we chose to
investigate in more detail here. Similarly, we have previously
shown DVD-deficiency induces some subtle alterations in social
play behaviour in juveniles [11]. Here we chose to investigate
social behaviour, but we also examined the degree of self-
directed stereotyped behaviour when in the presence of a
conspecific.

In addition, a growing number of studies in patients and animal
models of autism have demonstrated an association between
autism and gastrointestinal imbalances such as altered gut
microbiome composition [14–18], faecal short chain fatty acid
levels [19], increased gut permeability [20, 21], changes in villi
architecture [22], and immune dysregulation [23–25]. Vitamin D-
deficiency/vitamin D supplementation is also known to regulate
the composition, and diversity of gut microbiome, levels of
microbial metabolites, innate and adaptive immune responses in
the gut, integrity of the gut epithelium and several aspects of gut
health in experimental animals and humans [26–32]. Thus, our
objective in this study was to examine if the gut microbiome and
gut physiology were also altered by DVD-deficiency and whether
any alterations were associated with ASD-related behavioural
phenotypes.

METHODS
Animals and breeding
A detailed description of how our DVD-deficiency model is produced and
confirmation of vitamin deficiency in Sprague-Dawley (SD) dams has been
described elsewhere [11, 33]. Faecal pellets were collected from the DVD-
deficient and Control pregnant dams at E15 and stored at −80 °C for
microbiome sequencing. The day the pups are born is designated
postnatal day 0 (P0) and pups were weaned at P21. In an alteration to
the protocol mentioned in our previous publications, dams remained on
their respective diets until weaning and weanlings remained on the same
diet as dams until P35. The timeline for the animal breeding and
experimental outline are presented in supplementary Fig. S1. All the
animal procedures performed in this study were approved by The
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University of Queensland Animal Ethics Committee (QBI/555/16#10).
Vitamin D-deficiency was confirmed by measuring the levels of 25-
hydroxyvitamin D3 (25-OHD) in the serum collected from the pregnant
dams (control= 25.8 ± 13.1 nM, deficient= 7.22 ± 12.0 nM) (W= 275,
p= 0.00018, Wilcoxon rank test) and P35 offspring (control= 23.1 ± 10.7,
deficient= 0.865 ± 1.23) (W= 929, p= 2.739e−09, Wilcoxon rank test).

Maternal behaviour
Maternal behaviour was observed daily from P2 to P6 in the home cage. A
camera was fitted to the top of the cage to record the activities of the
whole litter (dams plus pups). Each litter underwent behavioural
observations for two one-hour sessions per day. Thus, the total number
of observations for each litter was: 5 postnatal days ×2 sessions
per day= 10 observations. The number of maternal behaviours such as
Licking/grooming and Arched-Back Nursing during the 10 sessions were
recorded. Maternal behaviours were scored following the protocol of
Franks et al. [34].

Ultrasonic vocalizations (USVs) and pup retrieval task
Isolation-induced USVs were recorded from each pup at P7 and P9. On the
test day, the pups were separated from their dam and placed in a surgical
recovery chamber, maintaining a temperature of 34 ± 1 °C. The pups were
subsequently placed in a sound-attenuated chamber one by one. The
microphone was placed about 10 cm above the head of the pups and USV
recordings were obtained using UltraVox XT system (Noldus Information
Technology, The Netherlands). USVs were measured for three minutes,
then pups were returned to the recovery chamber. Detector outputs were
analyzed with UltraVox XT (3.0.80) software (see supplementary Table S1
for criteria used for valid USV calls).
The pup retrieval task was performed immediately after recording USVs

for each litter. Initially, all the pups were placed on the opposite corner of
the home cage (dimension: 57 cm × 39 cm × 20 cm) away from the nest.
Then, the dam was introduced into the centre of the cage and video
recorded. Recordings were stopped when the dam retrieved all the pups
to the nest or after 10 min had elapsed. Latency to retrieve the first,
second, third, fourth and fifth pup was recorded.

Adolescent social play behaviour
Adolescent offspring between P35 to P40 were tested for social play (rough
and tumble) behaviour. The apparatus consists of a novel chamber (length
52 cm, breadth 36 cm) containing 2 cm deep wood chip bedding. Rats were
habituated (day 1) by placing body weight and sex-matched littermates in
pairs in the testing chamber for 30min. On the test day (day 2), the same
littermate pairs were placed together back in the testing chamber and video
recorded for 10min. During the test, the animals are allowed to interact
freely. Parameters of social play behaviours such as latency to interact,
frequency of pouncing, pinning and total play duration were recorded. The
data were analysed using Observer software (Noldus Information Technol-
ogy, The Netherlands) [35]. Littermate pairs were considered as a single
experimental data point for the behavioural analysis.

Repetitive self-grooming behaviour
To assess repetitive behaviour in the adolescent rats, the same recordings
used for social play behaviour were further scored for self-grooming
behaviour using Noldus Observer software. Number and duration of bouts
of self-grooming in which an animal groomed any part of its own body
were scored [36]. Allo-grooming, in which an animal grooms any body part
of the conspecific was also scored.

Tissue collection and evaluation of gut microbiome and gut
physiology
After social play behaviour was completed, 32 adolescent animals (8
control males and 8 DVD-deficient males and 8 control females and 8 DVD-
deficient females) were injected with poly(I:C) (a synthetic double-stranded
viral RNA) (dose: 5 mg/kg body weight). A replicate cohort of the same
groups was injected with saline vehicle. Four hours after injection, animals
were euthanised and gut tissues collected. Poly(I:C) was used to induce
inflammation to establish whether if inflammatory response was altered by
DVD-deficiency. The samples collected include blood, jejunum, ileum, and
colon tissues. From the saline-exposed animals, gut contents were
collected from colon for gut microbiome composition and ileum for short

chain fatty acids. The proximal colon tissues were used for quantitative
real-time polymerase chain reaction (qPCR).

Gut microbiome
Microbial DNA was extracted from the colon contents of P35 animals
(N= 32) using DNeasy® Powersoil® Pro kit (QIAGEN) and sent to the
Australian Centre for Ecogenomics (ACE) for 16S rRNA gene amplicon
sequencing. The sequencing was performed by amplification of the V3-
V4 region of 16S rRNA using a barcoded primer set 16S 341F/806R
(Forward:5′-CCTACGGGNGGCWGCAG-3′; Reverse: 5′-GACTACHVGGG-
TATCTAATCC-3′). Paired-end, 2 × 300 bp sequencing was performed
on an Illumina platform at ACE. The raw demultiplexed fastq files
obtained from the sequencing centre were analysed by Quantitative
Insights into Microbial Ecology II (QIIME2) version 2021.2 software
pipelines [37]. The sequences were matched to SILVA reference
database, release 138.1(https://www.arb-silva.de/download/arb-files/)
for determining bacterial taxonomy. For the statistical analysis of the
gut microbiome data, MicrobiomeAnalyst ([38] and Phyloseq R package
were used. To compare the microbiome differences between DVD-
deficient and Control animals, alpha and beta diversity were deter-
mined. Alpha diversity represents the quantity of bacterial species
present in a sample whereas beta diversity measures the differences in
the gut microbiome between different samples [39]. Alpha diversity
measures were determined by Observed species (bacterial Richness),
Simpson index (Evenness), Shannon index and Chao1 indices. Richness
refers to the presence or absence of organisms in a given environment
whereas Evenness takes into account the abundance of the organisms.
The Shannon index considers both number of organisms and their
relative abundance. Chao1 is a qualitative measure of alpha diversity
like richness but with an emphasis on rare species. Beta diversity was
measured by Principal Co-ordinate Analysis (PCoA) plots and two
measures were used: Bray-Curtis (non-phylogenetic) and Weighted
Unifrac (phylogenetic). In addition, faecal samples from the pregnant
dams were also collected and analysed similarly.

Measurement of short-chain fatty acids
Ileal contents were recovered, and short-chain fatty acids (SCFAs) extracted
in 50% acetonitrile, vortexed, centrifuged and supernatant analysed using
LC-MS at Metabolomics Australia, UQ, Brisbane. Ileal samples were selected
from the same animals that were used for microbiome sequencing.

Gut histology
Ten cm of jejunum was collected and fixed in 10% buffered formalin.
The jejunal tissues were processed using the Swiss Roll Technique [40].
Briefly, a 5-µm section was cut using a microtome and stained with
Haematoxylin and Eosin. A single section from each animal was
examined using light-microscopy for villi length, lymphocyte and
goblet cell number by applying the protocol developed by Erben
et al. [41]. Stereo-investigator® software (MBF Bioscience, US) was used
for unbiased counting site selection. Gut tissues from males only were
used for the histological examination.

Inflammatory cytokines
A separate 2 cm piece of ileum was homogenised in MSD lysis buffer
(1:3 w/v) containing a protease inhibitor (complete mini EDTA-free, Roche)
and was used for both total protein and IL-6 and TNF-α assay (Pro-
inflammatory rat panel 1, Meso Scale Discovery, Rockville MD USA).
Maternal sera were similarly analysed (but unlike ileum, sera were used
directly without homogenization).

Quantitative real-time PCR (qPCR)
Total RNA was extracted from the proximal colon tissues by homogenizing
in Trizol reagent (Invitrogen) using a Polytron(IKA®ULTRATURRAX®). cDNA
synthesis was performed by using SensiFASTTM cDNA Synthesis Kit (Bioline,
UK) according to the manufacturer’s protocol. qPCR was performed by
using SensiFASTTM SYBR No-ROX kit master mix (Bioline, UK) in Roche
LightCycler480 Thermalcycler (Roche Life Science). All expression levels
were normalized to that of endogenous control glyceraldehyde-3-
phosphate-dehydrogenase (gapdh) and results were analysed using the
comparative threshold method. For primer and RT-PCR protocol details,
see supplementary Table S2.
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Statistical analysis
Behaviours were analysed by multivariate analysis of variance (MANOVA)
using SPSS version 27, Chicago, IL, USA to examine the effects of maternal
diet, sex and maternal diet × sex interactions. For pup retrieval, a mixed
effect model was used to analyse the effect of DVD-deficiency on repeated
measures for sequential pup retrieval. Prior to statistical analysis, potential
outliers were checked using Grubb’s test [42] and any observation with a
Zscore of 4.0 and above were considered as outlier and removed. Data are
represented as 25th percentile, median and 75th percentile values and
statistical significance was established at an alpha of 0.05. For gut tissue
analysis, MANOVA was used to examine the effect of maternal diet, sex,
Poly(I:C), and diet × sex × Poly(I:C) interactions. For correlation between
bacterial abundance and pouncing behaviour, the top six bacteria that
showed nominally significant correlations in either DVD-deficient or
Control groups are shown. For all behavioural, biochemical and
microbiome analyses, animals were recoded to blind experimenter to
group. Cage effect was checked using two-way ANOVA taking cage as
independent variable and the frequency of pouncing (the most prominent
behavioural finding in P35 animals in our study) as dependent variable.
The analysis showed that there was no significant cage effect on the
behavioural outcomes (Table S5).

RESULTS
DVD-deficiency alters maternal and pup behaviours
DVD-deficient dams showed increased Licking/grooming F1,
21= 2.625, p < 0.05) compared to control dams. However, there
was no effect of DVD-deficiency on Arched back nursing
(F1,21= 1.023, p > 0.05) (Fig. 1A, B). Pup retrieval was altered by
DVD-deficiency (Fig. 1C, D). At P7, DVD-deficient dams took longer

to retrieve pups (F1,90=6.950, p= 0.0099), compared to control
dams. However, this was reversed at P9 (F1,85=3.963, p= 0.049).
At P7 no pup USV parameter was altered by DVD-deficiency or

sex. However, at P9, DVD-deficient pups exhibited a significantly
greater number (F1, 305= 6.194, p < 0.05) and a longer duration of
calls (F1, 305= 5.692, p < 0.05) compared to control pups. Also,
male pups produced a longer duration of calls (F1, 305= 6.753,
p < 0.05) and higher amplitude calls (F1, 305= 4.669, p < 0.05)
compared to female pups at P9 (Fig. 1E–H). There was no effect of
sex on total calls (F1,305= 0.988, p= 0.321) and call frequency
(F1,305= 0.687, p= 408) at P9.

DVD-deficiency decreases adolescent social play behaviours
and increases self-grooming
DVD-deficient adolescent rats showed reduced frequency of
pouncing compared to control rats (F1, 94= 7.328, p= 0.008).
However, there was no effect of DVD-deficiency on total play
duration (F1,94= 0.108, p= 0.743) or latency to interact
(F1,94= 0.118, p= 0.732). There was no main effect of sex or diet
x sex interaction on frequency of pouncing (F1,94= 0.006,
p= 0.939), total play duration (F1,94= 0.074, p= 0.787) and
latency to interact (F1,94= 1.123, p= 0.292) (Fig. 2A–C). The
number of “pinning” events was quite low therefore the presence
or absence of pinning rather than the number of pinning events
was analysed by chi-square test. We show that DVD-deficiency
was associated with reduced frequency of pinning (χ2 1,94= 5.361,
p= 0.021) (Table 1). There was no association of sex with pinning
(χ2 1,94= 0.812, p= 0.368).
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Fig. 1 DVD-deficiency alters both maternal and pup behaviour. Maternal behaviour was video-recorded and observed from P2 to P6.
A DVD-deficient dams showed increased licking/grooming (LG) compared to control dams (F1,21=2.625, p < 0.05). B There was no effect of DVD-
deficiency on arched-back nursing. The circles represent individual dams. C, DMaternal retrieval of the pups was tested at two time points (P7
and P9) immediately following USV measurement. Data reported as latencies to retrieve the first, second, third, fourth and fifth pup (in
seconds). Analysis was done using a mixed effects model. Overall DVD-deficient dams retrieved their pups slower than the control dams at P7
(F1,90=6.950, p= 0.0099), whereas this was reversed at P9 (F1,85=3.963, p= 0.049). DVD dams n= 12, CON dams n= 8 at P7. DVD dams n= 11,
CON dams n= 8 at P9. *p < 0.05, **p < 0.01. Error bars show SEM. E–H Measurement of pup’s USVs at two time points (P7 and P9) in a brief
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diet, red lines difference by sex. CON Control, DVD DVD-deficient. The lower boundary of the box plot indicates 25th percentile, the middle
line median and upper boundary indicates 75th percentile.
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In the presence of a conspecific, DVD-deficient rats showed
increased frequency of self-grooming compared to control rats
(F1,191= 11.595, p= 0.001). However, there were no differences in the
duration of self-grooming between DVD-deficient and control animals
(F1,191= 2.823, p= 0.095) (Fig. 2D, E). Sex had no effect on both
frequency of self-grooming (F1,191= 1.128, p= 0.290) and duration of
self-grooming (F1,191= 0.464, p= 0.497). There was also no diet × sex
interaction. Allogrooming events were quite low, therefore the
presence or absence of allogrooming rather than the number of
allogrooming events was analysed by chi-square test. We show that
neither diet (χ2 1,191= 0.631, p= 0.427) nor sex (χ2 1,191= 0.007,
p= 0.933) had any association with allogrooming (Table 2).

DVD-deficiency alters gut microbiome and this correlates with
social behavioural changes in offspring
Colon contents from P35 offspring were used for the gut
microbiome analysis. An average of 21,101 sequences were
obtained from each of the 32 samples. The results are
presented at genus level for alpha and beta diversity. There
were no differences in the alpha diversity measures between
DVD-deficient and control offspring (Fig. 3A–D. In contrast,
analysis of beta diversity showed significant clustering of the
animals into DVD-deficient and control diets (Bray Curtis
distance: R= 0.196, p= 0.001) (Fig. 3E). Beta diversity based
on the measurement of phylogenetic distances between the
taxa also clearly showed distinct microbiome composition by
diet (Weighted Unifrac: R2= 0.048, p= 0.001) (Fig. 3F). DVD-

deficiency did not result in alteration of alpha and beta diversity
in the pregnant dams (Fig. S2).
In respect to individual species, we found four bacteria

(Akkermansia, Fusicatenibacter, Allobaculum and Turicibacter)
whose relative abundance in the offspring was significantly
altered by DVD-deficiency (see supplementary Fig. S3).
In respect to behaviour, we found a negative correlations

between Phascolarctobacterium (R=−0.77, p= 0.015) (Fig. 4A)
and Paracteroides (R=−0.79, p= 0.00044) (Fig. 4B) with the
frequency of pouncing in DVD-deficient group, but not in control.
The genus Parasutterella was also negatively correlated with
frequency of pouncing in controls but not in DVD-deficient group
(R=−0.64, p= 0.0081) (Fig. 4C).

DVD-deficiency increases ileum propionate levels
There was an increased propionate level in the ileum of DVD-
deficient animals compared to controls (F1,32= 7.609, p < 0.05).
However, there were no differences in the acetate (F1,32= 0.873,
P= 0.358) and butyrate (F1,32= 0.821, p= 0.373) levels. There was
no effect of sex on the levels of acetate (F1,32= 0.247, p= 0.623),
propionate (F1,32= 0.680, p= 0.416) and butyrate (F1,32= 0.319,
p= 0.577) (Fig. 5).

DVD-deficiency effects on gut physiology
DVD-deficient animals had decreased villi length compared with
control animals (F1,30= 13.072, p= 0.001) (Fig. 6B). There was no
effect of acute poly (I:C) on villi length (F1,30= 0.018, p= 0.896)
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Fig. 2 DVD-deficiency decreases social play and increases stereotyped behaviour in adolescent rats. A–C Social play behaviour was
measured in P35 offspring. (A)DVD-deficient offspring showed significantly less pouncing compared to control offspring (F1, 94= 7.328,
p= 0.008). No differences were found in (B) total play duration or (C) latency to interact. There was no main effect of sex on frequency of
pouncing (F1,94= 0.006, p= 0.939), total play duration (F1,94= 0.074, p= 0.787) and latency to interact (F1,94= 1.123, p= 0.292). CON males
n= 24, CON females n= 24, DVD males n= 24, DVD females n= 24. D, E Self-grooming behaviour was analysed from social play recordings.
D DVD-deficient rats showed increased bouts of self-grooming compared to controls (F1,191= 11.595, p= 0.001). E There was no difference in
the duration of self-grooming between DVD-deficient and control animals (F1,191= 2.823, p= 0.095). CON males= 48, CON females= 48, DVD
males= 48, DVD females= 47. **p < 0.01.

Table 1. Chi-square test of independence for pinning behaviour in adolescent offspring.

Diet Animals showing pinning n Animals not showing pinning n Sample size N Chi-square test of independence

CON 13 35 48 χ2 1,94= 5.361, p= 0.021

DVD 4 42 46

DVD-deficiency was associated with a lower occurrence of pinning (χ2 1,94= 5.361, p= 0.021). There was no association of sex with pinning (χ2 1,94= 0.812,
p= 0.368). CON= Control, DVD=DVD-deficient. Control males n= 24, Control females n= 24, DVD males n= 24, DVD females n= 24, *p < 0.05.
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(Fig. 6B). In addition, we did not find a main effect of DVD-
deficiency on lymphocyte count (F1.30= 0.049, p= 0.827)(Fig. 6C)
or goblet cell count (F1,30= 0.003, p= 0.958) (Fig. 6D) nor any
effect of Poly(I:C) on goblet cell (F1,30= 0.097, p= 0.758) or
lymphocyte number (F1,30= 0.473, p= 0.498). Moreover, we found
reduced mRNA expression of ZO-1 in the colon from DVD-
deficient offspring compared to control offspring (F1,63= 4.523,
p= 0.038) (see Supplementary Fig. S4).

As expected, Poly(I:C) signifcantly elevated the levels of both IL-
6 and TNF-α in ileum and sera, compared to saline treatment
(p < 0.05) (Fig. 6E–H). There was no main effect of sex on sera IL-6
(F1,64= 0.000, p= 0.984) and TNF-α (F1,64= 0.132, p= 0.718); or
ileum IL-6 (F1,64= 0.056, p= 0.814) and TNF-α (F1,64= 0.394,
p= 0.533). There was also no effect of DVD-deficiency on the
levels of IL-6 and TNF-α in ileum and sera. However, a significant
interaction of diet × Poly(I:C) on TNF-α levels in ileum

Table 2. Chi-square test of independence for allogrooming behaviour in DVD-deficient offspring.

Diet Animals showing allogrooming
(Yes)

Animals not showing allogrooming
(No)

Sample size N Chi square test of independence

CON 38 58 96 χ2 1,191= 0.631, p= 0.427

DVD 43 52 95

DVD-deficiency was not associated with allogrooming. Sex was also not associated with allogrooming (χ2 1,191= 0.007, p= 0.933). Control males n= 48,
Control females n= 48, DVD males n= 48, DVD females n= 47.
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(F1,64= 7.394, p= 0.009) was found, showing greater response to
Poly (I:C) in DVD-deficient animals (Fig. 6G).

DISCUSSION
The DVD-deficiency animal model produces deficits in pup-dam
communication, increased stereotyped behaviours and impaired
social interaction, all behavioural phenotypes of relevance to
autism. Correlations between gut microbiome and certain social
behaviours raise the potentially interesting question that this
developmental risk factor may increase the risk for autism via the
gut microbiota or alterations to gut health.

DVD-deficiency alters maternal and offspring behaviour
relevant to autism
An earlier study from our lab, showed increased corticosterone
release in response to stress in DVD-deficient dams [43]. Maternal
stress is an established risk-modifier for autism [44, 45]. Proper

maternal care towards their offspring is essential for the
development of normal social behaviour in animals and humans
[46]. The increased licking/grooming observed in DVD-deficient
dams in our study may reflect a heightened state of anxiety or
stress in DVD-deficient dams and pups as maternal stress is
correlated with the frequency of such grooming in rodents [47].
Variation in maternal care in rodents has been shown to affect the
development of neural systems that mediate stress reactivity,
which in turn could influence maternal behaviour. For example,
offspring born to high licking/grooming dams show decreased
cortico-releasing factor mRNA expression in the central nucleus of
the amygdala [48]. The enhanced pup retrieval, at least at the later
time point, may also be consistent with enhanced maternal
anxiety.
To examine how pups respond and communicate to rat dams,

we further measured USVs in the pups. A rudimentary early
communication in pups is the USVs they emit when separated
from their dam [49]. DVD-deficiency influenced USVs at P9, with
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DVD-deficient pups emitting increased numbers and longer
duration of calls at P9. These findings are consistent with two
recent studies showing increased USVs in DVD-deficient rats at P9
[11] and P12 [50]. Many other animal models of autism have also
demonstrated altered USVs (either increased or decreased)
[51–53]. However, the mechanisms involved in USVs remain
poorly defined. One hypothesis implicates dopamine (DA)
systems. The DA D2 receptor knock-out mouse shows reduced
isolation-induced USVs [54] and consistent with this, elevating DA
levels using amphetamine increased USVs in adult rats [55]. Our
laboratory has consistently shown that DVD-deficiency delays DA
neuron development in the embryonic brain [9, 10, 56–59].
Whether DA development is linked with pup’s USVs remains a
topic of ongoing interest.
In terms of understanding maternal behaviour at the ages

where USVs were recorded, DVD-deficiency enhanced both pup
USV number and call duration at P9. This corresponded with faster
pup retrieval by dams. Pup USVs are important trigger for pup
retrieval by their dams [60]. Increased USVs may represent a
heightened state of anxiety or stress in DVD-deficient pups.
Studies have shown that the administration of anxiety-inducing
drugs results in increased USVs in mouse pups [61]. This suggest

that at this age at least, pup USVs may drive maternal behaviour.
At P7 however DVD-deficient dams were slower to retrieve pups
yet there was no alteration in pup USVs suggesting some other
mechanism.
Deficits in social skills and abilities are diagnostic features of

autism [62]. In rodents, this is measured by adolescent social play
[63] and adult social interaction assays [64]. Social play behaviour
such as “pouncing and pinning” is a vigorous form of social
interaction commonly observed in young mammals [36]. This
behaviour is highly prevalent in adolescent rats [35]. It is highly
rewarding and believed to play an essential role in social and
cognitive development. Manipulation of DA systems results in
robust changes in social play behaviour in rodents [65]. Given a
large number of animal studies now demonstrate vitamin D levels
in the developing brain affect the ontogeny of DA neurons, DA
release in adults and DA-mediated behaviours [9, 10, 43, 56, 58],
this could be one mechanism at play for the reduced social play
seen in DVD-deficient P35 animals.
We also elected to examine the amount of self-grooming an

animal would engage in whilst in the presence of a conspecific
during social play. Self-grooming is a rodent behaviour considered
to have some face validity to the repetitive behaviours observed in
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autism [66]. This is generally assessed by examining an animal in
isolation from cage mates [36, 67, 68]. However, we argue that our
measure during social interaction may more closely reflect a
stereotyped or “inward directed” activity when a social stimulus
was present. The P35 DVD-deficient animals in our study showed
higher frequency of self-grooming when in the presence of a
conspecific, consistent with their diminished social interaction.
Several genetic and environmental models of autism in rodents
demonstrate increased self-grooming behaviours. The brain
specific mechanisms involved in regulation and maintenance of
self-grooming remains unclear [69]. Pharmacological studies have
suggested a balance between dopamine D1 and D2 receptor
systems in the regulation of self-grooming [70]. Some other
studies have also reported involvement of glutamate, as anti-
glutamatergic agents have been shown to induce grooming in
rodents [71]. Given our previous study showing alterations of
dopamine and glutamine concentrations in DVD-deficient neona-
tal rat brain [59], further investigation to examine the involvement
of these neurotransmitter systems in self-grooming behaviour is
needed.

DVD-deficiency alters gut health-associated outcomes
relevant to autism
Faecal samples were collected from pregnant DVD-deficient dams
and their adolescent offspring to examine if DVD-deficiency alters
gut microbiome. No differences in gut microbiome (alpha and
beta diversity) were found between DVD-deficient and control
dams. In P35 offspring, although alpha diversity within each
experimental group was unchanged at the genus level, beta
diversity determined by principal coordinate analysis clearly
showed differences between dietary groups indicating that the
composition of the microbiome is altered by the lack of vitamin D.
When we examined the top correlates between bacterial

species and the major behaviour examined at P35 (pouncing),
bacterial abundance correlated reversibly for three bacteria:
Phascolactobacterium, Parabacteroides and Parasutterella. There
are mixed findings in literature on whether these bacteria are
increased or decreased in autism/animal models of autism. The
abundance of Clostridium was increased in autistic children in one
study [72]. Studies suggest Clostridium species likely regulate
development and function of regulatory T cells in the intestine
[73], however, we did not find this bacteria correlated to pouncing
behaviour in the current study. Strati et al. found that
Parabacteroides was decreased in autistic children [74], whereas
a study by Finegold et al. [75] showed Parabacteroides was
increased in autism. Variations in diet or behaviour are highly
likely to affect regional gut microbiome outcomes. Until such
issues can be appropriately controlled, the emerging links
between gut health and psychiatry will continue to produce
conflicting outcomes [76, 77].
It is generally accepted that a large proportion (about 50%) of

infant gut microbiome is derived from the mother’s gut through
vertical transmission, although there are studies showing con-
tribution of microbiome from other maternal sites such as skin,
vagina and oral cavity [78, 79]. Our findings show that although
DVD-deficiency didn’t alter the maternal gut microbiome compo-
sition, there was differences in the gut microbiome between DVD-
deficient and control offspring. A number of factors may explain
this observation and elaborate its implication. Firstly, the neonatal
gut is microbially naïve and the gut mucosa (and associated
immune system) are still developing [80]. Given vitamin D is an
important immune regulator [81] perhaps the gut is immunolo-
gically compromised in the DVD-deficient pups perhaps allowing
a different level of host resistance to initial microbial colonization.
Secondly, variations in the quality of maternal care after birth have
been shown to influence the composition of the infant gut
microbiome in rat offspring [82]. This may indicate that the
increased maternal licking/grooming, altered rates of pup retrieval

and increased pup call number and length which are all altered by
DVD-deficiency might affect initial microbial seeding in the
pup’s gut.
Studies in preclinical models however are more consistent. New

studies continue to reveal associations between gut microbiome
and social behaviour [83, 84]. Gut biomes from patients with
autism when transferred to animals produce deficits in social
behaviours [16]. In respect to individual bacteria, Hsiao et al.
showed that administration of Bacteroides fragilis, an intestinal
commensal bacteria, into maternal-immune activated mice
restored social behaviours and USV deficits in adult offspring
[20]. The bacterium Enterococcus faecalis has been shown to affect
host social behaviour by regulating certain stress responsive
neurons in the brain [85]. Thus, gut microbiome could be an
important regulator of the gut microbiota-brain axis affecting host
behaviour and brain function. We did show an increase in the
relative abundance of Akkermansia and Turicibacter in DVD-
deficient offspring whereas decreased abundance of Fusicateni-
bacter and Allobaculum in DVD-deficient offspring compared to
control offspring (see supplementary Fig. S3). Akkermansia has
been previously reported to be elevated in autism and an
important organism having a role in maintaining gut mucous
membrane integrity [72]. Allobaculum is a SCFA producer and one
study links its role in lipid metabolism and cardiovascular disease
[86]. Thus, vitamin D may also regulate gut function by influencing
the population of these bacteria.
Alterations in faecal levels of SCFAs have been reported in

autistic children [87, 88]. SCFAs (mainly acetate, propionate and
butyrate) are microbial metabolites released by the fermentation
of the non-digestible nutrient polymers in the gut. SCFAs are
thought to regulate metabolism, immune function, gut integrity
and are also believed to be central to any proposed CNS effects
from altered gut physiology [89, 90]. The increased propionate
levels in ileum found in DVD-deficient offspring may reflect
enhanced activity of SCFA producing phyla such as Firmicutes.
However, the relative abundance of the Firmicutes was not
different between DVD-deficient and control animals in our study,
suggesting other mechanisms operating in the gut. Interestingly,
the genus Akkermansia is a SCFA producer [91]. Whether an
increase in an Akkermansia species in DVD-deficient offspring is
responsible for the increase in propionate levels is unknown. In
rodents, supplementation of propionate to rats has been shown to
induce repetitive self-grooming behaviours [92]. Thus, we checked
to see if social interaction or self-grooming was associated with
SCFAs; however, none of the three SCFAs correlated with either
behaviour (see supplementary Tables S3 and S4). Usually,
supplementation experiments involve relatively high dose of
propionate (mg/kg range), thus it is not unexpected to see lack of
behavioural correlates with very low propionate levels (in µM) as
in our study.
Whether propionate would cause increased repetitive self-

grooming behaviour or increased ultrasonic vocalization in the
DVD-deficient offspring, supplementation of propionate (in the
form of sodium propionate) to the control offspring is an
appropriate experiment to further examine if this metabolite is
causally linked to the repetitive behaviour/ultrasonic vocalization.
However, propionate concentration measured in our animals are
quite low (mean 7.23 µM) and we have not observed any
correlation between the propionate levels and the self-grooming
behaviour. Moreover, previous studies show that intraventricular
infusion of relatively higher doses of sodium propionate (56 or
260 µM) is required to show significant behavioural outcomes in
rats [93, 94]. Because of these reasons, the proposed supplemen-
tation experiment with propionate, may not produce any
significant behavioural outcomes. We searched for the potential
propionate producing bacteria in the literature and found that
Akkermansia municiphila is identified as a propionate producer in
the gut [95]. Interestingly, Akkermansia genus is significantly
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enriched in DVD-deficient group in our study, compared to
control. This means that this bacterium probably is associated with
increased propionate production in DVD-deficient animals and
might also be associated with the increased self-grooming
behaviour of the P35 offspring. However, due to the inherent
limitation of 16 s amplicon sequencing, we could not resolve the
taxa Akkermansia up to species level and hence could not confirm
that the organism is in fact Akkermansia municiphila.
Our histological examination of the gut revealed that DVD-

deficiency shortens the length of villi. There are very few studies that
have specifically examined the effect of vitamin D on villi length.
Birge and Alpers demonstrated that addition of the active vitamin D
hormone to vitamin D-deficient rats resulted in 20% increase in villus
length compared to deficient animals [96]. In a cell culture study
using intestinal epithelial cells, vitamin D supplementation enhanced
cell migration from crypts towards the apical villi [97]. This suggests
that decreased villi length in DVD-deficient animals may reflect
impaired cell migration from the crypts. Reduced villi length has also
been reported in Shank3 Knockout mice (which is a genetic model
of autism) [98]. DVD- deficiency was not associated with changes in
the intraepithelial lymphocyte and goblet cell counts in our study.
The effects of vitamin D are mediated by vitamin D receptor (VDR),
which in turn, regulates the expression of several genes such as that
of tight junction proteins (TJPs) [97, 99]. Zo-1 along with other TJPs
regulate paracellular permeability of the gut [100]. One of the TJPs
whose expression was significantly reduced in DVD-deficient
offspring in our study is Zo-1. Although the finding was significant,
this should be interpreted with caution as the effect seemed to have
been driven primarily by Poly(IC) in DVD-deficient group.
Several studies have shown gut inflammation and reduced

intestinal immune cells, in vitamin D-deficient or vitamin
D-receptor knock out (VDR KO) animals. Vitamin D is an immune
regulator, which suppresses inflammatory Th17 cells and induces
the Treg cells, thus helping to maintain immunological home-
ostasis in the gut [32]. Studies examining the direct effect of
vitamin D on goblet cells are scarce, but vitamin D-deficiency has
been shown to cause thinner mucous layer in the gut and increase
translocation of bacteria to the mesenteric lymph nodes predis-
posing the gut to inflammation. The thinner mucous layer could
be related to the mucous degrading activity of genus Akkermansia
[72]. Goblet cells secrete mucous, thus helping to protect the gut
epithelium from bacteria and other toxic substances [101].
Although there was no change in the number of these immune
relevant cells in the gut, further studies are required to examine
the function of these cells and structure of the mucous layer in
DVD-deficient offspring.
Our final experiment was the acute use of an immune activator

Poly(I:C) to investigate whether the DVD-deficient gut was more
vulnerable to pro-inflammatory agents. Vitamin D is a well-known
immune regulatory agent [102] and we have shown that placental
tissues from DVD-deficient dams have an enhanced inflammatory
response to Poly(I:C) [12] As expected, DVD-deficiency did not
induce any baseline inflammatory condition similar to what we
report in placental tissue [12]. Also, as expected Poly(I:C) induced a
robust increase in inflammatory markers in both P35 sera and gut
tissue. However, unlike cultured placenta tissue in vitro, the acute
(4 h) inflammatory response to Poly(I:C) in P35 offspring gut was
unaffected by diet. Whether any long-term interactions between
DVD-deficiency and exposure to Poly(I:C) at P35 remains unknown.

CONCLUSIONS
Our primary goal in this experiment was to study whether gut
microbiome or alterations to gut physiology are present in our
animal model of DVD-deficiency. We again confirm that a range of
ASD-related behaviours (altered pup-dam communication, reduced
social interaction, and increased stereotyped behaviours) are
present in this model and importantly social behaviour in DVD-

deficient animals nominally correlates with the abundance of
several bacterial species. Future studies could incorporate faecal
microbiome transfers or colonisation with each of the implicated
bacterial species in DVD-deficient offspring to establish causality.
However, microbiota transfer experiments may be compromised by
the altered behaviour of DVD-deficient dams as the increased licking
and grooming and altered pup retrieval times which can adversely
affect pup development independent of any effect of microbiome.
The epidemiological links between maternal vitamin D defi-

ciency and increased autism risk [2, 5, 7, 103] are well-established.
The emerging data concerning gut health in children with autism
and the role of vitamin D in preserving gut function suggest this
ASD-risk factor may act via alterations to the gut microbiota, gut
SCFA synthesis or altering gut physiology. The high prevalence of
vitamin D-deficiency in pregnant women [104–106] increases
concern regarding this link.
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