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1 Abstract1

Motivation: The Jaccard similarity on k-mer sets2

has shown to be a convenient proxy for sequence iden-3

tity. By avoiding expensive base-level alignments and4

comparing reduced sequence representations, tools such5

as MashMap can scale to massive numbers of pairwise6

comparisons while still providing useful similarity es-7

timates. However, due to their reliance on minimizer8

winnowing, previous versions of MashMap were shown9

to be biased and inconsistent estimators of Jaccard10

similarity. This directly impacts downstream tools that11

rely on the accuracy of these estimates.12

Results: To address this, we propose the minmer13

winnowing scheme, which generalizes the minimizer14

scheme by use of a rolling minhash with multiple15

sampled k-mers per window. We show both theoreti-16

cally and empirically that minmers yield an unbiased17

estimator of local Jaccard similarity, and we implement18

this scheme in an updated version of MashMap. The19

minmer-based implementation is over 10 times faster20

than the minimizer-based version under the default21

ANI threshold, making it well-suited for large-scale22

comparative genomics applications.23

Availability: MashMap3 is available at24

https://github.com/marbl/MashMap25

Contact: blk6@rice.edu, adam.phillippy@nih.gov26

27

2 Introduction28

The recent deluge of genomic data accelerated by29

population-scale long-read sequencing efforts has driven30

an urgent need for scalable long-read mapping and com-31

parative genomics algorithms. The completion of the32

first Telomere-to-Telemore (T2T) human genome Nurk33

et al. (2022) and the launch of the Human Pangenome34

Project Wang et al. (2022a) have paved the way to map-35

ping genomic diversity at unprecedented scale and reso-36

lution. A key goal when comparing a newly sequenced37

human genome to a reference genome or pangenome38

is to accurately identify homologous sequences, that39

is, DNA sequences that share a common evolutionary40

source.41

Algorithms for pairwise sequence alignment, which42

aim to accurately identify homologous regions between43

two sequences, have continued to advance in recent44

years Marco-Sola et al. (2021). While a powerful and45

ubiquitous computational tool in computational biology, 46

exact alignment algorithms are typically reserved for 47

situations where the boundaries of homology are known 48

a priori, due to their quadratic runtime costs and in- 49

ability to model nonlinear sequence relationships such 50

as inversions, translocations, and copy number variants. 51

Because of this, long-read mapping or whole-genome 52

alignment methods must first identify homologous re- 53

gions across billions of nucleotides, after which the 54

exact methods can be deployed to compute a base-level 55

“gapped” read alignment for each region. To efficiently 56

identify candidate mappings, the prevailing strategy is 57

to first sample k-mers and then identify consecutive k- 58

mers that appear in the same order for both sequences: 59

known as “seeding” and “chaining”, respectively. 60

For many use cases, an exact gapped alignment is not 61

needed and only an estimate of sequence identity is re- 62

quired. As a result, methods have been developed which 63

can predict sequence identity without the cost of com- 64

puting a gapped alignment. Jaccard similarity, a metric 65

used for comparing the similarity of two sets, has found 66

widespread use for this task, especially when combined 67

with locality sensitive hashing of k-mer sets Ondov et al. 68

(2016); Brown and Irber (2016); Ondov et al. (2019); 69

Jain et al. (2017, 2018a); Baker and Langmead (2019); 70

Shaw and Yu (2023). By comparing only k-mers, the 71

Jaccard can be used to estimate the average nucleotide 72

identity (ANI) of two sequences without the need for 73

an exact alignment Ondov et al. (2016, 2019); Blanca 74

et al. (2022). 75

To accelerate mapping and alignment, k-mers from 76

the input sequences are often down-sampled using a 77

“winnowing scheme” in a way that reduces the input 78

size while still enabling meaningful comparisons. For 79

example, both MashMap Jain et al. (2017, 2018a) and 80

Minimap Li (2018) use a minimizer scheme Roberts 81

et al. (2004), which selects only the smallest k-mer from 82

all w-length substrings of the genome. Of relevance to 83

this study, MashMap2 then uses these minimizers to 84

approximate the Jaccard similarity between the mapped 85

sequences, and these estimates have been successfully 86

used by downstream methods such as FastANI Jain 87

et al. (2018b) and MetaMaps Dilthey et al. (2019). 88

However, a recent investigation noted limitations 89

of the “winnowed minhash” scheme introduced by 90

MashMap Belbasi et al. (2022). Although the origi- 91
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nal MashMap paper notes a small, but negligible bias92

in its estimates Jain et al. (2017), Belbasi et al. proved93

that no matter the length of the sequences, the bias94

of the minimizer-based winnowed minhash estimator is95

never zero Belbasi et al. (2022).96

To address this limitation, we propose a novel win-97

nowing scheme, the “minmer” scheme, which is a gen-98

eralization of minimizers that allows for the selection99

of multiple k-mers per window. We define this scheme,100

characterize its properties, and provide an implementa-101

tion in MashMap3. Importantly, we show that minmers,102

unlike minimizers, enable an unbiased prediction of the103

local Jaccard similarity.104

3 Preliminaries105

Let Σ be an alphabet and Sk(S) : Σ
+ → {Σk}+ be106

a function which maps a sequence S to the set of all107

k-mers in S. Similarly, given a sequence S, we define108

W
(w)
i (S) as the sequence of w k-mers in S starting at109

the ith k-mer. When w and S are clear from context,110

we use Wi. We use the terms sequence and string111

interchangeably.112

3.1 Jaccard similarity and the minhash113

approximation114

Given two sets A and B, their Jaccard similarity is115

defined as J(A,B) = |A∩B|
|A∪B| . The Jaccard similarity116

between two sequences R and Q can be computed as117

J(Sk(R),Sk(Q)) for some k-mer size k.118

However, computing the exact Jaccard for Sk(R)
and Sk(Q) is not an efficient method for determining
similarity for long reads and whole genomes. Instead,
the minhash algorithm provides an estimator for the
Jaccard similarity while only needing to compare a
fraction of the two sets. Assuming U is the universe
of all possible elements and π : U → |U | is a function
which imposes a randomized total order on the universe
of elements, we have that

J(A,B) = Pr(min
x∈A

(π(x)) = min
x∈B

(π(x))

This equivalency, proven by Broder (1997), is key to119

the minhash algorithm and yields an unbiased and con-120

sistent Jaccard estimator Ĵ with the help of a sketching121

function πs. Let πs return the lowest s items from the122

input set according to the random total order π. Then123

we define the minhash as124

Ĵ(A,B) =
|πs(A ∪B) ∩ πs(A) ∩ πs(B)|

|πs(A ∪B)|
Importantly, this Jaccard estimator has an expected125

error that scales with O(1/
√
s) and is therefore inde-126

pendent of the size of the original input sets. While127

there are a number of variants of minhash which pro-128

vide the same guarantee Cohen (2016), we will be using129

the “bottom-s sketch” (as opposed to the s-mins and130

s-partition sketch) since it ensures a consistent sketch131

size regardless of the parameters and requires only a132

single hash computation per element of Sk. Addition-133

ally, the simplicity of the bottom-s sketch leads to a134

streamlined application of the sliding window model,135

which we describe next.136

3.2 Winnowing 137

While sequences can be reduced into their correspond- 138

ing sketch via the method described above, this is a 139

global sketch and it is difficult to determine where two 140

sequences share similarity. In order to perform local 141

mapping, Schleimer et al. (2003) and Roberts et al. 142

(2004) independently introduced the concept of win- 143

nowing and minimizers. In short, given some total 144

ordering on the k-mers, a window of length w is slid 145

over the sequence and the element with the lowest rank 146

in each window (the minimizer) is selected, using the 147

left-most position to break ties Roberts et al. (2004). 148

By definition, winnowing ensures that at least one el- 149

ement is sampled per window and therefore there is 150

never a gap of more than w elements between sampled 151

positions. Here, we extend the winnowing concept to al- 152

low the selection of more than one element per window 153

(the minmers), and we refer to the set of all minmers 154

and/or their positions as the winnowed sequence. 155

3.2.1 Winnowing scheme characteristics 156

Definition 3.1. A winnowing scheme has a (w, s)- 157

window guarantee if for every window of w k-mers, 158

there are at least max(#distinct, s) k-mers sampled from 159

the window, where #distinct is the number of distinct 160

k-mers in the window. 161

This definition is more general than the commonly 162

used w-window guarantee, which is equivalent to the 163

(w, 1)-window guarantee. While not all winnowing 164

schemes must have such a guarantee, this ensures that 165

no area of the sequence is under-sampled. Shaw and 166

Yu (2022) recently provided an analytical framework 167

for winnowing schemes and showed that mapping sen- 168

sitivity is related to the distribution of distances (or 169

spread) between sampled positions, and precision is 170

related to the proportion of unique values relative to 171

the total number of sampled positions. As the over- 172

arching goal of winnowing is to reduce the size of the 173

input while preserving as much information as possi- 174

ble, winnowing schemes typically aim to optimize the 175

precision/sensitivity metrics given a particular density. 176

Definition 3.2. The density d of a winnowing scheme 177

is defined as the expected frequency of sampled positions 178

from a long random string, and the density factor df is 179

defined as the expected number of sampled positions in 180

a window of w + 1 k-mers. 181

There has been significant work on improving the 182

performance of minimizers by identifying orderings that 183

reduce the density factor Marçais et al. (2017). Mini- 184

mizer schemes which use a uniformly random ordering 185

have a density factor of df = 2 and recent schemes like 186

Miniception Zheng et al. (2020) and PASHA Ekim et al. 187

(2020) are able to obtain density factors as low as 1.7 188

for certain values of w and k. 189

For the remainder of this work, we will assume that 190

w ≪ 4k, i.e. the windows are not so large that we expect 191

duplicate k-mers in a random string. This ensures that 192

each k-mer in a window has probability s/w of being 193

in the sketch for that window. 194

2

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.16.540882doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.16.540882


3.2.2 Winnowing scheme hierarchies195

Recent winnowing methods have focused on schemes196

that select at most a single position per window, which197

simplifies analyses but restricts the universe of possi-198

ble schemes. Minimizers belong to the class of for-199

ward winnowing schemes, where the sequence of posi-200

tions sampled from adjacent sliding windows is non-201

decreasing Marçais et al. (2018). More general is the202

concept of a w-local scheme Shaw and Yu (2022), de-203

fined on windows of w consecutive k-mers but without204

the forward requirement. Non-forward schemes are205

more powerful and are not limited by the same density206

factor bounds as forward schemes. While the need of207

non-forward schemes to “jump back” in order to obtain208

lower sampling densities is acknowledged by Marçais209

et al. (2018), there are currently no well-studied, non-210

forward, w-local schemes.211

3.3 MashMap212

MashMap is a minimizer-based tool for long-read and213

whole-genome sequence homology mapping that is de-214

signed to identify all pairwise regions above some se-215

quence similarity cutoff Jain et al. (2017, 2018a). Specif-216

ically, for a reference sequence R and a query sequence217

Q comprised of w k-mers, MashMap aims to find all po-218

sitions i in the reference such that J(A,Bi) ≥ c, where219

A = Sk(Q) and Bi = W
(w)
i (R), and c is the sequence220

similarity cutoff. For ease of notation, we will use B221

to refer to the sequence of k-mers from the reference222

sequence R. Importantly, MashMap only requires users223

to specify a minimum segment length and minimum224

sequence identity threshold, and the algorithm will au-225

tomatically determine the parameters needed to return226

all mappings that meet this criteria with parameterized227

confidence under a binomial mutation model.228

Here we replace the minimizer-based approach of229

prior versions of MashMap with minmers. While the230

problem formulation remains the same, our method231

for computing the reference index and filtering candi-232

date mappings is novel. We will first introduce the233

concept of minmers, which enable winnowing the input234

sequences while still maintaining the k-mers necessary235

to compute an unbiased Jaccard estimation between236

any two windows of length at least w. We will then237

discuss the construction of the reference index and show238

how query sequences can be efficiently mapped to the239

reference such that their expected ANI is above the240

desired threshold.241

4 The minmer winnowing242

scheme243

Minmers are a generalization of minimizers that al-244

low for the selection of more than one minimum value245

per window. The relationship between minmers and246

minimizers was noted by Berlin et al. (2015) but as a247

global sketch and without the use of a sliding window.248

Here we formalize a definition of the minmer winnowing249

scheme.250

Definition 4.1. Given a tuple (w, s, k, π), where w, k251

and s are integers and π is an ordering on the set of 252

all k-mers, a k-mer in a sequence is a minmer if it is 253

one of the smallest s k-mers in any of the subsuming 254

windows of w k-mers . 255

Similar to other w-local winnowing schemes, ties 256

between k-mers are broken by giving priority to the 257

leftmost k-mer. From the definition, it follows that by 258

letting s = 1 we obtain the definition of the minimizer 259

scheme. Compared to minimizers with the same w 260

value, minmers guarantee that at least s k-mers will 261

be sampled from each window. However, as a non- 262

forward scheme, a minmer may be one of the smallest s 263

k-mers in two non-adjacent windows, yet not one of the 264

smallest s k-mers in an intervening window (Figure 1). 265

To account for this and simplify development of this 266

scheme, we define a minmer interval to be the interval 267

for which the k-mer at position i is a minmer for all 268

windows starting within that interval. Thus, a single 269

k-mer may have multiple minmer intervals starting at 270

different positions. 271

Definition 4.2. A tuple (i, a, b) is a minmer interval 272

for a sequence S if the k-mer at position i is a minmer 273

for all windows Wj where j ∈ [a, b), but not Wa−1 or 274

Wb. 275

Any window Wj may contain more than s minmers, 276

and so to naively compute the Jaccard between a query 277

and Wj would require identification of the s smallest 278

k-mers in Wj . Minmer intervals are convenient because 279

for any window start position j, the s smallest k-mers in 280

Wj are simply the ones whose minmer intervals contain 281

j. Thus, indexing S with minmer intervals enables 282

the efficient retrieval of the smallest s k-mers for any 283

window without additional sorting or comparisons. 284

Another benefit of minmer intervals is that the small- 285

est s k-mers for any window of length w′ > w are guar- 286

anteed to be a subset of the combined (w, s)-minmers 287

contained in that window. This subset can be eas- 288

ily computed with minmer intervals, since the set of 289

(w, s)-minmer intervals that overlap with the range 290

[i, i+w′−w] are also guaranteed to include the s small- 291

est k-mers of the larger window, and the overlapping 292

minmer intervals can be inspected to quickly identify 293

them. 294

4.1 Constructing the rolling minhash 295

index 296

In this section, we will describe our rolling bottom-s 297

sketch algorithm for collecting minmers and their cor- 298

responding minmer intervals. Popic and Batzoglou 299

(2017) proposed a related rolling minhash method for 300

short-read mapping, but using an s-mins scheme with- 301

out minmer intervals. For the remainder of the section, 302

we will assume no duplicate k-mers in a window and an 303

ideal uniform hash function which maps to [0, 1]. Dupli- 304

cate k-mers are handled in practice by keeping a counter 305

of the number of active positions for a particular k-mer, 306

similar to the original MashMap implementation Jain 307

et al. (2017). Minmer intervals longer than the window 308

length sometimes arise due to duplicate k-mers and are 309
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split into adjacent windows of length at most w. This310

bound on the minmer interval length is necessary for311

the mapping step.312

For ease of notation, we now consider B as a sequence313

of k-mer hash values x0, x1, ..., xn where each xi ∈ [0, 1]314

and refer to these elements as hashes and k-mers inter-315

changeably. We use a min-heap H and a sorted map316

M , both ordered on the hash values, to keep track of317

the rolling minhash index. As the window slides across318

B, M will contain the minmer intervals for the lowest s319

hashes in the window and H will contain the remaining320

hashes in the window. We denote the minmer inter-321

val of a hash x in M by M [x](start) and M [x](end). In322

practice, H may contain “expired” k-mers which are no323

longer part of the current window, however by storing324

the k-mer position as well, we can immediately discard325

such k-mers whenever they appear at the top of the326

heap. To prevent expired k-mers from accumulating,327

all expired k-mers from the heap are pruned whenever328

the heap size exceeds 2w. After initialization of H and329

M with the first w k-mers of B, we begin sliding the330

window for each consecutive position i and collect the331

minmer intervals in an index I. For each window Bi,332

there will be a single “exiting” k-mer xi−1 and a single333

“entering” k-mer xi+w−1, each of which may or may not334

belong to the lowest s k-mers. Therefore, we have four335

possibilities, examples of which can be seen in Figure 1.336

1. xi−1 > max(M) and xi+w−1 > max(M)337

Neither the exiting nor entering k-mer is in the338

sketch. Insert xi+w−1 into H.339

340

2. xi−1 > max(M) and xi+w−1 < max(M)341

The exiting k-mer was not in the sketch, but342

the entering k-mer will be. Since the incoming343

k-mer xi+w−1 enters the sketch, the largest344

element in the sketch must be removed. Therefore,345

M [max(M)](end) is set to i and the the minmer346

interval is appended to the index I. max(M) is347

then removed from M and the new k-mer xi+w−1348

is inserted to M , marking M [xi+w−1]
(start) = i.349

350

3. xi−1 ≤ max(M) and xi+w−1 > max(M)351

The exiting k-mer was in the sketch, but the352

entering k-mer will not be. Since the exiting353

k-mer xi−1 was a member of the sketch, set354

M [xi−1]
(end) = i, remove M [xi−1] from M and355

append it to I, and insert xi+w−1 into H. At this356

point, |M | = s − 1, as we removed an element357

from the sketch but did not replace it. To fill the358

empty sketch position, k-mers are popped from H359

until a k-mer x which has not expired is obtained.360

This k-mer is added to M , setting M [x](start) = i.361

362

4. xi−1 ≤ max(M) and xi+w−1 ≤ max(M)363

Both the exiting and entering k-mers are in the364

sketch. As before, set M [xi−1]
(end) = i and365

remove M [xi−1] from M and append it to I.366

The entering k-mer belongs in the sketch, so set367

M [xi+w−1]
(start) = i.368

Our implementation of M uses a balanced binary 369

tree and H is pruned in O(w) time at most every w 370

k-mers and therefore the amortized time complexity of 371

each sliding window update is O(log(w)). In order to 372

efficiently use the index for mapping, we sort I based 373

on the start positions of the minmers. In addition to 374

I, we compute a reverse lookup table T which maps 375

hash values to ordered lists of start and end points 376

of minmer intervals for that hash value. Overall, the 377

indexing time requires O(n log(w) + |I| log(|I|)), where 378

|I| is estimated to be 1 −
(
w−1
s

)
/
(
w+1
s

)
, as shown in 379

section 5.1.2. 380

4.2 Querying the rolling minhash index 381

MashMap computes mappings in a two-stage process. 382

In the first stage, all regions within the reference that 383

may contain a mapping satisfying the desired ANI con- 384

straints are obtained. In the second stage, the minhash 385

algorithm is used to estimate the Jaccard for each candi- 386

date mapping position i produced by the first stage. As 387

the second stage is the most computationally intensive 388

step, we introduce both a new candidate region filter 389

and a more efficient minhash computation to improve 390

overall runtime. We assume here that query sequences 391

are w k-mers long. In practice, sequences longer than 392

w are split into windows of w k-mers, mapped indepen- 393

dently, and then chained and filtered as described in 394

Jain et al. (2018a). 395

4.2.1 Stage 1: Candidate region filter 396

First, the query sequence A is winnowed using a min- 397

heap to obtain the s lowest hash values. All m min- 398

mer intervals in the reference with matching hashes 399

are obtained from T and a sorted list L is created in 400

O(m log(s)) time, where L consists of all minmer start 401

and end positions. In this way, we can iterate through 402

the list and keep a running count of the overlapping 403

minmer intervals by incrementing the count for each 404

start-point and decrementing the count for each end- 405

point. 406

Unlike the previous versions of MashMap that look for 407

all mappings above a certain ANI threshold, MashMap3 408

provides the option to instead filter out all mappings 409

which are not likely to be within ∆ANI of the best 410

predicted mapping ANI. This significantly reduces the 411

number and size of the candidate regions passed on to 412

the more expensive second stage. 413

Let Yi be a random variable representing the nu- 414

merator of the minhash formula for A and Bi. Given 415

ci = |πs(A) ∩ πs(Bi)|, we observe that Yi is distributed 416

hypergeometrically, where we have s success states in 417

a population of 2s− ci states (proof in Supplementary 418

Materials). Let z = argmaxi ci be a position with the 419

maximum intersection size over all Bi, i.e. the position 420

in B that overlaps with the most selected minmer in- 421

tervals. We can now find a minimum intersection size 422

τ such that for any ci < τ , 423

Pr(Ĵ(A,Bi) > Ĵ(A,Bz)−∆J) < 1− δ

where ∆J is the difference in the Jaccard that corre- 424

sponds to an ANI value ∆ANI less than the ANI value 425
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Figure 1: Constructing the rolling minhash index. (a) A sliding window Bi of length w = 10 is moved
over the hashes of all k-mers . At each position i of the sliding window, the positions with the s = 3 lowest hash
values are marked as minmers. The 3 minmers for each window are highlighted with colored circles, with the
smallest hash in each window (the minimizer) highlighted in purple. (b) The values of the hashes in the map M
and heap H as the window slides over the sequence. The expired k-mers in the heap are crossed out. (c) The
final sorted minmer interval index I.

predicted by Ĵ(A,Bz) and δ is a desired confidence level.426

To calculate this probability, we can use the following427

summation428

Pr(Ĵ(A,Bi) > Ĵ(A,Bz)−∆J)

=
s∑

y=0

Pr(Yi = y | ci) Pr(Yz < y +∆J | cz)

For each intersection size, we can identify a cutoff in429

O(s log(s)) time. As a preprocessing step, we compute430

cutoffs for each of the s possible intersection sizes at431

the indexing stage. Candidate regions that are unlikely432

to have an ANI within ∆ANI of the best predicted ANI433

are then pruned. The default ∆ANI and δ confidence434

parameters of MashMap3 are 0 and 0.999, respectively,435

as in many cases the lower scoring mappings for a436

segment are filtered out by the plane-sweep filtering437

method of MashMap described in Jain et al. (2018a).438

We compute two passes over the interval endpoints439

in L. In the first pass of stage 1, the maximum intersec-440

tion size cz is obtained. In the second pass, candidate441

mappings whose intersection is above the cutoff derived442

from cz are obtained. Consecutive candidate mappings443

are grouped into candidate regions and passed to stage444

2.445

4.2.2 Stage 2: Efficiently computing the rolling446

minhash447

Given a candidate region [a, z), the goal of stage 2 is to448

calculate the minhash for all A, Bi pairs for i ∈ [a, z).449

In order to track the minhash of A and Bi for each i,450

MashMap2 previously used a sorted map to track all451

active seeds in each window. We improve upon this by452

observing that the minhash can be efficiently tracked453

using only πs(A), πs(A) ∩ πs(Bi), and the number of454

minmers from πs(Bi) in-between each consecutive pair455

of minmers from πs(A). To do so, MashMap3 uses456

an array V = (−1, 0, 0), (x1, α1, β1), (x2, α2, β2), ...,457

(xs, αs, βs) where each xj represents one of the sminmer458

hash values from πs(A) in increasing order and for each459

i ∈ [a, z), the values αj and βj are 460

• αj = 1 if xj ∈ πs(Bi) else 0 461

• βj = 1 + |{x ∈ πs(Bi) s.t. xj−1 < x < xj}| 462

We can imagine V as a set of s buckets labeled by 463

the s corresponding hash values of A and sorted in 464

increasing order. At each position i ∈ [a, z), each 465

bucket j holds xj and all βj − 1 reference minmers in 466

πs(Bi), which are between xj and xj−1. A bucket is 467

marked “good” (αj → 1) if xj ∈ πs(Bi). It remains 468

to find the largest integer pi such that the number of 469

minmers in the first pi buckets is at most s. Given 470

pi, the numerator of the minhash formula, Yi, is the 471

number of “good” buckets in the first pi buckets. 472

For a candidate region [a, z), we initialize V by insert-
ing all of the minmers from the reference index whose
intervals overlap with a and set

pa = max
q

j≤q∑
j=0

βj ≤ s


It follows that Ya =

∑j≤pa

j=1 αj 473

In order to keep track of intervals which overlap with 474

the current position, we use a min-heap H sorted on 475

interval endpoints. We then continue to iterate through 476

minmer intervals from the reference in order based on 477

their start points, stopping once the intervals no longer 478

overlap with [a, z). For each minmer interval starting 479

at i ∈ [a+1, z), we pop intervals from H that end at or 480

before i. For each interval popped from H, we update V 481

inO(log(s)) time through a binary search, decrementing 482

the corresponding βj and setting αj = 0 if the interval 483

represents a shared minmer. The new interval is added 484

in a similar manner and the necessary α and β values 485

are updated. After V is updated, pi is updated from 486

pi−1 by incrementing or decrementing until it is the 487

maximal value such that pi = max
q

(∑j≤q
j=0 βj ≤ s

)
. By 488

keeping track of pi−1 and the sums
∑j≤pi−1

j=0 βj and 489
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∑j≤pi−1

j=0 αj , the new pi and corresponding sums are490

updated in constant time per window.491

While the MashMap3 implementation of the second492

filtering stage still requires O(log(s)) time to update the493

minhash for each sliding window within the candidate494

region, it is significantly more efficient than MashMap2’s495

ordered map in practice due to V being a static data496

structure in contiguous memory, only requiring updates497

to counters.498

4.2.3 Early termination of stage 2499

Instead of computing the stage 2 step for each can-500

didate region obtained in the first stage, we aim to501

terminate the second stage once we have confidently502

identified all mappings whose predicted ANI is within503

∆ANI of the best predicted ANI. We do this by sorting504

the candidate regions in decreasing order of their max-505

imum interval overlap size obtained in stage 1. The506

stage 2 minhash calculation is then performed on each507

candidate region in order, keeping track of the best508

predicted ANI value seen. Let κ be numerator of the509

minhash that corresponds to an ANI value ∆ANI less510

than the best predicted ANI value seen so far. Then,511

given a candidate region with a maximum overlap size512

of ci < κ, we know that Pr(Yi ≥ κ) = 0 and therefore513

no more candidate regions can contain mappings whose514

predicted ANI is within ∆ANI of the predicted ANI of515

the best mapping.516

5 Results517

5.1 Characteristics of the minmer518

scheme519

Here we provide formulas for the density of minmers and520

minmer intervals and an approximation for the distance521

between adjacent minmers. Proofs of the formulas are522

presented in the Supplementary Materials. We then523

compare these formulas to results on both simulated524

and empirical sequences. For the simulated dataset, we525

generated a sequence of 1 million uniform random hash526

values. For the empirical dataset, we used MurmurHash527

to hash the sequence of k-mers in the recently-completed528

human Y-chromosome Rhie et al. (2022) with k = 18.529

5.1.1 Minmer density530

To obtain the formula for the minmer density, we con-531

sider how the rank of a random k-mer changes with532

each consecutive window that contains it. As a result,533

we have a distribution of the rank of a random k-mer534

throughout consecutive sliding windows. This distribu-535

tion enables us to not only obtain the density (Figure536

2), but also determine other characteristics such as the537

likelihood of being a minmer given some initial rank r1538

or given a hash value z.539

Theorem 5.1. Let d(w,s) be the expected density of
(w, s)-minmers in a random sequence. Then,

d(w,s) =
1

w

∑
r1,rw∈{1...w}

Pr(C = 1|r1, rw) Pr(Rw = rw|r1)

where Rw|r1 ∼ BetaBinomial(r1, w − r1 + 1) and540

Figure 2: The density of a (1000, s)-minmer scheme
compared to a w′-minimizer scheme which also yields a
(1000, s)-window guarantee. To ensure that the mini-
mizer scheme satisfies the (1000, s) window guarantee,
the minimizer scheme is set with w′ = ⌊1000/s⌋.

Pr(C = 1|r1, rw) =


δ∑

u=0

Pr(U = u)
(2u+rw−r1

u+rw−s )
(2u+rw−r1

u )
r1, rw > s

1 otw

where U ∼ Hypergeometric(w − 1, r1 − 1, w − rw) and 541

δ = min(r1 − 1, w − rw). 542

5.1.2 Minmer interval density 543

Theorem 5.2. Let d∗(w,s) be the density of (w, s)- 544

minmer intervals in a random sequence. Then, 545

d∗(w,s) = 1− (w − s+ 1)(w − s)

w(w + 1)

As expected, letting s = 1 yields the same density as 546

minimizers, 2/(w + 1), and a similar formula appears 547

when determining the probability of observing s con- 548

secutive unsampled k-mers under the the minimizer 549

scheme Spouge (2022). As the number of minmers is a 550

strict lower bound on the number of minmer intervals, 551

this result also gives an upper bound on the density of 552

(w, s)-minmers. 553

5.1.3 Minmer window guarantee 554

As the main difference between minimizers and minmers 555

is the window guarantee, it is important to observe the 556

difference in the density of the minmer scheme compared 557

to a minimizer scheme which also satisfies the (w, s)- 558

window guarantee. In Figure 2, we consider the case 559

where we have a (1000, s)-minmer scheme and a w′- 560

minimizer scheme, where w′ is set to obtain the same 561

window guarantee of the minmer scheme by letting w′ = 562

⌊1000/s⌋. We observe that for sketch sizes other than 1 563

and 1000, for which the density of the schemes are equal, 564

the density of the minmer scheme is strictly less than 565

the density of the corresponding minimizer scheme. For 566

some values of s, the density of the ⌊1000/s⌋-minimizer 567

scheme is over 70% larger than the (1000, s)-minmer 568

scheme. 569

5.1.4 Minmer spread 570

Let Gi be the distance between the ith selected minmer 571

and the (i+ 1)th selected minmer. For a (w, s)-minmer 572

scheme with a density factor df , we have that 573
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Pr(Gi = d) ≈

(
w−d
df−2

)(
w

df−1

)
To see how well this approximation holds, we plot574

the results on both empirical and simulated data in575

Supplemental Figure 2.576

5.2 ANI prediction ideal sequences577

We replicated the experiments for Table 1 of Belbasi578

et al. (2022) using the minmer-based MashMap3 (com-579

mit 0b47608), with the exception that we report the580

mean predicted sequence divergence as opposed to the581

median. For each divergence rate r ∈ {0.01, 0.05, 0.10},582

100 random windows of 10,000 base pairs were selected583

from the Escherichia coli genome and 10, 000r positions584

were selected at random and mutated, ensuring that585

no duplicate k-mers were generated. The reads were586

mapped back to the reference E. coli genome and the587

predicted divergence was compared to the ground truth588

(Figure 3).589

The parameters of the minmer-based MashMap3 were590

set to obtain a similar numbers of sampled k-mers as591

the minimizer-based MashMap2 under MashMap2’s592

default settings, resulting in a density of 0.009 for both593

tools. As expected, the results show that the ANI594

values predicted by the minmer scheme are significantly595

closer to the ground truth than those predicted by the596

minimizer scheme. Notably, in the case where the true597

divergence was 1%, the relative error is reduced from598

29% to 2% (Figure 3).599

5.3 ANI prediction on simulated reads600

In addition to the ANI prediction measurements from601

Belbasi et al. (2022), we also simulated reads from602

the human T2T-CHM13 reference genome Nurk et al.603

(2022) at varying error rates to determine the accuracy604

of the ANI predictions. We compared the minmer-based605

MashMap3 against the minimizer-based MashMap2606

with similar densities for each run as well as against607

Minimap2 Li (2018). Minimap2 was run in its de-608

fault mode with -x map-ont set which, like MashMap,609

computes approximate mappings and estimates the610

alignment identity. MashMap2 was modified to use611

the binomial model for estimating the ANI from the612

Jaccard estimator which has been shown to be more613

accurate Belbasi et al. (2022).614

We used Pbsim Ono et al. (2013) to simulate three615

datasets: “ONT-95”, “ONT-98”, and “ONT-99”, where616

the number following the dash represents the average617

ANI across reads. The standard deviation of the error618

rates was set to 0, and the ratio of matches, insertions,619

and deletions was set to 20:40:40, respectively, to en-620

sure that mapped regions would, on average, be the621

same length as the reads. For each dataset, 5,000bp622

reads were generated with the CLR profile at a depth623

of 2, resulting in 1.25 million reads for each dataset.624

The mappings output by the different methods were625

parsed and the predicted ANI was compared to the gap-626

compressed ANI of the ground-truth mapping. The627

results of the simulations can be seen in Table 1.628

Figure 3: Eliminating the bias in MashMap. The
experiments from Table 1 of Belbasi et al. (2022) were
replicated. Divergence, defined as 1-ANI, was pre-
dicted across 100 sequences for both MashMap2 and
MashMap3 using a density of 0.009 (L = 10, 000,
s = 78). In the case of identifying sequence divergence
of very closely related genomes, the minmer scheme
reduces relative prediction error from 29% to 2%.

For MashMap2 and MashMap3, we used a k-mer size 629

of 19 and set the MashMap2 minimizer w to 89 and min- 630

mer s to s = 100 to obtain a density of 0.0222 for both 631

tools. The ANI cutoff was set to 94%, 93%, and 90% 632

for the ONT-99, ONT-98, and ONT-95 datasets, respec- 633

tively. The indexing times for Minimap2, MashMap2, 634

and MashMap3 were 1.7, 2.8, and 9.8 minutes, respec- 635

tively. 636

5.4 ANI prediction on mammalian 637

genome alignments 638

To test the performance of MashMap3 at the genome- 639

mapping scale, we computed mappings between the 640

T2T human reference genome and reference genomes for 641

chimpanzee Kronenberg et al. (2018) and macaque War- 642

ren et al. (2020). In absence of ground truth ANI values, 643

we used wfmash Guarracino et al. (2021) to compute the 644

gap-compressed ANI of the segment mappings output 645

by MashMap and report the results of the mappings 646

with ≥ 80% complexity in Table 2. For a small pro- 647

portion of segment mappings output by MashMap2 648

and MashMap3, wfmash did not produce an alignment. 649

When the ANI threshold is 85%, these cases accounted 650

for 0.07% of chimpanzee mappings and 0.3% macaque 651

mappings. When the ANI threshold was 90% or 95%, 652

less than 0.01% of mappings were not aligned with wf- 653

mash for both chimpanzee and macaque. We consider 654

these mappings as false positives. For the ANI thresh- 655

olds of 95%, 90%, and 85%, the winnowing scheme 656

densities were set to 0.043, 0.053, and 0.064, respec- 657

tively. 658

To isolate the effect of the new seeding method, we 659

turned chaining off for both tools. As the Jaccard es- 660

timator is known to perform poorly in the presence of 661

many degenerate k-mers, results for query regions above 662

and below 80% complexity are reported separately, 663

where complexity is defined as the ratio of observed 664

distinct k-mers in a region to w. Low-complexity map- 665

pings make up for at most 1% and 3% of the mappings 666

for chimpanzee and macaque genomes, respectively. We 667

show the table of the metrics for the low-complexity 668

mappings in Supplementary Table 1. 669
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Minimap2 MashMap2 MashMap3

Dataset
CPU
time
(m)

Memory
(Gb)

ME MAE
CPU
time
(m)

Memory
(Gb)

ME MAE
CPU
time
(m)

Memory
(Gb)

ME MAE

ONT-99 154.20 9.89 -0.25 0.34 80.27 9.92 -0.27 0.29 33.64 13.07 0.03 0.17
ONT-98 147.29 9.89 -0.36 0.52 82.46 9.92 -0.33 0.39 35.13 13.09 0.06 0.29
ONT-95 96.35 9.89 -0.46 0.81 106.81 9.92 -0.25 0.59 42.81 13.10 0.21 0.62

Table 1: Metrics for simulated Nanopore read mapping to the human genome. Minmer and minimizer-
based MashMap implementations as well as Minimap2 were used to map simulated reads from the human
reference genome using Pbsim Ono et al. (2013).

MashMap2 MashMap3

Query
Species

ANI
Threshold

Basepairs
mapped
(Gbp)

CPU
time
(m)

Memory
(Gb)

ME MAE
Basepairs
mapped
(Gbp)

CPU
time
(m)

Memory
(Gb)

ME MAE

Chimpanzee 95% 2.80 39.76 19.95 -0.25 0.29 2.81 32.76 27.07 0.01 0.22
Chimpanzee 90% 2.82 118.31 24.55 -0.22 0.29 2.82 51.12 36.20 0.01 0.25
Chimpanzee 85% 2.83 787.44 44.96 -0.18 0.27 2.83 64.48 39.47 0.02 0.25

Macaque 95% 0.38 30.0 20.83 0.29∗ 0.46 1.08 28.67 28.97 0.57∗ 0.66
Macaque 90% 2.54 40.49 23.04 -0.30 0.69 2.56 34.87 35.91 0.01 0.74
Macaque 85% 2.60 446.71 38.13 -0.24 0.74 2.61 43.74 39.49 0.05 0.87

Table 2: Comparison of MashMap2 and MashMap3 for identifying mappings between pairs of
mammalian genomes. MashMap2 and MashMap3 were used to align the human reference genome to
chimpanzee and macaque genomes. The ME and MAE metrics shown are for query segments with at least 80%
k-mer complexity. Corresponding metrics for low-complexity mappings can be found in Supplementary Table 1.
∗Sampling bias leads to ANI over-estimation. See discussion for details.

6 Discussion670

Minmers are a novel “non-forward” winnowing671

scheme with a (w, s)-window guarantee. Similar to672

what has been done for other proposed schemes, we673

have derived formulas (approximate and exact) that674

describe the scheme’s characteristics. We have replaced675

minimizers with minmers in MashMap3 and demon-676

strated that minmers eliminate Jaccard estimator bias677

and enable new methods to reduce mapping runtime678

compared to MashMap2. In addition, we show that min-679

mers require substantially less density than minimizers680

when a (w, s)-window guarantee is required.681

The minmer scheme enables sparser sketches682

The minimizer winnowing scheme has long been the683

dominant method for winnowing due to its (w, 1)-684

window guarantee, simplicity, and performance. Other685

1-local methods such as strobemers Sahlin (2021) and686

syncmers Edgar (2021) remove the window guarantee687

and rely on a random sequence assumption to provide688

probabilistic bounds on the expected distance between689

sampled k-mers.690

Minmers represent a novel class of winnowing schemes691

that extend the window guarantee of minimizers. Un-692

like strobemers, syncmers, and other 1-local methods,693

the minmer scheme guarantees the desired number of694

k-mers will be sampled from every window, so long as695

it contains at least s distinct k-mers. This is partic-696

ularly desirable for accurate Jaccard estimation and697

the winnowing of low-complexity sequence where the698

density of sampled k-mers from 1-local schemes can699

vary significantly.700

Minmers yield an unbiased estimator at lower 701

computational costs 702

Indexing minmers rather than minimizers removes the 703

Jaccard estimator bias present in earlier versions of 704

MashMap. For any window, the set of sampled k-mers 705

is guaranteed to be a superset of the bottom-s sketch of 706

that window. Therefore, running the minhash algorithm 707

on minmers yields the same estimator as running the 708

minhash algorithm on the full set of k-mers . 709

In addition to the experiments from Belbasi et al. 710

(2022), which focus on “ideal” sequences with no repet- 711

itive k-mers, we also measured the performance of the 712

ANI prediction for different levels of divergence on the 713

human genome across mappings of simulated reads and 714

a sample of mammalian genomes. Our results showed 715

that MashMap3 with minmers not only produced un- 716

biased and more accurate predictions of the ANI than 717

Minimap2 and MashMap2, but it did so in a fraction 718

of the time. 719

We replicated the behavior of minimizers to under- 720

predict ANI as seen in Belbasi et al. (2022) across all 721

experiments. At the same time, in both the simulated 722

reads and empirical genome alignment results, we see 723

that MashMap3 slightly over-predicts the ANI at larger 724

divergences. Further inspection reveals that this is due 725

to indels in the alignment, which are not modeled by the 726

binomial mutation model used to convert the Jaccard 727

to ANI (Supplementary Table 2). 728

The optimizations to the second stage of mapping 729

combined with the minmer interval indexing leads to 730

significantly better mapping speeds in MashMap3. Rel- 731

ative to Minimap2 and MashMap2, MashMap3 spends 732
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a significant amount of time indexing the genome. This,733

however, serves as an investment for the mapping phase734

which is significantly faster than MashMap2, particu-735

larly at lower ANI thresholds. As an additional feature,736

MashMap3 provides the option to save the reference737

index so that users can leverage the increased mappings738

speeds for previously indexed genomes.739

Similar to MashMap2, MashMap3 by default uses the740

plane-sweep post-processing algorithm described in Jain741

et al. (2018a) to filter out redundant segment mappings.742

We show that by using the probabilistic filtering method743

described in Section 4.2.1, we can discard many of these744

mappings at the beginning of the process as opposed745

to the end, yielding significant runtime improvements.746

MashMap3 is significantly more efficient at lower ANI747

thresholds, which is helpful for detecting more distant748

homologies. For example, in our human-chimpanzee749

mapping, we recovered an additional 50 Mbp of mapped750

sequence by reducing the ANI threshold from 95%751

to 85% while also completing over 10x quicker than752

MashMap2. It is also worth noting that the default753

ANI of MashMap2 and MashMap3 is 85%, and often754

the ANI of homologies between genomes is not known755

a priori.756

Further motivating the improved efficiency of low ANI757

thresholds is the fact that thresholds above the true ANI758

can lead to recovering mappings which over-predict the759

ANI while discarding those which accurately or under-760

predict the ANI. This sampling bias leads to an increase761

in the ANI estimation bias. We see this behavior in762

the human-macaque alignment with a threshold 95%763

ANI (Table 2). At lower ANI thresholds, we observe764

that the majority of mappings are in the 90%-95% ANI765

range.766

Limitations and future directions767

MashMap’s Jaccard-based similarity method tends to768

overestimate ANI in low-complexity sequences. For769

downstream alignment applications, the resulting false-770

positive mappings can be pruned using a chaining or771

exact alignment algorithm to validate the mappings.772

Unreliable ANI estimates could also be flagged by using773

the bottom-s sketch to determine the complexity of a774

segment as described in Cohen and Kaplan (2007), but775

a sketching method and distance metric that better776

approximates ANI across all sequence and mutational777

contexts would be desirable.778

An important characteristic of MashMap is the rela-779

tively few parameter settings necessary to tune across780

different use cases. Building on this, we aim to de-781

velop a methodology that can find maximal homologies782

without a pre-determined segment size, similar to the783

approach of Wang et al. (2022b).784

7 Conclusion785

In this work, we proposed and studied the charac-786

teristics of the minmer scheme and showed that they787

belong to the unexplored class of non-forward local788

schemes, which have the potential to achieve lower den-789

sities under the same locality constraints as forward790

schemes Marçais et al. (2018). We derived formulas791

for the density and approximate spread of minmers, 792

enabling them to be objectively compared to other 793

winnowing schemes. 794

By construction, minmers, unlike minimizers, enable 795

an unbiased estimation of the Jaccard. We replaced 796

the minimizer winnowing scheme in MashMap2 with 797

minmers and showed that minmers significantly reduce 798

the bias in both simulated and empirical datasets. 799

Through leveraging the properties of the minmers, 800

we implemented a number of algorithmic improvements 801

in MashMap3. In our experiments, these improvements 802

yielded significantly lower runtimes, particularly in the 803

case when the ANI threshold of MashMap is set to the 804

default of 85%. With the improvements in MashMap3, 805

it is no longer necessary to estimate the ANI of ho- 806

mologies a priori to avoid significantly longer runtimes, 807

making it an ideal candidate for a broad range of com- 808

parative genomics applications. 809
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