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Low Baseline CXCL9 Predicts Early Progressive 
Disease in Unresectable HCC with Atezolizumab 
Plus Bevacizumab Treatment
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Abstract
Introduction: Atezolizumab plus bevacizumab treatment is 
highly effective in patients with unresectable hepatocellular 
carcinoma (HCC). However, progressive disease (PD) occurs 
in approximately 20% of HCC patients treated with atezoli-
zumab plus bevacizumab, resulting in a poor prognosis. 
Thus, the prediction and early detection of HCC is crucial. 
Methods: Patients with unresectable HCC treated with at-
ezolizumab plus bevacizumab and had baseline preserved 
serum (n = 68) were screened and classified according to 
their PD, 6 weeks after treatment initiation (early PD; n = 13). 
Of these, 4 patients each with and without early PD were se-
lected for cytokine array and genetic analyses. The identified 

factors were validated in the validated cohort (n = 60) and 
evaluated in patients treated with lenvatinib. Results: No 
significant differences were observed in the genetic altera-
tions in circulating tumor DNA. Cytokine array data revealed 
that baseline MIG (CXCL9), ENA-78, and RANTES differed 
substantially between patients with and without early PD. 
Subsequent analysis in the validation cohort revealed that 
baseline CXCL9 was significantly lower in patients with early 
PD than that in patients without early PD, and the best cut-
off value of serum CXCL9 to predict early PD was 333 pg/mL 
(sensitivity: 0.600, specificity: 0.923, AUC = 0.75). In patients 
with lower serum CXCL9 (<333 pg/mL), 35.3% (12/34) expe-
rienced early PD with atezolizumab plus bevacizumab, while 
progression-free survival (PFS) was significantly shorter rela-
tive to that in patients without (median PFS, 126 days vs. 227 
days; HR: 2.41, 95% CI: 1.22–4.80, p = 0.0084). While patients 
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with objective response to lenvatinib had significantly lower 
CXCL9 levels compared with those of patients without. Con-
clusion: Baseline low serum CXCL9 (<333 pg/mL) levels may 
predict early PD in patients with unresectable HCC treated 
with atezolizumab plus bevacizumab.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

Hepatocellular carcinoma (HCC) is a major cause of 
cancer-related deaths, and its incidence has been increas-
ing globally [1]. In the recent years, there have been dras-
tic advancements in the therapeutic options of system-
atic chemotherapy for patients with unresectable HCC. 
In addition to sorafenib [2], lenvatinib [3], regorafenib 
[4], cabozantinib [5], ramucirumab [6], and the vascular 
endothelial growth factor (VEGF) inhibitor bevacizumab 
plus the programmed death ligand-1 inhibitor atezoli-
zumab have been approved for systemic therapy in pa-
tients with unresectable HCC [7]; of which, atezolizumab 
plus bevacizumab is considered to be the first-line thera-
py [8, 9], while lenvatinib and sorafenib are considered 
alternative first-line therapies or as second-line therapies 
in cases where atezolizumab and bevacizumab prove to 
be ineffective [8].

The IMbrave150 trial, which was a phase 3 clinical tri-
al of atezolizumab and bevacizumab for patients with un-
resectable HCC, revealed that atezolizumab and bevaci-
zumab could achieve longer overall survival (OS) and 
progression-free survival (PFS) compared to those of 
sorafenib [7]. However, progressive disease (PD) oc-
curred in 19.6% (71/326) of the patients treated with at-
ezolizumab plus bevacizumab [7]. Additionally, early PD 
(PD at 6 weeks after atezolizumab plus bevacizumab ini-
tiation) occurred in 17.2% (10/58) of the patients in real-
world settings [10].

Exploratory analysis of IMbrave150 on OS stratified 
by the treatment response (treatment response as defined 
by Response Evaluation Criteria in Solid Tumors 1.1 (RE-
CIST 1.1)) revealed that the median OS of patients with 
the best response to PD treated with atezolizumab plus 
bevacizumab was much shorter (6.8 months) than that of 
the responders [11]. Therefore, clarifying the factors as-
sociated with early PD in patients treated with atezoli-
zumab and bevacizumab plus development of alternative 
therapies for treatment of unresectable HCC is an urgent 
and clinically important issue.

Poor prognosis has been observed due to CTNNB-1 
gene alteration in patients with unresectable HCC who 
undergo immune checkpoint inhibitor (ICI) monothera-
py [12–14]. In addition, some cytokines and chemokines, 
including CCR5 and CXCL13, have been reported to be 
associated with the ICI treatment response [15, 16]. In the 
present study, we aimed to clarify the factors associated 
with early PD in patients with unresectable HCC – who 
are treated with atezolizumab and bevacizumab – by a 
comprehensive analysis, including assessment of clinical 
factors, genetic alterations in circulating tumor DNA, 
and cytokine arrays.

Materials and Methods

Patients
We retrospectively screened patients with unresectable HCC 

– who were treated with atezolizumab and bevacizumab between 
October 2020 and January 2022 and had complete clinical data and 
baseline preserved serum samples for biomarker analysis – in the 
NORTE study groups [17–21], while those patients who did not 
meet the above criteria or declined to participate in the study were 
excluded. Subsequently, we evaluated their treatment response by 
dynamic computed tomography (CT) or magnetic resonance im-
aging (MRI) at 6 weeks after treatment initiation.

We collected cell-free DNA samples from 29 patients. Of those, 
4 patients each with and without early PD were selected according 
to the rate of change in tumor size after atezolizumab and bevaci-
zumab treatment. Four patients each with the highest increment 
and shrinking rate of HCC tumor diameter after atezolizumab and 
bevacizumab treatment were selected from among the 29 patients 
(discovery cohort). The patients’ clinical factors were compared, 
and the preserved serum samples and cell-free DNA samples were 
analyzed for cytokine array and genetic alterations. Subsequently, 
we evaluated these results in the validation cohort (n = 60), exclud-
ing 8 patients in the discovery cohort from all analyses.

Finally, we analyzed the treatment response to lenvatinib in 
patients with unresectable HCC – stratified by the factors that were 
identified in the above analysis – after screening these patients at 
Hokkaido University Hospital and JCHO Hokkaido Hospital be-
tween April 2018 and May 2022. Only patients with complete clin-
ical information were evaluated for their treatment response every 
2–3 months following treatment and had baseline preserved serum 
samples were included here.

The present study protocols conformed to the ethical guide-
lines of the Declaration of Helsinki and were approved by the Eth-
ics Committee of Hokkaido University Hospital (approval no. 
020-0267 and 017–0521) and the participating institutes. Written 
informed consent was obtained from all the included patients.

Treatment Protocols
Patients with unresectable HCC were treated with atezolizum-

ab (1,200 mg) plus bevacizumab (15 mg/kg) every 3 weeks. Their 
treatment response was evaluated 6 weeks after treatment initia-
tion. Treatment was discontinued if unacceptable adverse events 
or PD were observed, as previously described [10]. Patients who 
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weighed <60 kg received 8 mg lenvatinib once a day orally, and 
those who weighed ≥ 60 kg received 12 mg once a day, as described 
previously [22].

Cytokine Array Analysis
Serum chemokines and cytokines, including angiogenin, che-

mokine ligand-1 (CCL1), CCL15, CCL17, CCL2, CCL22, CCL5, 
CCL7, CCL8, colony stimulating factor-1 (CSF1), CSF2, CSF3, C-
X-C motif chemokine ligand-1 (CXCL1), CXCL12, CXCL2, 
CXCL3, CXCL5, CXCL8, CXCL9, epidermal growth factor, 
interferon-γ, insulin-like growth factor-1, IL-10, IL-12A, IL-13, 
IL-15, IL-1A, IL-1B, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, KIT ligand, 
leptin, lymphotoxin-α, oncostatin M, platelet-derived growth fac-
tor subunit B, transforming growth factor-β1, thrombopoietin, tu-
mor necrosis factor, thyroperoxidase, and VEGFA, were analyzed 
using the RayBio Human Cytokine Antibody Array G Series 3 
(RayBiotech Life, GA, USA), according to the manufacturer’s pro-
tocols. All patient samples were analyzed in duplicates, and the 
signals were scanned using GenePix 4400A (Molecular Devices, 
San Jose, CA, USA) and analyzed using Microarray Data Analysis 
Tool v3.2 (Filgen, Nagoya, Aichi, Japan) and Array-Pro Analyzer 
v4.5 (Media Cybernetics, Rockville, MD, USA). To normalize the 
Array Data (signal intensity data), one sub-array was defined as the 
“reference,” against which all the other arrays were normalized. 
We calculated the normalized values as follows: X(Ny) = X(y) × 
P1/P(y), where P1 = mean signal intensity of POS pots on reference 
array, P(y) = mean signal intensity of POS spots on Array “y,” X(y) 
= mean signal intensity for spot “X” on Array “y,” and X(Ny) = 
normalized signal intensity for spot “X” on Array “y.” The normal-
ized signal intensities were compared between patients with and 
without early PD (n = 4, each).

Analysis of Changes in Serum CXCL9, CCL5, ENA-78, M-CSF, 
and PDGF-BB
Serum CXCL9, CCL5, ENA-78, M-CSF, and PDGF-BB levels 

were evaluated using commercial ELISA kits (CXCL9, CCL5, 
ENA-78, M-CSF, and PDGF-BB; R&D Systems, Minneapolis, 
MN, USA) according to the manufacturer’s protocols [23].

Evaluation of the Treatment Response
Dynamic computed tomography or MRI was performed on pa-

tients at baseline and at 6 weeks after the initiation of atezolizum-
ab plus bevacizumab treatment, and the treatment responses were 
classified according to RECIST 1.1 and modified RECIST [24].

In patients treated with lenvatinib, the treatment response was 
evaluated every 2–3 months using modified RECIST [24]. In addi-
tion to the treatment response, PFS and OS were evaluated accord-
ing to the factors associated with early PD.

Analysis of Genetic Alterations in Circulating Tumor DNA
Of the patients with and without PD treated with atezolizumab 

plus bevacizumab, cell-free DNA samples from 4 patients were 
analyzed.

Sample Preparation
Cell-free DNA was extracted from 4 mL of plasma using the 

AVENIO ctDNA Analysis Kit (Roche Diagnostics, Tokyo, Japan) 
according to the manufacturer’s protocols. For sample quantity 
and quality check, the concentration of cell-free DNA was deter-
mined using the Qubit dsDNA HS Assay Kit (Thermo Fisher Sci-

entific, Waltham, MA, USA), and the fragment size was examined 
using the Agilent 2200 TapeStation System with High Sensitivity 
D5000 ScreenTape Assay (Agilent Technologies, Santa Clara, CA, 
USA).

Target Selection and Sequencing
Library preparation and sequencing were conducted according 

to the manufacturer’s instructions (Thermo Fisher Scientific). 
PCR amplification of target regions and library preparation for 
sequencing was performed using the Oncomine Pan-Cancer Cell-
Free Assay and Tag Sequencing Barcode Set (Thermo Fisher Sci-
entific). Library concentration was estimated using the Ion Library 
TaqMan Quantitation Kit (Thermo Fisher Scientific). Emulsion 
PCR was conducted using the Ion 540 Kit-Chef and Ion Chef 
(Thermo Fisher Scientific). Sequencing was performed using Ion 
540 Chip and Ion 540 Kit-Chef on an Ion S5 XL System (Thermo 
Fisher Scientific) at Riken Genesis Co. (Tokyo, Japan).

Mapping and Variant Calling
Quality control and mapping of sequencing reads were con-

ducted using Torrent Suite Software 5.12.2 (Thermo Fisher Scien-
tific). Variant calls were performed using Oncomine TagSeq Pan-
Cancer Liquid Biopsy w2.1–Single Sample workflow in Ion Re-
porter Software 5.10 (Thermo Fisher Scientific). Annotations of 
the called variants were based on dbSNP151, CCDS (National 
Center for Biotechnology Information, Release 15), RefSeq (UCSC 
Genome Browser, November 2018), Gencode (UCSC Genome 
Browser, v19), and 1,000 Genomes (phase 3; release v5). These 
analyses were conducted at the Riken Genesis Co.

Statistical Analysis
Continuous variables were analyzed using the Mann-Whitney 

U test. Categorical variables were analyzed using the χ2 test and 
Fisher’s exact test. The best cut-off value was determined based on 
the receiver operating characteristic (ROC) curve by maximizing 
the Youden’s index. Survival curves of PFS and OS were calculated 
using Kaplan-Meier analysis and compared using the log-rank test.

In all analyses, p < 0.05 was defined as statistically significant. 
All statistical analyses were performed using SPSS Statistics (v22.0; 
IBM, Armonk, NY, USA).

Results

Patient Characteristics
A total of 68 patients who received atezolizumab plus 

bevacizumab between October 2020 and January 2022 in 
the NORTE study group, had preserved serum at base-
line, completed clinical information, and had their evalu-
ated treatment response at 6 weeks after atezolizumab 
plus bevacizumab treatment were included. As listed in 
Table 1, PD was observed in 19.1% (13/68) of the patients 
who received atezolizumab plus bevacizumab at 6 weeks 
after treatment. Comparison between patients with and 
without early PD did not show any significant differences, 
including NLR.
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Table 1. Comparison of baseline patient characteristics between those with or without early PD to atezolizumab and bevacizumab

All patients 
(N = 68)

PD after 6 weeks 
(N = 13)

Non-PD after 6 weeks 
(N = 55)

p value

Age (range), years 72 (31–89) 75 (37–83) 70 (31–89) 0.85
Sex

Male 55 10 45 0.70
Female 13 3 10

Etiology
Viral hepatitis 30 4 26 0.36
NBNC 38 9 29
CH 33 9 24 0.13
LC 35 4 31

ECOG PS
0 54 10 44 >0.99
1 14 3 11

White blood cell count, mm3 5,040 (1,970–11800) 4,800 (2700–11800) 5,200 (1,970–11800) 0.91
Neutrophil count, mm3 3,285 (1,185–9,971) 2760 (1,809–9,971) 3,440 (1,185–9,204) 0.84
Lymphocyte count, mm3 1,120 (140–2881) 1,296 (540–2366) 1,088 (140–2881) 0.41
NLR 2.83 (0.83–16.69) 2.20 (0.83–7.52) 2.98 (0.98–16.69) 0.32
Platelet, ×104/μL 16.7 (3.6–46.4) 16.8 (8.5–32.6) 16.2 (3.6–46.4) 0.79
Prothrombin time, % 95.9 (35.3–128.0) 103.3 (81.8–113.8) 95.0 (35.3–128.0) 0.10
NH3, µg/dL 42 (8–136) 30 (12–100) 43 (8–136) 0.24
Albumin, g/dL 3.7 (2.7–4.8) 3.9 (3.1–4.8) 3.7 (2.7–4.8) 0.48
ALBI grade

1 25 5 20 0.85
2a 23 5 18
2b 20 3 17

AST, IU/L 45 (14–672) 44 (20–134) 46 (14–672) 0.72
ALT, IU/L 28 (7–278) 35 (12–122) 27 (7–278) 0.53
Child-Pugh grade

A 65 13 52 >0.99
B 3 0 3

Child-Pugh score
5 38 9 29 0.67
6 27 4 23
7 1 0 1
8 2 0 2

AFP, ng/mL 111.8 (0.8–200000.0) 156.0 (2.4–15009.5) 80.1 (0.8–200000.0) 0.67
DCP, mAU/mL 887 (19–245000) 839 (25–110159) 1,116 (19–245000) 0.59
Maximum intrahepatic tumor size, mm 32.0 (0–166.6) 21.6 (0–119) 36 (0–166.6) 0.39
More than 50% liver involvement 11 2 9 >0.99
Diffuse type 10 1 9 0.67
Hepatic tumors

0 10 2 8 0.94
1 7 1 6
Multiple 51 10 41

BCLC stage
B 23 6 17 0.34
C 45 7 38

Up to seven
In 23 4 19 >0.99
Out 45 9 36

Positive for Vp 13 3 10 0.70
Positive for Vv 1 0 1 >0.99
Positive for bile duct invasion 1 0 1 >0.99
Positive for LN metastasis 13 1 12 0.44
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Analysis of Biomarkers Associated with Prediction of 
Early PD in HCC Patients Who Were Treated with 
Atezolizumab Plus Bevacizumab
We collected cell-free DNA from 29 patients at base-

line. Of these, to investigate the factors associated with 
early PD, we selected 4 patients each with and without 
early PD, according to the rate of change in HCC at 6 
weeks after treatment initiation (online supp. Table S1; 
see www.karger.com/doi/10.1159/000527759 for all on-
line suppl. material). As shown in online supplementary 
Figure S1, no significant differences were observed in the 
genetic alterations in circulating tumor DNA between pa-
tients with and without early PD (median amplicon cov-
erage in 8 patients was 41,198.33–62,859.96).

However, the signal levels of baseline cytokines and 
chemokines analyzed using the RayBio Human Cytokine 
Antibody Array G Series 3 revealed that MIG (CXCL9), 
ENA-78, and RANTES (CCL5) were significantly differ-
ent between patients with early PD and those without ear-
ly PD (Fig. 1a, b). Subsequently, to validate these results, 
we investigated the baseline serum MIG (CXCL9), ENA-
78, and RANTES (CCL5) levels in the validation cohort 
consisting of 60 patients, excluding 8 from the discovery 
cohort, using ELISA and compared these values between 
patients with and without early PD who were treated with 
atezolizumab plus bevacizumab. As shown in Figure 1c, 
CXCL9 levels were significantly lower in patients with 
early PD relative to those in patients without early PD 
even in the validation cohort. Similarly, we analyzed cy-
tokines and chemokines of marginal significance in the 

discovery cohort and M-CSF (p = 0.06) and PDGF-BB (p 
= 0.05) in validation cohort. As shown in the online sup-
plementary Figure S2, M-CSF and PDGF-BB were not 
significantly associated with early PD in the validation 
cohort.

Subsequently, we analyzed the relationship between 
the baseline serum CXCL9 level and atezolizumab plus 
bevacizumab treatment response in the entire cohort. As 
shown in Figure 2a, CXCL9 levels were significantly low-
er in patients with early PD compared to those in patients 
without early PD; while CXCL9 levels were similar in pa-
tients with or without objective responses. We then ana-
lyzed and set the best cut-off value that predicted early PD 
after atezolizumab plus bevacizumab treatment initiation 
at 333 pg/mL based on the ROC curve that maximized the 
Youden index (sensitivity, 0.600; specificity, 0.923; AUC 
= 0.75), as shown in Figure 2b. Among these patients, 
35.3% (12/34) of those with low baseline serum CXCL9 
levels (<333 pg/mL) exhibited early PD. However, only 
2.9% (1/34) of those with high baseline serum CXCL9 lev-
els exhibited early PD (Fig. 2b). As shown in Figure 2c, 
PFS was significantly shorter in patients with low CXCL9 
levels (<333 pg/mL) relative to that in patients with high-
er CXCL9 levels (median PFS, 126 days vs. 227 days; HR: 
2.41, 95% CI: 1.22–4.80, p = 0.0084).

Characteristics of Patients with Unresectable HCC 
Who had Low Levels of Serum CXCL9
Table 2 lists a comparison between patients with unre-

sectable HCC with low (<333 pg/mL) and high baseline 

All patients 
(N = 68)

PD after 6 weeks 
(N = 13)

Non-PD after 6 weeks 
(N = 55)

p value

Positive for EHM 31 4 27 0.35
Naïve 16 3 13 >0.99
Recurrence 52 10 42

History of operation 33 8 25 0.36
History of RFA 19 3 16 >0.99
History of TACE 29 7 22 0.53
History of HAIC 1 0 1 >0.99
History of RT 10 1 9 0.67
History of TKI 39 9 30 0.37

NBNC, non-HBV non-HCV; CH, chronic hepatitis; LC, liver cirrhosis; ECOG PS, Eastern Cooperative Oncology Group Performance Status; 
BMI, body mass index; NLR, neutrophil to lymphocyte ratio; ALBI, albumin-bilirubin; AST, aspartate aminotransferase; ALT alanine 
aminotransferase; AFP, alpha-fetoprotein; DCP, des-gamma-carboxy prothrombin; BCLC, Barcelona Clinic Liver Cancer; LN, lymph node; 
EHM, extrahepatic metastasis; RFA, radiofrequency ablation; TACE, transcatheter arterial chemoembolization; HAIC, hepatic arterial infusion 
chemotherapy; RT, radiation therapy; TKI, tyrosine kinase inhibitor

Table 1 (continued)
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a

1
(Figure continued on next page.)
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CXCL9 (≥333 pg/mL) levels. Evidently, no significant dif-
ferences were observed between patients with low and 
high baseline CXCL9 levels.

Treatment Response to Lenvatinib in Patients with 
Low Levels of Baseline Serum CXCL9
Subsequently, we analyzed the relationship between 

low baseline serum CXCL9 levels and lenvatinib treat-
ment response in 84 patients with unresectable HCC. The 
baseline patient characteristics are shown in online sup-
plementary Table S2. Varying results were obtained for 
atezolizumab plus bevacizumab treatment, whereas the 
baseline serum CXCL9 levels in patients with objective 

response (complete response + partial response; objective 
response rate [ORR]) were significantly lower compared 
with those in patients without objective response (p = 
0.015; Fig. 3a). Furthermore, the ORR was significantly 
higher in patients with low baseline CXCL9 level (<333 
pg/mL) compared with that in patients with high CXCL9 
level (≥333 pg/mL) (p = 0.027; Fig. 3b). Subsequently, we 
set the best cut-off values of CXCL9 to 308 pg/mL to pre-
dict OR in patients treated with lenvatinib using ROC 
analysis. OS was marginally significantly longer in pa-
tients with low baseline CXCL9 (<308 pg/mL) compared 
with those with high baseline CXCL9 levels (≥308 pg/mL) 
(p = 0.096; Fig. 3c).

b

c

Fig. 1. Comparison of serum cytokines and chemokines using cy-
tokine array analysis between patients with and without early PD 
treated with atezolizumab plus bevacizumab. a In the cytokine ar-
ray, the signals were scanned using GenePix 4400A (Molecular 
Devices) and analyzed using MicroArray Data Analysis Tool v3.2 
(Filgen) and Array-Pro Analyzer v4.5 (Media Cybernetics). Signals 
were normalized, and the intensities were compared between pa-
tients with early PD (n = 4) and those without (n = 4). Mean signal 
intensity in the early PD and non-early PD groups is shown as the 

log2 ratio and SD *p < 0.05. b Complete images of array mem-
branes of samples from patients with early PD (n = 4) and those 
without early PD (n = 4) treated with atezolizumab plus bevaci-
zumab. c Comparison of baseline serum MIG (CXCL9), ENA-78, 
and RANTES levels between patients with and without early PD 
after treatment with atezolizumab and bevacizumab in the valida-
tion cohort (n = 60), excluding 8 patients of the discovery cohort 
from the entire cohort.
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Discussion

In the present study, we investigated the candidate 
predictive factors such as clinical factors, serum cytokines 
and chemokines, and genetic alterations in circulating tu-
mor DNA associated with early PD after atezolizumab 
and bevacizumab treatment. Although no remarkable 
differences were observed in the clinical factors and ge-
netic alterations in circulating cell-free DNA, cytokine ar-
ray data showed that baseline MIG (CXCL9), ENA-78, 
and RANTES (CCL5) remarkably differed between the 4 
patients with early PD and four without. Subsequent val-
idation analysis of the data of 60 patients treated with at-
ezolizumab and bevacizumab revealed that baseline 
CXCL9 levels were substantially lower in patients with 
early PD than in those patients without early PD. In con-

trast, lenvatinib exhibited the opposite effect in patients 
with low baseline CXCL9 levels. Patients with an objec-
tive response to lenvatinib had significantly lower base-
line serum CXCL9 levels compared with those in patients 
without objective response. OS was marginally signifi-
cantly longer in patients with low baseline CXCL9 com-
pared with those with high baseline CXCL9 levels (p = 
0.096).

We identified serum CXCL9 as a potential predictive 
factor associated with early PD after bevacizumab and at-
ezolizumab treatment. In this study, the best cut-off value 
of serum CXCL9 for predicting early PD was set at 333 
pg/mL. Among the 34 patients, 12 (35.3%) of them with 
low baseline serum CXCL9 levels (<333 pg/mL) exhibited 
early PD, while only 1 (2.9%) of them with high baseline 
serum CXCL9 (≥333 pg/mL) exhibited early PD. Thus, in 

a

c

b

Fig. 2. Association between baseline MIG (CXCL9) levels and ear-
ly PD treated with atezolizumab plus bevacizumab. a Comparison 
of baseline serum CXCL9 levels between patients with and without 
early PD, or an objective response to atezolizumab and bevaci-
zumab. b Best cut-off value of CXCL9 levels for predicting early 
PD following atezolizumab and bevacizumab treatment. The best 
cut-off value was determined based on the receiver operating char-
acteristic curve obtained by maximizing the Youden index. The 
cut-off baseline CXCL9 level for predicting early PD after atezoli-

zumab and bevacizumab was 333 pg/mL (sensitivity: 0.600, speci-
ficity: 0.923, AUC = 0.75). Rate of early PD in patients with ≥333 
pg/mL and <333 pg/mL baseline CXCL9 following atezolizumab 
plus bevacizumab treatment. c Kaplan-Meier estimates of PFS 
stratified by <333 pg/mL, the baseline CXCL9. Median PFS in pa-
tients with ≥333 pg/mL and <333 pg/mL baseline CXCL9 is 126 
days and 227 days, respectively (HR: 2.41, 95% CI: 1.22–4.80, p = 
0.0084).
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Table 2. Comparison of baseline patient characteristics between those with and without low serum MIG levels 
upon treatment with atezolizumab and bevacizumab

CXCL9 low 
(<333 pg/ml)
(N = 34)

CXCL9 high 
(≥333 pg/ml)
(N = 34)

p value

Age (range), years 71.5 (31–84) 72.5 (47–89) 0.29
Sex

Male 28 27 >0.99
Female 6 7

Etiology
Viral hepatitis 13 17 0.46
NBNC 21 17
CH 17 16 >0.99
LC 17 18

ECOG PS
0 26 28 0.77
1 8 6

White blood cell count, mm3 4,900 (2700–11800) 5,300 (1,970–9,300) 0.39
Neutrophil count, mm3 3,308 (1,185–9,971) 3,270 (1,320–7,440) 0.43
Lymphocyte count, mm3 1,088 (480–2881) 1,140 (140–2664) 0.92
NLR 2.82 (0.84–16.69) 2.84 (0.98–12.15) 0.69
Platelet, ×104/μL 16.0 (6.1–46.4) 17.0 (3.6–41.3) 0.45
Prothrombin time, % 96.3 (35.3–118.4) 95.9 (42.8–128.0) 0.41
NH3, µg/dL 42 (12–136) 42 (8–98) 0.37
Albumin, g/dL 3.8 (2.7–4.8) 3.7 (3.0–4.8) 0.90
ALBI grade

1 12 13 0.87
2a 11 12
2b 11 9

AST, IU/L 39 (19–134) 53 (14–672) 0.10
ALT, IU/L 24 (12–122) 32 (7–278) 0.14
Child-Pugh grade

A 33 32 >0.99
B 1 2

Child-Pugh score
5 18 20 0.70
6 15 12
7 0 1
8 1 1

AFP, ng/mL 63.2 (1.8–57125.2) 182.8 (0.8–200000.0) 0.37
DCP, mAU/mL 887 (19–213066) 938 (21–245000) 0.31
Maximum intrahepatic tumor size, mm 24.6 (0–160.0) 48.5 (0–166.6) 0.06
More than 50% liver involvement 4 7 0.51
Diffuse type 2 8 0.08
Hepatic tumors

0 6 4 0.43
1 2 5
Multiple 26 25

BCLC stage
B 13 10 0.61
C 21 24

Up to seven
In 13 10 0.61
Out 21 24

Positive for Vp 8 5 0.54
Positive for Vv 0 1 >0.99
Positive for bile duct invasion 1 0 >0.99
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CXCL9 low 
(<333 pg/ml)
(N = 34)

CXCL9 high 
(≥333 pg/ml)
(N = 34)

p value

Positive for LN metastasis 3 10 0.06
Positive for EHM 12 19 0.14
Naïve 9/25 7/27 0.78
Recurrence

History of operation 18 15 0.63
History of RFA 9 10 >0.99
History of TACE 18 11 0.14
History of HAIC 0 1 >0.99
History of RT 5 5 >0.99
History of TKI 20 19 >0.99

Table 2 (continued)

a

c

b

Fig. 3. Comparison of treatment responses and PFS between un-
resectable HCC patients with or without low baseline MIG 
(CXCL9) treated with lenvatinib. a Comparison of baseline serum 
CXCL9 levels between patients with or without PD or objective 
responses to lenvatinib. b Comparison of rate of PD and objective 
response (OR) to lenvatinib between patients with ≥333 pg/mL 
and <333 pg/mL at baseline CXCL9. c PFS and overall survival 

(OS) stratified by <308 pg/mL the baseline MIG. Median PFS in 
patients with ≥308 pg/mL and <308 pg/mL baseline MIG was 168 
and 219 days, respectively (HR: 1.30, 95% CI: 0.82–2.06, p = 0.14). 
Median OS in patients with ≥308 pg/mL and <308 pg/mL baseline 
MIG was 477 and 740 days, respectively (HR: 1.55, 95% CI: 0.89–
2.71, p = 0.096).
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patients with low baseline CXCL9 levels, evaluation of the 
treatment response in the early phase of atezolizumab 
and bevacizumab treatment might be required.

Recently, Litchfield et al. [16] analyzed whole-exome 
and transcriptome data of more than 1,000 patients who 
were treated with ICIs and revealed that in addition to 
clonal tumor mutational burden, high CXCL9 expression 
level is one of the strongest predictors of a favorable re-
sponse to ICI treatment. CXCL9 is a critical chemokine 
that recruits cytotoxic CD8+ T cells into the tumor [25]; 
thus, high CXCL9 expression is a strong predictive mark-
er of immune cell infiltration [26]. Similarly, in an in-
flamed class of HCC, higher levels of cytokines are ex-
pressed, which are involved in lymphocyte chemotaxis in-
cluding CCL5, CXCL10, CXCL11, and CXCL9. Thus, 
HCC with low levels of CCL5, CXCL10, CXCL11, and 
CXCL9 in the tissue is classified as noninflamed tumor 
subtype with low level of CD8+ T and dendric cells infil-
trating the tumor [27, 28]; therefore, this HCC is insuffi-
cient response to ICI. However, the relationship between 
serum levels of those cytokines and ICI response in HCC 
has not been well clarified. In this study, we firstly report-
ed that serum CXCL9 levels are associated with early PD 
of atezolizumab and bevacizumab for unresectable HCC.

Whether serum CXCL9 can represent the status of an 
HCC immune microenvironment remains unclear. 
Therefore, we additionally analyzed the relationship be-
tween the serum CXCL9 level and CXCL9 expression in 
HCC samples. In this study, we analyzed 2 patients with 
HCC and simultaneously collected their biopsy and blood 
samples, one of which revealed a high baseline CXCL9 
level (1,087.4 pg/mL), while the other had a relatively low-
er baseline serum CXCL9 level (379.7 pg/mL). As shown 
in online supplementary Figure S3, the expression of 
CXCL9 in HCC was higher in patients with a high serum 
CXCL9 level compared with that in patients with a rela-
tively lower serum CXCL9 level. Additionally, to clarify 
the immune status of HCC with low CXCL9 expression 
levels, we analyzed the expression levels of CD8. CD8 ex-
pression levels in HCC were also significantly higher in 
patients with high serum CXCL9 levels than those in pa-
tients with relatively low serum CXCL9 levels. Therefore, 
in the two cases, CXCL9 and CD8 expression in HCC and 
serum CXCL9 levels were correlated. In addition, a recent 
study suggested that CXCL9 expression in ovarian tu-
mors is significantly correlated with the serum CXCL9 
level [29]. However, as we used the data of only 2 patients 
for the analysis of the relationship between the expression 
of CXCL9 in HCC and serum CXCL9 level, further anal-
ysis with a larger dataset is required.

Recently, it has been reported that anti-VEGF anti-
body in tumor increases CXCL9, CXCL10, and CXCL11 
levels, thereby increasing CD8+T-cell infiltration into the 
tumor and the response to the combination immunother-
apy with bevacizumab for HCC even in tumors with low 
expression levels of CXCL9, CXCL10, and CXCL11 [30–
32]. Previous reports [30, 31] speculated the possible 
mechanisms, whereby anti-VEGF could increase CXCL9; 
anti-VEGF can induce hypoxic conditions which might 
contribute to an increased IFN-γ, thereby inducing the 
production of CXCL9. However, in this study, the reason 
as to why some patients with low serum CXCL9 level did 
not show good responses to combination therapy of anti-
VEGF antibody and ICIs (atezolizumab plus bevacizum-
ab) remains unclear.

We reasonably speculate that in some patients with 
low serum CXCL9 levels, tumor angiogenesis not only 
depends on VEGF but also on other tumor angiogenesis 
factors such as FGF, HGF, EGF, or placental-derived 
growth factor. Thus, the inducing effects of anti-VEGF on 
CXCL9 production via hypoxia-induced increased IFN-γ 
may be insufficient. Further analyses are required to in-
vestigate this hypothesis. Meanwhile, as shown in Figure 
2a, even in patients with low serum CXCL9 baseline, 
those with objective response by atezolizumab and beva-
cizumab might achieve durable response and longer OS.

One of the potential causes of the shorter OS in pa-
tients with PD who were treated with atezolizumab and 
bevacizumab might be hyperprogressive disease. Hyper-
progressive disease is sometimes observed in patients 
treated with ICIs and exhibits a paradoxical acceleration 
of tumor growth after ICI initiation. A study conducted 
on patients with HCC who were treated with programmed 
cell death protein-1 (PD-1) inhibitors revealed that 12.7% 
of those patients experienced hyperprogressive disease 
and had poor prognosis [33]. It was difficult to identify 
hyperprogressive disease in this study owing to the lack 
of data regarding HCC growth rate before treatment ini-
tiation. However, a total of 22.2% patients with early PD 
exhibited more than 50% tumor diameter expansion at 6 
weeks after treatment initiation. Thus, predicting the out-
come of such patients is clinically important, and baseline 
CXCL9 level is a potential predictive factor.

However, patients with low baseline serum CXCL9 
levels exhibited a favorable response to lenvatinib treat-
ment. Lenvatinib is a potent multi-kinase inhibitor that 
mainly targets fibroblast growth factor receptors-1–4 
and VEGF receptor-1–3 [34, 35]. The efficacy and safe-
ty of lenvatinib for patients with unresectable HCC 
have been confirmed in clinical trials and real-world 
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data [3, 22, 23, 36–38]. Thus, early response evaluation 
is necessary in atezolizumab plus bevacizumab treat-
ment for unresectable HCC to determine the time of 
switching to the next line of treatment, especially in pa-
tients with low serum CXCL9 baseline level, which is a 
possible predictor of early PD. Although the cause of 
the favorable response to lenvatinib by patients with 
unresectable HCC and low CXCL9 expression could 
not be clarified, we hypothesized that CXCL9 might be 
associated with a signaling pathway, which lenvatinib 
could suppress. We obtained the “Human HCC” gene 
expression data (total of 405 records) from The Cancer 
Genome Atlas consortium expression database (https://
portal.gdc.cancer.gov/) and converted them into TPM 
values for further analysis.

We classified patients into either high CXCL9 expres-
sion group (TPM ≥ 60) or low expression group (TPM < 
60) and analyzed the association between CXCL9 and 
FGFR4 expression levels. As shown in the online supple-
mentary Figure S4, expressions of FGFR4 – which are re-
portedly associated with lenvatinib treatment responses 
[39–41] – were significantly higher in patients with low 
CXCL9 expression levels. Thus, we hypothesize that the 
high FGFR4 expression levels in patients with low CXCL9 
expression levels are attributable to a favorable response 
to lenvatinib treatment in patients with unresectable 
HCC and low CXCL9 expression. Subsequently, we con-
firmed the correlation between CXCL9 and FGFR4 ex-
pression levels in human hepatoma cell lines of HepG2 
cells, Huh1 cells, Huh7 cells, JHH2 cells, JHH4 cells, and 
JHH6 cells. As shown in online supplementary Figure S5, 
the expression levels of FGFR4 and CXCL9 were signifi-
cantly negatively correlated (R2 = 0.8041, p = 0.0155). Ad-
ditionally, consistent with the results of TCGA analysis, 
and in vitro analysis of hepatoma cell lines, as shown in 
online supplementary Figure 3, HCC of patients with 
high serum CXCL9 levels had lower expression levels of 
FGFR4 and higher expression levels of CXCL9 in HCC. 
Further, to clarify the relationship between the expression 
levels of FGFR4 and CXCL9 in HCC, we investigated the 
effect of lenvatinib, which could suppress FGFR4-medi-
ated signaling strongly [35], on intracellular CXCL9 ex-
pression levels in Huh7 cells and supernatant CXCL9 
concentrations in Huh7 cells. As shown in online supple-
mentary Figure S6, treatment of Huh7 cells with lenva-
tinib resulted in increased intracellular CXCL9 expres-
sion levels and increased supernatant CXCL9 concentra-
tions. Thus, we speculated that FGFR4-mediated signaling 
is associated with the downregulation of CXCL9 expres-
sion. Subsequently, we knocked down FGFR4 in Huh7 

cells by siRNA and analyzed the changes in intracellular 
CXCL9 expression levels. As shown in online supplemen-
tary Figure S7, the knock down of FGFR4 increased the 
CXCL9 expression level. The results indicated that FGFR4 
signaling suppressed CXCL9 gene expression. In addi-
tion, the results may be consistent with the previous re-
ports indicating that FGFR4-mediated signaling nega-
tively regulates NF-kappa B signaling [42], which may 
activate the transcription of CXCL9 [43]. Finally, we ana-
lyzed the changes in serum CXCL9 levels at 7 days after 
lenvatinib initiation for unresectable HCC. As shown in 
online supplementary Figure S8, similar to in vitro analy-
sis, the median serum CXCL9 increased in patients with 
objective response to lenvatinib, and the median changes 
in serum CXCL9 were significantly higher in patients 
with objective response to lenvatinib than in those with-
out objective response to lenvatinib.

Recently, Harding et al. [12]revealed that ICI mono-
therapy had a poor response in patients with unresectable 
HCC carrying WNT/β-catenin mutations, including 
CTNNB-1 mutation, resulting in poor prognosis. There-
fore, we analyzed the genetic alterations in circulating tu-
mor DNA; however, in this small size analysis, no signif-
icant genetic alterations in circulating tumor DNA were 
observed. Using the combination of anti-VEGF antibody 
therapy with ICI might affect the results, although further 
analysis of larger patient cohorts is required.

CCL5 was selected as a predictive factor associated 
with early PD in exploratory analysis. In HCC, high CCL5 
expression has been reported to induce the infiltration of 
CD8+ T cells [44]. In addition, low baseline CXCL5 levels 
are associated with poor PD-1 inhibitor response in ad-
vanced melanoma [45]. Although these factors did not 
show significant differences between patients with and 
without early PD in the validation analysis of 60 patients, 
further analysis is required.

Quite recently, Zhu et al. [46] reported detailed mo-
lecular analyses of clinical response to atezolizumab plus 
bevacizumab. The authors showed that the T effector sig-
nature, including CXCL9, was significantly correlated 
with response to atezolizumab plus bevacizumab treat-
ment. The results are consistent with our data; however, 
to the best of our knowledge, our study is the first to show 
the potential predictive factor (baseline serum CXCL9 
levels) associated with early PD post-atezolizumab plus 
bevacizumab treatment. In addition, we present an alter-
native potent therapy for patients at high risk of early PD 
development during atezolizumab plus bevacizumab 
treatment.
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This study had a few limitations. This was a retrospec-
tive study; the number of included patients was relatively 
small, especially those analyzed for genetic alterations in 
circulating tumor DNA. The predictive utility of baseline 
serum CXCL9 levels for early PD was not high (AUC of 
0.75 in ROC analysis), thus, this should be taken into con-
sideration while interpreting these findings. In addition, 
the backgrounds of the 8 patients in the discovery cohort 
were not uniform. Thus, a larger prospective study is nec-
essary to validate the results of this study. In conclusion, 
low serum CXCL9 (<333 pg/mL) levels may predict early 
PD in patients with unresectable HCC treated with at-
ezolizumab plus bevacizumab.
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