Table 7.
Method and model | Average accuracy | Average precision | Average recall | Average F1-score | Average AUROCa | |
Random undersampling | ||||||
|
LRb | 0.72 | 0.18 | 0.61 | 0.28 | 0.67 |
|
NBc | 0.83 | 0.22 | 0.39 | 0.28 | 0.63 |
|
RFd | 0.65 | 0.15 | 0.62 | 0.24 | 0.63 |
|
XGBooste | 0.71 | 0.18 | 0.61 | 0.28 | 0.67 |
|
AdaBoostf | 0.72 | 0.18 | 0.61 | 0.28 | 0.67 |
|
MLPg | 0.72 | 0.18 | 0.60 | 0.28 | 0.72 |
|
Sequential ANNh | 0.69 | 0.17 | 0.61 | 0.26 | 0.65 |
Random oversampling | ||||||
|
LR | 0.72 | 0.18 | 0.61 | 0.28 | 0.67 |
|
NB | 0.83 | 0.23 | 0.38 | 0.28 | 0.63 |
|
RF | 0.83 | 0.19 | 0.26 | 0.22 | 0.57 |
|
XGBoost | 0.72 | 0.18 | 0.61 | 0.28 | 0.67 |
|
AdaBoost | 0.72 | 0.18 | 0.61 | 0.28 | 0.67 |
|
MLP | 0.72 | 0.18 | 0.60 | 0.28 | 0.67 |
|
Sequential ANN | 0.69 | 0.17 | 0.61 | 0.26 | 0.65 |
SMOTEi | ||||||
|
LR | 0.73 | 0.18 | 0.58 | 0.28 | 0.66 |
|
NB | 0.82 | 0.22 | 0.39 | 0.28 | 0.63 |
|
RF | 0.89 | 0.31 | 0.22 | 0.26 | 0.59 |
|
XGBoost | 0.89 | 0.31 | 0.22 | 0.26 | 0.59 |
|
AdaBoost | 0.85 | 0.27 | 0.36 | 0.31 | 0.63 |
|
MLP | 0.84 | 0.25 | 0.38 | 0.30 | 0.63 |
|
Sequential ANN | 0.69 | 0.16 | 0.55 | 0.24 | 0.63 |
Weight rebalancing | ||||||
|
LR | 0.72 | 0.18 | 0.61 | 0.28 | 0.67 |
|
NB | 0.82 | 0.22 | 0.39 | 0.28 | 0.63 |
|
RF | 0.87 | 0.21 | 0.18 | 0.20 | 0.56 |
|
XGBoost j | 0.64 | 0.16 | 0.70 | 0.26 | 0.67 |
|
AdaBoost | 0.81 | 0.15 | 0.24 | 0.18 | 0.55 |
aAUROC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cNB: naive Bayes.
dRF: random forest.
eXGBoost: extreme gradient boosting.
fAdaBoost: adaptive boosting.
gMLP: multilayer perceptron.
hANN: artificial neural network.
iSMOTE: synthetic minority oversampling technique.
jModel with the best performance is italicized.