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Reputations provide a powerful mechanism to sustain cooperation, as individuals
cooperate with those of good social standing. But how should someone’s reputation
be updated as we observe their social behavior, and when will a population converge
on a shared norm for judging behavior? Here, we develop a mathematical model of
cooperation conditioned on reputations, for a population that is stratified into groups.
Each group may subscribe to a different social norm for assessing reputations and so
norms compete as individuals choose to move from one group to another. We show
that a group initially comprising a minority of the population may nonetheless overtake
the entire population—especially if it adopts the Stern Judging norm, which assigns
a bad reputation to individuals who cooperate with those of bad standing. When
individuals do not change group membership, stratifying reputation information into
groups tends to destabilize cooperation, unless individuals are strongly insular and
favor in-group social interactions. We discuss the implications of our results for the
structure of information flow in a population and for the evolution of social norms of
judgment.
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Societies depend on cooperation. This is sometimes considered paradoxical because
cooperation is often costly and may be selected against. A suite of explanations have
been proposed for human and nonhuman cooperation—such as kin selection (1, 2),
population structure (3, 4), and direct reciprocity in repeated interactions (5, 6). But
large human societies often require cooperation between unrelated strangers who have
little prospect for future interactions. Reputations and social norms provide a compelling
explanation for cooperation in such societies, as people tend to cooperate with others of
good social standing (7–16). In disciplines ranging from psychology to economics, there
is broad recognition that norms for judging social behavior, and institutions that support
these norms, are critical for maintaining cooperation and solving problems of collective
action (7, 13, 17–19). But how exactly a population comes to mutual agreement about a
social norm remains an active area of research in these fields (20, 21). Here, we adapt the
theory of indirect reciprocity to provide some insights into this outstanding question.

Under the theory of indirect reciprocity, individuals who cooperate with others of
good social standing will maintain their own good reputation and thereby increase the
chance of reciprocal cooperation from strangers (22, 23). This simple idea of cooperation
conditioned on social reputations has substantial empirical support, as reputations are
known to be related to cooperation, and cooperation can, in turn, lead to higher social
status (11, 24–27). Moreover, studies that include functional neuroimaging have shown
that people can reliably detect different social norms about cooperation (28, 29).
In behavioral economic experiments, people tend to join the dominant institution
of reputation assessment, which then facilitates subsequent cooperation (27). Even
disinterested third-party observers punish those who do not play by the dominant social
norm for cooperation (30).

Given this empirical basis, evolutionary game theory provides a modeling framework
to study the spread and maintenance of cooperative behavior conditioned on reputations
(22, 23, 31–36). Mathematical models of indirect reciprocity keep track, for all
individuals in a population, of both their reputations and their behavioral strategies.
Both strategies and reputations are updated over time. This theoretical framework has
been largely successful in delineating what conditions can sustain cooperation.

Two factors have emerged as critical for cooperation under indirect reciprocity: the
extent to which individuals share a consensus view of each others’ reputations and
the social norm by which individuals are assessed and reputations assigned. First, it
is known that cooperation can flourish when there is consensus about reputations in
a population, which can be achieved through rapid gossip (37) or by a centralized
institution that broadcasts reputation information (38); conversely, cooperation tends
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to collapse when individuals each have their own idiosyncratic
views of each others’ reputations (39). Second, stable cooperation
depends strongly on what norm the society adopts for judging
social behavior. For example, a social norm* that judges an
individual as good for cooperating with a bad actor (i.e., a norm
that values forgiveness) is less likely to foster cooperation than
a norm that judges such an individual as bad (i.e., a norm that
values punishment) (34).

Crucially, however, all these theoretical insights have been
derived for homogeneous societies—where individuals all em-
brace the same, exogenously imposed social norm—and assuming
either fully public (38) or entirely private information (39). But,
in reality, most societies are multicultural and structured into
groups that may hold different views about the reputations of
individuals (40, 41). Information about reputations may flow
freely within a group of individuals who share a common
language, ethnic or religious identity, political affiliation, etc.,
but may flow more slowly between groups. Members of a group
may therefore share a common view on the reputations of others
in the population, but different groups may disagree. Different
groups may even subscribe to different social norms for evaluating
reputations in the first place. This reality raises two fundamental
questions: In a heterogeneous society with imperfect information
flow, under what conditions will everyone eventually converge
on a common norm of judgment, and when will the prevailing
norm be socially optimal?

These questions have proven difficult to answer, despite a
few notable attempts (33, 42, 43). Here, we approach the
problem by developing a general theory of indirect reciprocity
in group-structured populations. We allow for multiple co-
occurring norms and explore a continuum of scenarios between
fully public and fully private information, by partitioning the
population into distinct and disjoint “gossip groups.” Members
of a gossip group share the same views about the reputations
of all individuals in the population, but different groups may
hold different views. Strategies and group sizes coevolve via
payoff-based imitation: Individuals can either learn behavioral
strategies from each other or change their group membership,
possibly on different timescales. When different groups subscribe
to different norms of judgment, the model describes competition
between social norms arising from individual-level decisions. This
approach allows us to predict whether, and by what dynamics, a
population will come to adhere to a single social norm.

Our analysis identifies Stern Judging—a social norm that
values defection against individuals of bad standing—as the best
competitor against other norms in the literature on indirect
reciprocity. Furthermore, Stern Judging is an even stronger
competitor when individuals preferentially interact with their
in-group. More generally, we obtain a simple condition that
determines whether a social norm that is initially used by a
minority of the population will spread via social contagion.

We also analyze how group structure affects the prospects for
cooperation when group memberships are fixed. Even when all
groups use the same social norm, a population may fail to secure
a high level of cooperation when information about reputations
is fractured into independent groups. The destabilizing effect
on cooperation grows rapidly with the number of groups, but
it can be partly mitigated by a preference for in-group social
interactions. We compare our results to the theoretical literature
on indirect reciprocity and to empirical work on reputations

*The term “social norm” has a specific technical meaning in the literature on indirect
reciprocity, which may differ from the broader notions of descriptive and injunctive norms
in psychology (9).

and norms for cooperation in human societies. We conclude by
discussing implications for the evolution of social norms and
for the number of groups with independent judgments that a
well-functioning society can sustain.

Model

A Model of Strategy and Norm Coevolution. Our model of
strategy-norm coevolution extends a well-established body of
mathematical models for how cooperation emerges from indi-
rect reciprocity (22, 23, 31–36). These models describe how
individuals in a large population behave in pairwise interactions.
Individuals choose behaviors according to strategies that account
for each others’ reputations, and reputations themselves are
assessed and updated according to a social norm for judging
observed behavior. Strategies that provide larger payoffs tend to
spread by biased imitation.

In particular, we consider a population of N individuals who
play a series of one-shot donation games with each other. Each
round, every individual plays the game twice with everyone else,
acting once as a donor and once as a recipient. Donors may
either cooperate, paying a cost c to convey a benefit b > c to
their interaction partner, or defect, paying no cost and conveying
no benefit. This game constitutes a minimal example of a social
dilemma (32, 44).

Each individual has a view of the current social standing, or
reputation, of every other individual in the population. A donor
chooses whether to cooperate or not according to their behavioral
strategy and the reputation of the recipient: Cooperators (denoted
ALLC or X ) always cooperate, defectors (ALLD or Y ) always
defect, and discriminators (DISC, Z ) cooperate with those they
consider to have a good reputation and defect with those they
consider to have a bad reputation.

We extend the standard model by partitioning the population
into K distinct and disjoint “gossip groups,” which comprise
fractions ν1, ν2, . . . νK of the total population. Unlike in the
context of direct reciprocity, where population structure produces
an assortment of strategic types (45, 46), the group structure
we study modulates information about reputations. Individuals
within a gossip group share the same view about the reputations
in the population, but different gossip groups may disagree about
reputations. Different groups may even employ different social
norms for assigning reputations. This model describes a situation
in which individuals transmit information about reputations to
other members of their group via rapid gossip (37) or, alterna-
tively, in which each group has its own centralized “institution”
(38) that broadcasts reputation judgments to everyone in the
group. (Mathematically, the reputational views of the K groups
can be described by K vectors {0, 1}N . An entry of 0 or 1 denotes
that an individual has a bad or good reputation according to
that group, respectively.) In the case of a single group, K = 1,
our analysis reduces to the standard model of indirect reciprocity
with public information (23, 31–36).

Updating Reputations. After a round of pairwise game interac-
tions, each group updates its views of everyone’s reputations.
An individual’s reputation is updated as follows. A random
interaction in which the focal individual acted as a donor is
sampled from the most recent round, and their reputation is
assessed based on the action they took toward the recipient. The
rule for assessing the reputation of a donor, called the social
norm, considers the donor’s action and the group’s view of the
recipient’s current reputation [i.e., the social norm is second
order (33)]. We focus most of our analysis on the four norms
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that are the most common in the literature (38). All four norms
regard it as good to cooperate with an individual who has a good
reputation and bad to defect with an individual who has a good
reputation, but the norms differ in how they assess interactions
with bad individuals:

1. Under Scoring (SC), cooperating with a bad recipient results
in the donor being assigned a good reputation, but defecting
with a bad recipient results in a bad reputation.

2. Under Shunning (SH), any interaction with a bad recipient
yields a bad reputation.

3. Under Simple Standing (SS), any interaction with a bad
recipient yields a good reputation.

4. Under Stern Judging (SJ), cooperating with a bad recipient
yields a bad reputation, but defecting with a bad recipient
yields a good reputation.

Our model also allows for two types of error: errors in
strategy execution and errors in reputation assessment (47).
Whenever a donor intends to cooperate with a recipient, there
is a chance ux that the donor will accidentally defect, which we
call an execution error. (Individuals who intend to defect never
accidentally cooperate.) In addition, there is a chance ua that a
group following a given social norm will erroneously assign the
wrong reputation to the donor, which we call an assessment error.

To keep track of strategy frequencies and reputations in the
population—and the resulting actions and payoffs that arise—we
must account for the fact that different groups may hold different
views of an individual’s reputation. We let f sI denote the fraction
of individuals in group I who follow strategy s ∈ {X, Y, Z}.
Further, we let g sI,J denote the fraction of individuals following
strategy s in group I whom group J sees as good (the first subscript
index denotes “who,” and the second index denotes “in whose
eyes”). Finally, we define gI,J as the fraction of individuals in
group I whom group J sees as good and g•,J as the fraction of
individuals in the entire population whom group J sees as good.
These average reputations are given by gI,J =

∑
s f

s
I g

s
I,J and

g•,J =
∑

L νLgL,J . (Throughout our presentation, sums over s
are always interpreted as sums over strategic types, s ∈ {X, Y, Z};
sums over capital letters are interpreted as sums over groups,
e.g., L ∈ {1 . . .K }.) We also define the average reputation of a
strategic type s, g s =

∑
I
∑

J νIνJ g
s
I,J ; and the full population-

average reputation g =
∑

I
∑

J νIνJ gI,J .

Game Payoffs. Each individual accrues a payoff b from their
interactions with cooperators and with discriminators who
view them as good. In addition, cooperators pay the cost of
cooperation, c, in every interaction; discriminators pay this cost
when they interact with recipients their group sees as good. Thus,
in the limit of large N , the net payoff for each strategic type in
group I , averaged over all pairwise interactions and accounting
for execution errors, is given by

5X
I = (1− ux)

[
b
∑
J

νJ (f XJ + f ZJ gXI,J )− c
]

5Y
I = (1− ux)

[
b
∑
J

νJ (f XJ + f ZJ gYI,J )
]

5Z
I = (1− ux)

[
b
∑
J

νJ (f XJ + f ZJ gZI,J )− cg•,I
]
.

[1]

Strategy and Group Coevolution. After all groups have updated
their views of everyone’s reputations, a randomly chosen indi-
vidual, following strategy s, chooses a random other individual
in the population, following strategy s′, and compares their two
payoffs. If the focal individual is in group I , and their comparison
partner is in group J , the focal individual decides to imitate either
the comparison partner’s strategy (i.e., switch to strategy s′) or
the comparison partner’s group membership (i.e., join group J )
with a probability given by the Fermi function

φ(5s
I ,5

s′
J ) =

1
1 + exp

[
β(5s

I −5
s′
J )
] .

The parameter β here is called the strength of selection (48, 49),
which we assume to be weak (β � 1) for the entirety of our
analysis. Imitating strategies and switching groups might occur
on different timescales, and so we introduce the parameter τ , the
chance of copying group membership versus copying strategy
(see Materials and Methods).

The resulting dynamics can be described by a system of
replicator equations (35, 50, 51) in the limit of a large population
size. We derive the replicator equation for our model (SI Ap-
pendix, section 8) under the standard assumption that reputations
equilibrate quickly before individuals update strategies (52). If
comparison partners are chosen irrespective of group identity,
the strategic frequencies f sI quickly equalize across all groups I
and converge to a common set of values f s. The dynamics of
strategy frequencies and group sizes then satisfy

ḟ s = f s(1− τ )
(
5s
− 5̄

)
,

ν̇I = νI τ
(
5I − 5̄

)
,with

[2]

5s =
∑
J

νJ5
s
J , 5I =

∑
s
f s5s

I , and 5̄ =
∑
J

νJ
∑
s
f s5s

J .

When τ = 0, this system reduces to strategic evolution alone,
where the resulting levels of cooperation have been the primary
focus of research on indirect reciprocity. When τ > 0, we are in a
completely uncharted realm of competing strategies that coevolve
with competing groups, which may subscribe to different norms
of judgment. Even the extreme case of τ = 1, where strategies are
fixed and the model describes only the dynamics of competing
gossip groups, is wholly unexplored.

Results

1. Dynamics of Group Sizes. We first study the case of τ = 1,
analyzing the dynamics of K = 2 competing gossip groups that
form independent assessments of all reputations. In this setting,
we assume that all individuals employ the discriminator strategy,
i.e., they use the recipient’s reputation when choosing whether
or not to donate. We find that group sizes are generally bistable;
above a critical frequency, ν∗1 , group 1 will increase toward 100%
of the population, and below the critical frequency, group 1
will decrease toward zero (SI Appendix, section 4). Thus, the
population will eventually be dominated by only one group.

The precise value of ν∗1 depends on the social norms the two
groups follow. Although there is no simple expression for ν∗1
in general, we can exploit the model’s bistability to gain some
analytical insight. If ν̇1 is positive when ν1 = 1/2, then because
the system is at most bistable, we have ν∗1 < 1/2 (because ν̇1
must cross the ν1-axis at a value lower than 1/2). Likewise, if ν̇1
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is negative when ν1 = 1/2, then ν∗1 > 1/2. By rewriting Eq. 1
and setting ν1 = ν2 = 1/2, we find that ν̇1|ν1=1/2 > 0 only if[

(b− c)(g1,1 − g2,2) + (b + c)(g1,2 − g2,1)
]∣∣
ν1=1/2 > 0. [3]

When this condition is satisfied, then ν∗1 < 1/2, which means
that group 1 can grow and eventually overtake the entire
population, even when it starts as the smaller group.

There is a simple intuition associated with the terms in Eq. 3.
The first term represents the difference in the payoff to group
1 versus group 2 due to within-group interactions. The second
term represents the difference in the payoff to group 1 versus
group 2 due to out-group interactions; it can be thought of as the
payoff difference between groups due to cooperation that is not
reciprocated by the opposing group. If the net advantage to group
1 is positive, then group 1 will overtake the whole population.

We can understand the terms in Eq. 3 more explicitly by con-
sidering in-group and out-group rates of donation. Individuals
in group 1 cooperate with each other (barring execution errors)
at a rate g1,1—each paying a cost c, as a donor, and earning a
benefit b, as a recipient. Individuals in group 1 thereby accrue
average payoff (b − c)g1,1 from their in-group interactions, and
likewise, group 2 individuals accrue (b − c)g2,2 from their in-
group interactions. And so, the first term, (b − c)(g1,1 − g2,2),
represents the fitness difference between groups 1 and 2 arising
from in-group interactions. In addition, an individual in group 2
donates to an individual in group 1 with probability g1,2, paying
a cost c and providing benefit b to the member of group 1.
This produces a fitness difference of (b + c)g1,2 arising when a
(potential) donor in group 2 interacts with a recipient in group 1.
Likewise, there is a fitness difference of−(b+ c)g2,1 arising from
donors in group 1 interacting with recipients in group 2. And so,
the second term in Eq. 3 represents the difference between the
payoffs to groups 1 and 2 due to between-group interactions.
Competing groups that share a social norm. When the two groups
are of the same size and follow the same social norm, then g1,1 =
g2,2 and g1,2 = g2,1, and the inequality of Eq. 3 becomes an
equality. In other words, when both groups follow the same
norm, then ν∗1 = 1/2, and so whichever gossip group is initially
larger will grow and eventually dominate the entire population.
There is a simple intuition for this result: The larger gossip group
has an advantage, all else being equal, because members of that
group share their reputational views with a larger portion of the
population, which reduces the rate of unreciprocated cooperation
(38).
Competing social norms. When the groups follow different norms
and are of equal size, the two terms of Eq. 3 need not be zero,
which means the critical frequency ν∗1 above which group 1 will
eventually fix need not equal 1/2. In particular, if inequality 3
is satisfied, then ν∗1 < 1/2. This means that group 1 may
initially comprise a minority of the population (but not too
small a minority) and yet eventually out-compete group 2, which
subscribes to a different social norm. When this happens, we say
that group 1 follows a “stronger” norm, meaning that individuals
who follow that norm can enjoy a fitness advantage over others,
even when their own group is smaller, thus enticing others to
adopt their norm.

We find that Stern Judging is the “strongest” norm among the
four we study, having a value ν∗1 < 1/2 against any other norm
(Fig. 1). This result holds regardless of the game payoff b, except
when Stern Judging is pitted against Shunning for sufficiently
small b, such as b = 2, when Stern Judgers engage in more
unreciprocated cooperation than do Shunners. However, this case

is exceptional, because as the Shunning group grows in size, the
population passes through a regime where it can be invaded
by defectors (SI Appendix, section 4.2). This means that, in a
model with both strategic copying and group switching (Eq. 2),
defectors could invade the population (a possibility that we study
in SI Appendix, section 4.3). And so in summary, Stern Judging
is a stronger norm than all others, whenever the population is
robust enough to prevent unconditional defectors from invading
as individuals update their group membership (Fig. 1).

The strength of the Stern Judging norm can also be understood
in terms of Eq. 3. Stern Judging affords a high level of within-
group consensus, but it is less tolerant of the opposing group
insofar as they do not share reputational views, so both terms
in Eq. 3 can be positive. As a result, a group following Stern
Judging may grow and outcompete another norm even when
it starts in the minority (i.e., ν∗1 < 1/2). By contrast, Shunning
cannot guarantee a high level of within-group consensus, whereas
Simple Standing is too accommodating of differences across group
opinions to compete vigorously against Stern Judging. Scoring is
unique in that its members may have higher views of their out-
group than of their in-group, thus it typically loses in competition
against any other norm. The results on intragroup and intergroup
reputational views are summarized in SI Appendix, Table S2,
which helps to explain why Stern Judging is the strongest norm.

Aside from identifying Stern Judging as the strongest norm, our
analysis identifies several other key features of norm competition.
For example, Stern Judging and Simple Standing always out-
compete Scoring, regardless of how small their initial frequencies
are (Fig. 1). Stern Judging or Simple Standing are also strong in
competition against Shunning, which will be displaced even if
its initial frequency is as high as 80% (for b = 10). Finally,
considering competition between Stern Judging and Simple
Standing, Stern Judging is always stronger (ν∗1 < 1/2), and the
basin of attraction toward Stern Judging is larger when the benefit
of cooperation b is smaller.

We have focused on competition among the four social norms
that are most common in the literature. But some prior work
has considered a larger set of “leading eight” social norms
(34), including six third-order norms that consider the current
reputation of the donor when deciding what their new reputation
should be. In SI Appendix, section 6, we develop equations for
reputation dynamics with third-order norms in multiple gossip
groups, and we analyze the dynamics of competition between two
groups that follow different norms among the “leading eight” (SI
Appendix, Fig. S2). We find that Stern Judging is stronger than
almost all other “leading eight” norms, meaning that it can grow
when starting from a minority (ν∗1 < 1/2). The sole exception is
norm s8, a third-order norm that differs only slightly from Stern
Judging and which is stronger than Stern Judging only for low
values of the benefit b.

Finally, we have developed and solved equations for a model
where the two groups use different norms, but individuals rely on
private reputation assessment (SI Appendix, section 4.5). In this
case, switching group membership is tantamount to switching
which norm an individual uses, but it does not guarantee that an
individual will hold the same reputational assessments as other
members of their group. Stern Judging performs poorly in this
context of norm competition with private assessment, whereas
Simple Standing out-competes the other second-order norms
across a range of values of b (SI Appendix, Fig. S1).
Competing norms with insular groups. So far, we have assumed
that individuals interact with all others in the population, ac-
cumulating payoffs from both within-group and between-group
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Fig. 1. The dynamics of competing social norms for K = 2 groups are typically bistable: Group 1 will grow and overtake group 2 when its size exceeds a
threshold, �1 > �∗1 , or else it will shrink to zero. The social norm used in group 1 is indicated at the top of each column, and the norm used in group 2 is indicated
at the right of each row. Each panel shows the rate of change of group 1’s size, �̇1, as a function of its current size, �1, with different colors corresponding to
different values of the benefit b in the donation game. The threshold �∗1 is determined by where the curve crosses the x-axis. Note that Stern Judging is usually
the strongest norm, with �∗1 < 1/2 against all other norms. In all plots, c = 1, ua = ux = 0.02, and the value of b is colored according to the inset shown in
the Scoring–Scoring figure. The dotted line for b = 2, when Stern Judging competes against Shunning, indicates the special situation that, as Shunning grows, the
population passes through a regime where it is vulnerable to invasion by unconditional defectors.

interactions without any bias. However, if group membership
determines not only how an individual views reputations in
the population but also whom they tend to interact with in
game play, then differential rates of within- versus between-group
interactions could influence which groups perform best during
competition.

We model insularity by stipulating that any given pair of
individuals will not assuredly interact but rather will interact
with probabilityωI,J = ωJ,I for individuals in groups I and J . We
focus on the case when individuals favor in-group interactions,
so that a randomly chosen pair of individuals will always interact
if they happen to be members of the same group (i.e., ωI,I = 1),
but the interaction will occur with probability 0 < ω < 1
if they are from different groups. (Introducing ω modifies our
expressions for average reputations; see SI Appendix, section 5.)
Note that this notion of insularity is weaker than that of in-
group favoritism in social psychology (53–55) and game theory
(56). Insular individuals in our model simply prefer to interact
with in-group members, but they have no inherent bias toward
cooperating with in-group members.

The parameter ω ≤ 1 determines the per capita rate at
which out-group social interactions are allowed, relative to in-
group interactions. Reducing the probability of an out-group
interaction has two consequences: It changes an individual’s
fitness, which is averaged over interactions that actually occur,
and it also changes an individual’s reputation because they are
more likely to be observed interacting with an in-group partner
when ω < 1. We recover the case of well-mixed interactions
when ω = 1.

When interactions are insular (ω < 1), we recover the result
that, if the two groups follow the same social norm, the larger

group is guaranteed to grow in size. However, when the groups
follow different norms, a high degree of insularity (small ω)
implies that within-group interactions contribute more strongly
to fitness than between-group interactions, and so in-group
interactions have a greater effect on which norm will dominate.
In particular, when social interactions are insular, Eq. 3 can be
generalized to the condition[

(b− c)(g1,1 − g2,2) + ω(b + c)(g1,2 − g2,1)
]∣∣
ν1=1/2 > 0.

This implies that norms that might otherwise perform poorly
due to a high rate of unreciprocated between-group cooperation
can fare better when interactions are insular (ω < 1). Thus,
insularity shifts the balance of norm competition, as reflected in
Fig. 2; Stern Judging, Simple Standing, and even Scoring compete
better against Shunning at lower values of ω. In general, Stern
Judging ’s strength against every other norm is bolstered for lower
rates of out-group interaction, as Stern Judging requires an even
smaller initial frequency ν∗1 to guarantee its growth.
Competing norms with switching costs. We have also developed
an extended model in which an individual incurs a fitness cost
when switching group membership. The switching cost can have
a quantitative effect on which group will grow from certain initial
conditions, but we have proven that it has no qualitative effect on
which norm is stronger than another (SI Appendix, section 4.4).

2. Co-evolution of Strategies and Norms. When both group sizes
and strategy frequencies coevolve on similar timescales (0 <
τ < 1), our results for τ = 1 are reinforced, as we still find
a large basin of attraction toward Stern Judging discriminators
in competition with Simple Standing and defectors, even for
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Fig. 2. The dynamics of competing social norms in K = 2 groups, for different levels of insularity (out-group interaction parameter !). The social norm used
in group 1 is indicated at the top of each column; the norm used in group 2 is indicated at the right of each row. Each panel shows the rate of change of group
1’s size, �̇1, as a function of its current size, �1, with different colors corresponding to different values of the out-group interaction rate, !. In all cases, insularity
(! < 1) tends to make Stern Judging even stronger in competition with every other norm. In all plots, b = 2, c = 1, ua = ux = 0.02. Values of ! are as inset in the
Scoring–Scoring figure. The dotted line for ! = 1.0, when Stern Judging competes against Shunning, indicates the special situation that, as Shunning grows, the
population passes through a regime where it is vulnerable to invasion by unconditional defectors.

intermediate τ . Moreover, the strength of Stern Judging over
Simple Standing continues to hold regardless of the frequency
of defectors and discriminators (SI Appendix, Fig. S2). We also
observe new phenomena; when norms and strategies coevolve,
there is now a large basin of attraction toward defectors when
Stern Judging competes with Shunning (SI Appendix, section 4.3).

3. Dynamics of Strategy Evolution. Finally, we consider the other
limit, τ = 0, where group membership is fixed and only strategies
evolve. Although this limit has been studied extensively and is not
our primary focus, we can nonetheless use our setup to explore a
new angle: the effect of having multiple gossip groups on strategic
evolution.

We assume that all groups adopt the same social norm,
and we analyze the dynamics of three competing strategies:
cooperate, defect, and discriminate. We seek to understand how
a population structure with K > 1 distinct groups, each with
independent information about reputations, alters the stability
of long-term cooperative behavior. [This analysis is distinct
from the literature on immutable tags in structured populations
(57, 58) because reputations are continuously updated in models
of indirect reciprocity.]

When a population is partitioned into multiple groups that
form distinct reputational judgments, we expect that it will
generally be harder to achieve a high level of cooperation than
in a single group. To demonstrate this, we first review strategy
evolution in a population with a single group, which has been
studied extensively in prior work (33, 34, 36, 38, 59–65).
Cooperation in a well-mixed population. In a population consist-
ing of a single gossip group (K = 1), which is equivalent to

fully public reputations (32, 37, 63, 66), there are two stable
strategic equilibria: a population composed entirely of defectors
(f Y = 1) or a population composed entirely of discriminators
(f Z = 1). The population of discriminators can support a high
level of cooperation.

There is also an unstable equilibrium consisting of a mixture
of defectors and discriminators at f Z = c/[b(ε − ua)], f Y =
1−f Z , f X = 0 (SI Appendix, section 2). Here, ε := (1−ux)(1−
ua) + uxua quantifies the chance that an individual who intends
to cooperate with someone of good reputation will successfully
be assigned a good reputation.

An all-defector population can never be invaded, whereas
an all-discriminator population can resist invasion by defectors
provided

b
c
>

1
PGC − PGD =

1
ε − ua

.

Here, PGC is the chance that a donor who intends to cooperate
with a good recipient is assigned a good reputation, and likewise
for PGD, PBC , and PBD (see Materials and Methods and SI
Appendix, section 1). For small error rates, this critical benefit-
to-cost ratio, which guarantees stability of the all-discriminator
population and produces substantial cooperation, is a little larger
than 1, which is just barely stronger than the condition required
for the game to be a prisoner’s dilemma to begin with.

Thus, when only discriminators and defectors are present,
and the discriminator frequency exceeds a threshold value f Z∗,
discriminators will fix in the population. Because discriminators
intend to cooperate with everyone they consider good, the
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cooperation rate at this stable equilibrium is given by (1− ux)g,
where g is the proportion of the population considered good,
which satisfies g|f Z=1 = gPGC + (1 − g)PBD. Solving for g
yields an analytical expression for the equilibrium cooperation
rate as a function of the error rates for strategy execution (ux) and
for reputation assessment (ua):

g =
PBD

1− PGC + PBD

=

{
ua

1−ε+ua = ua
2ua+ux−2uxua under SH or SC

1−ua
2−ε+ua = 1−ua

1+ux−2uxua under SJ or SS.

Under the social norms Stern Judging and Simple Standing,
this value of g is close to 1 for small error rates, meaning that
most of the population is considered good in a population of
discriminators, and so the rate of cooperation is very high. For
example, with ua = ux = .02, the value of g is roughly 0.93, and
so (1− ux)g ≈ 91% of the population will be cooperating at the
all-discriminator stable equilibrium.

As these calculations demonstrate, discriminators enjoy a
substantial fitness advantage when information about reputations
is fully public (K = 1). Public information generates a high level
of agreement about reputations, which means that discriminators
are likely to reward each other’s good behavior by cooperating.
Thus, indirect reciprocity with public information provides
a powerful mechanism not only to produce a high level of
cooperation but also to protect cooperative individuals from the
temptation to become defectors.
Cooperation in a group-structured population. Even when social
interactions occur across an entire well-mixed population, the free
flow of reputation information can be disrupted if the population
is stratified into gossip groups with potentially different views
about reputations. Different views may be held by different
groups even when all groups subscribe to the same social norm of
judgment because of independent observations and independent
observational errors. And so, partitioning a population into
K > 1 groups is expected to temper or even destabilize the
advantage of discriminators, who may no longer agree about the
reputations of their interaction partners and thus might engage
in unreciprocated cooperation.

We study the effects of multiple gossip groups by solving Eq. 2
with τ = 0 for various numbers of groups K of equal size. The
resulting strategy dynamics under well-mixed copying are shown
in the upper panels of Fig. 3, for a representative set of typical
parameters (b = 2, c = 1, ux = ua = 0.02).

Under the Stern Judging norm, as the number of gossip groups
K increases, the location of the unstable equilibrium along
the DISC-ALLD edge moves toward the discriminator vertex,
which reduces the basin of attraction toward the discriminator
equilibrium. Thus, a smaller portion of initial conditions yields
stable cooperation. Moreover, the rate of cooperation at the
all-discriminator equilibrium is also reduced (for the example
parameters shown in Fig. 3, it changes from 0.91 with one
group to 0.70 with two gossip groups). When K ≥ 3, the
rate of cooperation drops even further, and the all-discriminator
equilibrium eventually ceases to be stable altogether. This
instability arises because, when there are many gossip groups,
it is less likely that discriminators will interact with others who
share their views of the rest of the population.

Similar results hold for the Shunning social norm. Multiple
gossip groups K > 1 rapidly destabilize cooperative behavior in
a population, in fact even more rapidly than under Stern Judging.
Under Simple Standing, the effect of multiple groups is more

Fig. 3. The dynamics of three competing strategies (cooperate, defect, and
discriminate) under three different social norms (columns) and for different
numbers K of equally sized gossip groups (rows). Arrows depict the gradient
of selection within the simplex of these three strategies. Open circles indicate
unstable equilibria; filled circles indicate stable equilibria. With a single gossip
group (K = 1), which is equivalent to public information about reputations
(32, 37, 63, 66), there are large basins of attraction to the all-discriminator
stable equilibrium, so that stable cooperation occurs under all three social
norms. As the number of gossip groups K increases, the dynamics rapidly
approach those of a model with private assessment (38) (fourth row), which
does not support cooperation in equilibrium under Shunning or Stern Judging.
Note that as K increases, several equilibria change from stable to unstable,
reducing the size of the basin of attraction to the discriminator equilibrium;
in the case of Simple Standing, a new stable equilibrium is born. In all panels,
b = 2, c = 1, and ua = ux = 0.02.

subtle than for other norms. Increasing the number of gossip
groups K still reduces the basin of attraction toward a stable
equilibrium supporting cooperation. But in this case, K also
influences the ability of cooperators to invade the all-discriminator
equilibrium (SI Appendix, section 2): For sufficiently large K ,
the all-discriminator equilibrium is stable against invasion by
defectors but not by unconditional cooperators (ALLC), thus
yielding a stable equilibrium with a mix of cooperators and
discriminators that does not exist for K = 1 (Fig. 3 for K ≥ 5).
In summary, the number of gossip groups has a weak effect on
the rate of stable cooperation under Simple Standing.

Strategy dynamics under the Scoring norm do not depend on
the number or relative size of groups (SI Appendix, section 1),
and so we do not present results for Scoring here.

We can summarize the effects of multiple gossip groups
K > 1 by analyzing the stability and rate of cooperation at
the all-discriminator vertex, f Z = 1. Discriminators can resist
invasion by defectors only when their fitness exceeds the fitness
of a rare defector mutant near the f Z = 1 vertex, i.e., when
(b − c)gZ |f Z=1 > bgY |f Z=1 (where gZ |f Z=1 is the average
reputation of a discriminator in an all-discriminator population
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Fig. 4. The average reputation in a population of discriminators, g|f Z=1,
depends on the number K of equally sized gossip groups (solid blue lines).
Social interactions are either well mixed (! = 1, top row) or they are biased
toward in-group partners (! = 0.5, bottom row). The shaded green region
indicates the regime in which discriminators are susceptible to invasion by
rare defectors; above this area, discriminators are stable against invasion,
so that cooperative behavior is maintained. Increasing the number of gossip
groups, K , rapidly reduces the average reputation in the population, to levels
that can destabilize cooperation under Shunning or Stern Judging, whereas
Simple Standing supports stable cooperation for arbitrarily many groups K .
Insular social interactions (e.g., ! = 0.5 shown in the bottom row) tend to
increase the average reputation while also reducing the threshold reputation
required to stabilize discriminators against defectors. As a result, in the
example shown for Stern Judging, the maximal number of gossip groups that
support stable cooperation is greater when interactions are partly insular
compared to well mixed. The dashed blue line indicates the asymptotic value
of gZ in the limit of many groups, K →∞, which is equivalent to a model with
private assessment (39). In all panels, b = 2, c = 1, and ua = ux = 0.02.

and gY |f Z=1 is the reputation of a rare defector mutant in an
otherwise all-discriminator population). This condition can be
rewritten as

g|f Z=1 >
PBD

1− PGD + PBD − c/b

g|f Z=1 >

{ ua
1−c/b under SH or SC,

1−ua
2(1−ua)−c/b

under SJ or SS.

In Fig. 4, we plot the average reputation in an all-discriminator
population, g|f Z=1. We show that, as K increases, the cooper-
ation rate in such a population decreases below the threshold
for discriminator stability under Shunning and Stern Judging,
whereas it remains above this threshold for Simple Standing.
And so, a sufficiently large number of gossip groups entirely
destabilizes cooperation under two of the norms we consider,
but it does not destabilize cooperation under Simple Standing.
The limit of many groups, K → ∞. As the number of groups
K approaches infinity, we recover the reputation dynamics for
discriminators in a population of private assessors (SI Appendix,
section 3.2):

gZ = hPGC + (g − h)(PGD + PBC ) + (1− 2g + h)PBD,

where h =
∑

s f
s(g s)2. These expressions are identical to those

derived in Radzvilavicius et al. (60) in the case of no empathy.
The three terms of gZ correspond respectively to the donor and
observer agreeing that the recipient is good, disagreeing about
the recipient’s reputation, and agreeing that the recipient is bad.
This result makes intuitive sense because, in the limit of infinitely
many information groups, each individual in the population
effectively has an independent view from all other individuals—
which is equivalent to individuals with private information about
reputations.

Fig. 4 also reflects these results. We see that the average
reputation of the all-discriminator population, g|f Z=1, rapidly
approaches the private-assessment limit as the number of groups
K increases. Under Simple Standing, the asymptotic private-
assessment limit still exceeds the reputation value required for
discriminators to resist invasion by defectors. This is why, even
under private assessment, Simple Standing allows discriminators
to persist in a sizable region of parameter space; there is a stable
equilibrium that consists of a mixture of discriminators and
cooperators.
Gossip groups of different sizes. We also consider a scenario in
which a fraction ν of the population belongs to one large group
and the remaining K − 1 groups each comprise a fraction (1 −
ν)/(K − 1) of the population. In SI Appendix, section 3.3, we
show that, as K approaches infinity, this case reduces to a model
with a mixture of individuals who adhere to a public institution
(those in the group of size ν) and individuals who act as private
assessors (in the remaining groups), which has been previously
studied (38).
Cooperation in insular gossip groups. If group membership de-
termines not only how an individual views the reputations in
the population but also whom they tend to interact with in
game play, then differential rates of within- versus between-group
interactions could influence the evolution of strategies.

We find that insular social interactions (ω < 1) mitigate the
otherwise destabilizing effects of gossip groups on cooperative
behavior. The basic intuition for this phenomenon is simple;
gossip groups destabilize cooperation because individuals from
different groups may diverge in their reputational views, which
leads to unreciprocated cooperation between out-group pairs.
But insularity reduces the rate of out-group interactions, so that
more interactions occur between individuals holding the same
reputational viewpoints, which tends to restore the stability of
cooperation in an all-discriminator population.

Insularity facilitates cooperation in two distinct ways. First,
insularity increases the average reputations of an all-discriminator
population, and, second, it reduces the threshold reputation
required for discriminators to be stable against invasion by defec-
tors (Fig. 4). Both of these effects stabilize cooperative behavior,
compared to a well-mixed population. The ameliorating effects
of insularity are most pronounced for the Stern Judging social
norm, where strong insularity can preserve stable cooperation
with as many as K = 5 gossip groups, for example. Insularity
has a much smaller impact under the Shunning norm. Regardless
of the social norm, we have derived analytical expressions for the
average reputations of discriminators, in equilibrium, and for the
threshold reputation required for stability against defectors as a
function of the insularity parameter ω, the error rates, number of
gossip groups, and benefits and costs of cooperation (SI Appendix,
section 5).

We have also studied how insularity itself evolves when it
is a heritable trait. We find that groups tend to evolve toward
increasing insularity and eventual tribalism, in the absence of
countervailing mechanisms, such as highly rewarding out-group
interactions (SI Appendix, section 5.8).

Discussion

We have developed a game-theoretic model for cooperation
conditioned on reputations that accounts for a population
stratified into groups. Each group holds its own viewpoints
about reputations, and each group subscribes to a potentially
different norm of assessing reputations. This model allows us
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to investigate strategy–norm coevolution and, thus, competition
between norms of judgment, as individuals decide to change
either strategy or group membership in an attempt to increase
their payoffs.

We find that norms are bistable: The population will inevitably
converge on a single social norm, and which norm prevails
depends on its initial frequency. While a new norm cannot
generally invade when it is vanishingly rare, some norms—
especially those that value defection against bad actors—will win
out even when they initially comprise a minority (<50%) of the
population. In particular, Stern Judging emerges as the strongest
competitor among norms. Our account of norm competition
helps resolve an outstanding gap in the theory of cooperation
mediated by reputations—namely, how a population comes to
adopt a common social norm for judging reputations.

Most research on indirect reciprocity assumes by fiat that
everyone shares the same norm for judgment and that reputations
are common knowledge. Allowing for incomplete information
and competing norms is complicated because it requires keeping
track of which norm each individual (or each group) adheres
to. One prior approach in the literature side-steps this difficulty
by stipulating a multiscale model of competing groups, with
individual-level selection on behavior and group-level selection
on norms (33, 42). In a multilevel analysis, groups adhering
to different social norms accumulate payoffs and then compete
with each other at the group level by playing a hawk–dove game,
with victorious groups more likely to “reproduce” and replace
other groups. Consistent with our own findings, simulations
of such multilevel competition have revealed Stern Judging to
be the winning norm (33). But the multilevel formulation of
norm competition differs fundamentally from ours, in that no
individual can unilaterally decide to change their norm for
assessing reputations; rather, an entire group is instantaneously
replaced by a different group that holds a different norm. Such
approaches based on group-level competition provide limited
intuition for evolutionary dynamics because a trait that is
beneficial for an entire group, such as group-wide adoption of
a new social norm, may nonetheless be unable to proliferate
through individual-level imitation and learning.

Two prior studies have modeled competition among indi-
viduals who adhere to different norms of reputation assessment,
without appealing to instantaneous group-level adoption of a new
norm. Uchida et al. (67) analyzed a model in which individuals
could choose between Simple Standing or Stern Judging. They
found that coexistence between these norms was possible, in
sharp contrast to our bistability result that eventually one norm
will prevail. The reason for this discrepancy is that Uchida et
al. (67) neglect the possibility of assessment errors (ua = 0).
But population dynamics without assessment errors are both
unrealistic and structurally unstable when information is partly
private (39). For example, when ua = 0 in a population of
discriminators, everyone chooses to cooperate with everyone else,
nobody’s reputation depends on which norm they follow, and
nobody can improve their fitness by switching norms. And so, a
model without any errors is a pathological boundary case because
fitness differences arise only in the presence of cooperators
(ALLC). A related study by Uchida et al. (68) likewise finds long-
term coexistence between multiple norms, but it, too, neglects
errors of assessment, as well as errors of execution. Evolutionary
dynamics are qualitatively different when there is some chance of
committing an error while assessing reputations. In particular,
when ua > 0, Stern Judgers are intolerant of disagreement
with the out-group and thus engage in less unreciprocated
cooperation; this raises their fitness substantially, and it allows

them to dominate in a population of discriminators and drive
other norms to extinction (Fig. 1). True “competition” between
norms makes sense only when there is differential behavior
between adherents of different norms—which arises only in the
presence of errors. Consequently, studying norm competition
requires that we account for errors during assessment, which is a
more realistic assumption in any case.

Our model of population stratification produces an orthogonal
but complementary set of results when group membership is kept
fixed and individuals attempt to increase payoff by imitating
strategies rather than group membership. Even when all groups
adopt the same norm of judgment, we find that population
stratification decreases the prospects for cooperation overall, due
to the potential for reputation disagreement as groups make in-
dependent judgments. These destabilizing effects on cooperation
grow rapidly with the number of groups. Cooperation can be
restored, however, when individuals are strongly insular and favor
in-group social interactions. Thus, insularity—even without any
intrinsic bias toward in-group favoritism—can preserve some
degree of cooperation, but this comes at the cost of social
isolation or tribalism. A different way to preserve cooperation in
a group-structured population is by a “main character” effect—
when everyone frequently interacts with a singular highly visible
individual in the population whom all groups view as bad; see SI
Appendix, section 9.

Our analysis predicts that cooperative societies are less likely to
flourish when many distinct groups form independent judgments
of social behavior; such societies are destined to become either
wholly uncooperative or tribal (unless out-group interactions are
more beneficial than in-group interactions). In this context, a
natural extension of our work would consider the dynamics of
political and affective polarization (69–72), as they might be
shaped by a tug of war between a tendency toward tribalism and
a pull toward convergence on one social norm of judgment.

Our account of competing norms may have implications for
the evolution of human moral systems. The theory of indirect
reciprocity is often discussed in moral terms, even though the
mathematical models are gross simplifications of reality. These
models nonetheless contain an elementary, formal description of
how individuals judge others’ behavior as either good or bad and
condition their behavior toward others based on those judgments.
Although our model itself lacks any moral valence, there is
nonetheless a large literature in psychology and philosophy that
argues that human moral systems arose to solve problems of
cooperation (7, 13, 73, 74) as well as direct evidence of moral
valence for cooperative behaviors in game-theoretic contexts (16).

Our work contributes to a growing body of literature estab-
lishing Stern Judging as a uniquely powerful social norm for
judging behaviors. Not only does Stern Judging tend to maximize
collective welfare when adopted by a well-mixed population,
it can also out-compete other norms through individual-level
selection. This is because Stern Judging enables a group to max-
imize in-group cooperation without engaging in unreciprocated
out-group contributions, making it attractive to individuals who
seek to maximize payoff by switching norms. Consequently, we
might expect norms like Stern Judging to dominate in human
societies. And yet there is substantial cross-cultural variation in
norms for judging social behavior (40, 41). The source of this
cultural variation remains an active area of research across several
fields. Within the context of the theory of indirect reciprocity,
norm variation may persist if out-group interactions are more
rewarding (even if more risky) than in-group interactions, or if
norms of judgment are linked to other social traits that experience
different selection pressures in different groups. Future research
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may help to resolve these open questions using group-structured
models, as well as empirically determine whether, and under
what conditions, individuals and groups are willing to amend
their social norms.

Materials and Methods

We consider a population of N individuals who play a series of one-shot pairwise
donation games (44) with each other. Every round, each individual plays the
donation game twice with everyone else, once as a donor and once as a recipient.
This game provides a minimal model of a social dilemma, in which a donor may
either cooperate, paying a cost c to convey a benefit b > c to the recipient,
or defect, paying no cost and conveying no benefit. Each donor chooses an
action based on their behavioral strategy: Cooperators (denoted ALLC or X)
always cooperate, defectors (ALLD, Y ) always defect, and discriminators (DISC,
Z) cooperate with those they consider to have good reputations and defect with
those they consider to have bad reputations. Following the round of all pairwise
game interactions, the players update their views of each others’ reputations;
then, they update their strategies or group membership according to payoff-
biased imitation, as described below.

Reputations and Gossip Groups. Each player belongs to one of K distinct and
disjoint “gossip groups,” which comprise fractions ν1, ν2, . . . νK of the total
population. An individual’s group membership determines their view of the
reputations of the other players: Each group has a shared, consensus view of
the reputation of every player in the population, but different groups may have
different views of individuals’ reputations. This model characterizes a situation
where individuals transmit information about reputations to other members
of their group via rapid gossip (37), or, alternatively, each group has its own
“institution” (38) that broadcasts reputation assessments to the group.

Each round, everyone plays the pairwise donation game with everyone else;
then, each group updates their (consensus) view of the reputation of each
individual in the population, as follows. For a given focal individual, the group
samples a single random interaction from that round in which that individual
acted as a donor. Depending on the donor’s action, the group’s view of the
recipient’s reputation, and the group’s social norm, the donor is assigned a new
reputation by the group. We consider a generalized space of social norms in
which:

1. Cooperation with an individual with a good reputation is considered good,
2. Defection against an individual with a good reputation is considered bad,
3. Cooperation with an individual with a bad reputation is considered good

with probability p, and
4. Defection against an individual with a bad reputation is considered good

with probability q.

The social norm is thus parameterized by two probabilities, p and q. When
(p, q) = (0, 1) we recover the classic Stern Judging norm (10, 33), which
stipulates that a donor interacting with a recipient of bad standing must defect
to earn a good standing. Setting (p, q) = (0, 0), (1, 0), or (1, 1) yields the
other well-studied social norms Shunning, Scoring, and Simple Standing (75).

Errors. We include two types of errors: errors in social interaction and errors
in reputation assessment. First, an individual who intends to cooperate may
accidentally defect, with probability ux . Second, an observer may erroneously
assign an individual the wrong reputation, with probability ua. The related
parameterε = (1−ux)(1−ua)+uxua quantifies the chance that an individual
who intends to cooperate with someone of good reputation successfully does
so and is correctly assigned a good reputation (first term) or accidentally defects
but is erroneously assigned a good reputation nonetheless (second term).

Given the social norm and these error rates, we can characterize how a donor
is assessed in terms of four probabilities:

• PGC , the probability that a donor who intends to cooperate with a good
recipient will be assigned a good reputation;

• PGD, the probability that a donor who intends to defect with a good recipient
will be assigned a good reputation;

• PBC , the probability that a donor who intends to cooperate with a bad recipient
will be assigned a good reputation; and

• PBD, the probability that a donor who intends to defect with a bad recipient
will be assigned a good reputation.

For an arbitrary social norm (p, q) and error rates ua and ux , we can derive
general expressions for these four probabilities that characterize reputation
assessment (SI Appendix, section 1): PGC = ε, PGD = ua, PBC = p(ε −
ua) + q(1− ε − ua) + ua, and PBD = q(1− 2ua) + ua.

Mean-Field Reputation Dynamics. In the limit of a large population size, we
consider an individual’s expected reputation over many rounds of play, prior to
any changes in the population’s strategic composition or group membership.
Let gs

I,J denote the probability that an individual with strategy s in group I has
a good reputation in the eyes of an individual in group J. (The first superscript
index denotes “who,” the donor; the second index denotes “in whose eyes,” the
observer.) Furthermore, let f s

I be the frequency of individuals in group I who
have strategy s, so that

∑
s f s

I = 1. We define

gI,J =
∑

s∈{X,Y,Z}

f s
I gs

I,J,

which represents the expected fraction of individuals in group I who are
seen as good from the point of view of someone in group J. Note that the
summation index s in this expression, and all other such expressions below,
denotes a sum over strategic types, namely s ∈ {X, Y, Z}. We further define
g•,J =

∑K
L=1 νLgL,J, which represents the fraction of individuals in the whole

population whom an individual in group J sees as good.
In SI Appendix, section 1.2, we show that the reputations associated with

different strategic types satisfy

gX
I,J = g•,JPGC + (1− g•,J)PBC ,

gY
I,J = g•,JPGD + (1− g•,J)PBD,

gZ
I,J = δI,J

[
g•,JPGC + (1− g•,J)PBD]+ (1− δI,J)

[
GI,JPGC

+ (g•,J − GI,J)PGD + (g•,I − GI,J)PBC

+ (1− g•,J − g•,I + GI,J)PBD], [4]

where the term GI,J is defined as the chance that distinct groups I 6= J agree
that a randomly chosen individual has a good reputation:

GI,J =

K∑
L=1

νL
∑

s∈{X,Y,Z}

f s
L gs

L,Ig
s
L,J.

Payoffs. Individuals accrue payoffs based on their behavior in pairwise
interactions. An individual acquires a payoff b for each interaction either with a
cooperator (X) or with a discriminator (Z) who sees them as good. A cooperator
pays cost c in each interaction, and a discriminator pays cost c in each interaction
with someone whom they see as good. Thus, the average payoff for each of the
three strategic types in an arbitrary group I is

5X
I = (1− ux)

[
b

K∑
J=1

νJ(f X
J + f Z

J gX
I,J)− c

]

5Y
I = (1− ux)

[
b

K∑
J=1

νJ(f X
J + f Z

J gY
I,J)
]

5Z
I = (1− ux)

[
b

K∑
J=1

νJ(f X
J + f Z

J gZ
I,J)− cg•,I

]
.

Note that payoffs are averaged over all pairwise interactions, i.e., they are
normalized by the population size N.
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Insular Social Interactions. Aside from restricting the flow of reputation
information, group structure in a population may also influence partner choice
for social interactions (game play). We extend the model to consider the case
whereindividualsprefersocial interactionswithin-groupmembers,whichwecall
insularity. We introduce parameters ωI,J = ωJ,I, which denote the probability
that a potential interaction between members of groups I and J actually occurs.
In each round, each individual in the population considers a possible dyadic
interaction with each member of the population. If one member is from group I
and the other from group J, the interaction occurs with probabilityωI,J ≤ 1. In SI
Appendix, section 5.1, we derive versions of Eq.4 for insular populations. We also
derive mean fitnesses in groups with different levels of insularity (SI Appendix,
section 5.7), and we consider the behavior of individuals with differing levels
of insularity (SI Appendix, section 5.8), showing that populations will generally
evolve toward higher levels of insularity unless out-group interactions are more
rewarding than in-group interactions.

Payoff-Biased Imitation of Strategies and Group Membership. Each
round, after all pairwise games have occurred and all reputations have been
updated, a randomly chosen individual considers updating either their strategy
or their group membership. In particular, with probability τ , the individual
considers changing their group membership, whereas with probability 1 − τ ,
they consider changing their strategy. After deciding which trait (behavioral
strategy or group identity) to possibly change, the focal individual compares
their payoff, averaged over all games in which they have played, to that of a
random comparison partner in the population. The focal individual then copies
the comparison partner’s trait (strategy or group membership) with a probability
given by the Fermi function

φ(5s
I ,5s′

J ) =
1

1 + exp
[
β(5s

I −5
s′
J )
] .

Here, β is a parameter known as the strength of selection (48, 49). In the limit
of small β and large population size N → ∞, the process of pairwise game
play, reputation assessment, and imitating strategies and group membership
can be described by deterministic replicator equations—namely, Eq. 2 in the
main text—after an appropriate rescaling of time. See SI Appendix, section 8 for
a derivation of these replicator equations.

Imitating Only Group Membership. When individuals copy only each others’
group membership (τ = 1), the resulting group sizes evolve according to the
replicator equation

ν̇I = νI(5I − 5̄) [5]

with5I =
∑

s f s
I 5

s
I and 5̄ =

∑
J νJ

∑
s f s

J5
s
J. For most of our analysis of

competing groups, we assume that all individuals are fixed for the discriminator
strategy, meaning that they attend to their coplayer’s reputation when choosing
whether to donate or not. Eq. 5 then becomes simply ν̇I = νI(5

Z
I − 5̄) with

5̄ =
∑

J νJ5
Z
J . In this case, we can write5I, omitting the Z superscript (since

it is understood that the entire population has strategy Z).
We analyze the case of K = 2 competing groups. The two groups may

follow different social norms for making consensus reputational judgments,
so that group I uses group-specific probabilities PGC

I , PGD
I , PBC

I , PBD
I when

assigning reputations. We also consider the dynamics of group sizes when social
interactions are insular, in which ωI,J = δI,J + (1 − δI,J)ω, i.e., interactions
between in-group members happen with probability 1, but interactions between
out-group members happen with probability 0 ≤ ω ≤ 1. Finally, we develop
and numerically solve equations for third-order social norms, including the
remaining six of the so-called “leading eight” norms (34).

Imitating Only Behavioral Strategies. When individuals copy only each
others’ strategies (τ = 0), the replicator dynamics for strategy frequencies
depends on how individuals choose their comparison partners. In this setting

with group membership fixed, we consider two possibilities for behavioral
imitation. We focus on the first possibility in the main text, and we defer the
second possibility to SI Appendix, section 7:

1. Well-mixed strategic imitation, in which an individual is equally likely to
choose any other individual as a comparison partner and

2. Disjoint strategic imitation, in which an individual must choose a member of
their in-group as a comparison partner.

In SI Appendix, section 8.5, we also consider a more general model in which
individuals choose members of their in-group with probability 1−m and choose
a random member of the population (irrespective of group membership) with
probability m, and we show that this model reduces to the models above in the
limits m→ 1 and m→ 0, respectively.
Well-mixed strategic imitation. If an individual in group I is equally likely to
choose anyone in the population as a comparison partner, then differences in
strategy frequencies between groups do not persist; they rapidly converge to a
value f s that is common to all groups, as we show in SI Appendix, section 8.4.
We have the resulting replicator equation for the frequencies of strategic types
over time:

ḟ s = f s
∑

J

(
νJ[5

s
J −5J]

)
= f s

∑
J

νJ5
s
J − 5̄

with 5̄ =
∑

J νJ
∑

s f s
J5

s
J. Because the strategy frequencies do not vary by

group, the quantity that ultimately determines the change in the frequency of
each strategy is the group-averaged fitness for each strategy:

5s =

∑
J νJf s

J5
s
J∑

J νJf s
J

=
∑

J

νJ5
s
J.

This formulation allows us to study the time evolution and stability of strategies
in terms of the average reputations, gs =

∑
I
∑

J νIνJgs
I,J, which represents

the probability that a randomly chosen member of the population considers a
random individual following strategy s to have a good reputation. By averaging
over groups and leveraging the fact that strategy frequencies do not differ
by group, we can remove the fitness dependence on an individual’s group
membership I (SI Appendix, section 3).
Group-structured strategic imitation. If an individual in group I chooses only
other individuals in group I as potential comparison partners, then the frequency
of strategy i in group I changes over time according to the following replicator
equation:

ḟ s
I = f s

I (5
s
I −5I)

with5I =
∑

s f s
I 5

s
I . Even though strategic imitation occurs only within each

group, game play and payoff accumulation occur among all members of the
population, and so strategy frequencies are not independent across groups. In
the main text, we focus on the case of well-mixed strategic imitation, deferring
to SI Appendix an analysis of disjoint strategic imitation.
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