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It is widely accepted that there is an inextricable link between neural computations,
biological mechanisms, and behavior, but it is challenging to simultaneously relate all
three.Here, we show that topological data analysis (TDA) provides an important bridge
between these approaches to studying how brains mediate behavior. We demonstrate
that cognitive processes change the topological description of the shared activity of
populations of visual neurons. These topological changes constrain and distinguish
between competing mechanistic models, are connected to subjects’ performance on
a visual change detection task, and, via a link with network control theory, reveal a
tradeoff between improving sensitivity to subtle visual stimulus changes and increasing
the chance that the subject will stray off task. These connections provide a blueprint
for using TDA to uncover the biological and computational mechanisms by which
cognition affects behavior in health and disease.

neurophysiology | visual attention | computational neuroscience | topological data analysis

Perhaps the most remarkable hallmark of the nervous system is its flexibility. Cognitive
processes including visual attention have long been known to affect both behavior (e.g.,
performance on visual tasks) and virtually every measure of neural activity in the visual
cortex and beyond (1, 2). The diversity of changes associated with cognitive processes like
attention makes it unsurprising that very simple, common measures of neural population
activity provide limited accounts of how those neural changes affect behavior.

Arguably, the most promising simple link between sensory neurons and behavior
is correlated variability [often quantified as noise or spike count correlations, or rSC ,
which measure correlations between trial-to-trial fluctuations in the responses of a pair
of neurons to repeated presentations of the same stimulus; (3). Correlated variability in
visual cortex is related to the anatomical and functional relationships between neurons
(3, 4). We demonstrated previously that the magnitude of correlated variability predicts
performance on a difficult but simple visual task (Fig. 1D) across experimental sessions
and on individual trials (5). This early success relating neural activity to simple behaviors
means that correlated variability is a foundation on which to build efforts to explain more
complex aspects of flexible behavior and the concomitant neural computations.

However, our efforts to relate correlated variability to a wider variety of sensory
and cognitive phenomena and to constrain mechanistic models reveal a need for more
sophisticated ways to characterize neuronal population activity. For example, although
low correlations are associated with better performance in the case of attention and
learning (5, 6), they are associated with worse performance when modulated by adaptation
or contrast (7). Even in the case of cognitive processes like attention or task switching,
good performance is associated with increases in correlation among particular subgroups
of neurons (7, 8). And although mean correlated variability places much stronger
constraints on cortical circuit models of cognition than measures of single-neuron
responses (9, 10), these models remain underconstrained.

These results highlight the need to use holistic methods to investigate the relationship
between noise correlations and behavior. We focused on topological data analysis,
TDA; (11, 12), which is an emerging area in mathematics and data science that
leverages groundbreaking advances in computational topology to summarize, visualize,
and discriminate complex data based on topological data summaries. These approaches,
which have mostly been used in fields like astrophysics or large scale neural measurements
(e.g., refs. 13–15), are able to identify features in the data that are qualitatively distinct
from those highlighted using traditional analytic methods.

1. Results

A. Topological Signatures of CorrelatedVariability. We used TDA specifically persistent
homology; (16) to quantify the higher-order structure in the pairwise interactions
between simultaneously recorded neurons from area V4 of rhesus monkeys performing
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Fig. 1. Experimental and topological methods. (A) Orientation change detection task with cued attention (5). The lower panels are psychometric curves (hit
rate as a function of orientation change amount) for two example recording sessions to illustrate how we calculated performance at one selected orientation
change amount on every recording session. (B) Illustration of TDA methods. Each circle represents a neuron, and the distance between each pair is 1—rSC ,
where rSC is their noise correlation (note that in real networks, more than two dimensions are typically required to represent all of the pairwise interactions).
This analysis method iterates through difference thresholds (going from small to large from Left to Right). When the difference between two points is less
than the threshold, they are considered connected. The shaded regions indicate groups of points that are fully interconnected, which indicates a higher order
interaction between that subgroup of neurons. We summarize this structure by counting the number of holes at each threshold [which constructs the Betti
curve in (D)]. In this example, the holes are one-dimensional (topologically equivalent to a circle) as opposed to higher dimension (equivalent to a sphere) or
connected components (equivalent to a point). For a more detailed description, see SI Appendix (TDA Example). (C) Topological description (persistence barcode)
of an example recording session showing the difference thresholds (x axis) at which each one-dimensional hole (equivalent to a circle) exists (holes are ordered
by the threshold at which they appear). Many datasets are characterized by a small number of persistent topological features, which would show up as long
horizontal lines in this plot. Instead, our neural data are characterized by a large number of holes that persist only for a small range of difference thresholds
(many short horizontal lines in this plot). (D) Example Betti curves [plots of the number of holes as a function of difference threshold, which corresponds to
the number of lines present at each threshold in (C)] for an example recording session. H0(lightest color; 0th dimension) curve keeps track of the number of
connected components (’holes’ equivalent to points) in the graph as the threshold is varied. H1 (middle color; 1st dimension) curve tracks the number of circular
features with changes in the threshold. H2 (darkest color; 2nd dimension) curve tracks the number of spherical features with changes in the threshold. Our
analyses focus on the peak of the Betti curve for the 1st and 2nd dimensions (SI Appendix for other topological descriptions). The peak of the Betti curve for the
0th dimension is uninformative because it is always equal to the number of neurons. We include the Betti curve for H0 to illustrate attention-related difference
its shape and because analyzing the Betti curve for H0, which is the most tractable to compute with limited data, may be useful for future neuroscience
applications. (E) We focus our topological analyses of neural populations on correlated variability because there is a strong relationship between rSC and
performance on our psychophysical task (quantified as sensitivity or d−). The plot shows d− as a function of rSC (both values are z-scored for each animal
and computed from responses to the stimulus before the orientation change). The colors represent the trials when attention was directed inside (’attended’,
red) or outside the receptive fields of the recorded V4 neurons (’unattended’, yellow). The correlation between d− and rSC was significant for each attention
condition (attended: r = −0.11, P = 0.11; unattended r = −0.25, P = 4.58e− 5). (E) Factor analysis is a common linear method to assess the dimensionality of
the correlated variability. The plot shows the shared variance (first five eigenvalues of the shared covariance matrix with private variance removed using Factor
analysis) normalized by the shared variance in the first (dominant mode).

a difficult visual detection task with an attention cue (Fig. 1A;
different aspects of these data have been presented previously; (5).
We analyzed the structure of noise correlations in a population of
neurons in the visual cortex using a metric in which the difference
measure between a pair of neurons is 1—rSC , where rSC is their
noise correlation (Fig. 1B). Using this metric, highly correlated
neurons have high similarity (low difference), and anticorrelated
neurons have low similarity.

As is typical of the persistence homology approach, we iterate
through a difference threshold (Left to Right in Fig. 1B) to
understand the topological features of the correlation struc-
ture. For each threshold, we consider a pair of neurons to
be functionally connected if their difference is less than the
threshold. As the threshold increases, we thus include functional
connections between pairs that are less correlated. For each
difference threshold, we use established TDA methods to identify
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“holes” in the correlation structure, which correspond to the
organization of a lack of functional connections between a subset
of neurons. The organization of existing and missing functional
connections has implications for the organization and function
of the network (17, 18).

We use TDA in a slightly different way than in most past
work. The most common uses of TDA focus on persistent
features holes that persist through a large range of difference
thresholds; (19–22). For example, a beautiful recent study used
TDA to analyze the structure of the signals represented by
a population of neurons (22). Those authors focused on the
persistent features of that dataset, which reflect the quanti-
ties encoded by that population of neurons. In contrast, we
analyzed noise, which is not thought to have any particular
structure (much less one characterized by holes of different
dimensionality). In our datasets, we simply did not observe
persistent features (Fig. 1C ). Instead, we observed large numbers
of holes that did not persist (23), and the number and difference
threshold of those holes flexibly depended on attention and
other cognitive processes. Our observations support the idea that
there is information that can be found in features that do not
persist (24).

We therefore summarize the topology of the correlation matrix
as the peak Betti number, which is the maximal number of
holes of a given type (called homology group) that appeared
at any threshold, Fig. 1D; (23). We focus here on holes that are
equivalent to circles (those detected by the first homology group)
and spheres (detected by the second homology group), because
these can be estimated using datasets of experimentally tractable
size (16, 25, 26). For simplicity, we refer to these as circular and
spherical features, respectively. In our data and models, focusing
on the peak Betti curve led to qualitatively similar conclusions
as other common topological summaries (similar conclusions in
refs. 27 and 28; SI Appendix, Figs. S1 and S2).

Here, we demonstrate that topological descriptions of cor-
related variability are an effective bridge between behavioral,
physiological, and theoretical approaches to studying neuronal
populations. The peak Betti number is flexibly modulated by
cognition, is related to performance on a visually guided task, and
provides insights into mechanistic models and the function of real
and artificial neural networks in different cognitive conditions.

B. Topology as a Bridge to Behavior. The primary reason for
focusing on noise correlations is that the magnitude of noise
correlations in visual cortex has been strongly linked to perfor-
mance on visually guided tasks (5, 29). To justify our use of
persistent homology to study neuronal networks, we tested the
hypothesis that topological signatures of network activity capture
key properties of the relationship between correlated variability
and behavior.

Four observations suggest that the peak Betti number captures
the aspects of noise correlations that are related to performance.
First, across recording sessions, there was a negative relationship
between the peak Betti number and the average noise correlation
(Fig. 2C andD), meaning that sessions in which the average noise
correlation was low tended to have a higher peak Betti number.
Second, consistent with the observation that attention reduces
noise correlations (2, 5, 30, 31), attention changes the peak Betti
number (Fig. 2A andB). Third, the peak Betti number was higher
on trials in which the animal correctly detected a change in a
visual stimulus compared to trials in which the animal missed the
stimulus change (Attended condition: average peak Betti number
in H1 for correct trials: 14.47, incorrect trials: 13.46; in H2 for

correct trials: 8.38, incorrect trials: 7.41; paired t-test (peak Betti
number H1) P = 0.014, (peak Betti number H2) P = 0.015).
Finally, there was a positive correlation between the peak Betti
number and behavioral performance (Fig. 2 E and F ). Together,
these results show that peak Betti number is a good description
of the aspects of correlated variability that correspond to changes
in behavior.

C. Topology as a Bridge to Mechanism. The magnitude of cor-
related variability places strong constraints on circuit models of
the neuronal mechanisms underlying attention, Fig. 3A; (9, 10).
In particular, network models are constrained by the observation
that attention changes correlated variability in essentially a single
dimension of neuronal population space in area V4, Fig. 2;
(7, 10, 32, 33).

Topological descriptions of simulated networks can dis-
tinguish between competing models in situations when the
magnitude of shared variability, even in the most relevant
dimension, fails to do so. We analyzed the outputs of our spatially
extended network of spiking neuron models, which internally
generate correlated variability through spatiotemporal dynamics
(10). In the model, the magnitude of correlated variability can be
changed by modulating inhibition in two distinct ways: either
increasing the input drive to the inhibitory neurons (µi in
Fig. 3B) or decreasing the timescale of inhibition (τi in Fig. 3B)
changes correlated variability in a low rank way.

These two mechanisms have very different effects on the
topology of the correlated variability, even when the mean
variability is equivalent. For most parameter values, changing the
input drive to the inhibitory neurons has a much greater effect on
the peak Betti number than changing the timescale (Fig. 3 C–E).
While changing the timescale of inhibition is extremely common
in circuit models (for review, ref. 10). in real neural networks, the
timescale of inhibition is longer than excitation and is inflexible
(34–36). Both the biology and the topology are consistent with
the idea that attention instead acts by increasing the input drive
to the inhibitory neurons (9, 10).

These results demonstrate that topological signatures of corre-
lated variability provide constraints on mechanistic models that
are unavailable using linear measures of neural activity. Changes
in the mean or dimensionality of correlated variability are not
necessarily coupled with changes in the topological signatures
of the network. Together, our results highlight the value of
using circuit models as a platform on which to test and generate
hypothesized mechanisms underlying perception and cognition.

D. Topology as a Bridge to Network Function. The past two
decades have seen an explosion in the number of studies
demonstrating that correlated variability depends on a wide range
of sensory, cognitive, and motor conditions that change behavior
(for review, ref. 2). Despite much effort from the experimental
and theoretical neuroscience communities (9, 10, 32, 33, 37–
39), how changes in correlated variability might affect behavior
remains unclear. The observations that topological summaries
of the noise correlation matrix are related to behavior sug-
gest that, via known connections to network control theory
(40–42), TDA can provide insight into the relationship be-
tween correlated variability, the function of a network, and
behavior.

TDA has known connections to network control theory be-
cause both measure the structure (or lack thereof) in a functional
connectivity matrix (42). We reasoned that network control
theory, which seeks to quantify the ability of interventions (in our
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Fig. 2. TDA reveals the relationship between neurons and behavior. (A, B) Attention increases the maximum number of circular features (i.e., 1st dimension
features; A) and spherical features (i.e., 2nd dimension features; B) over the range of threshold values. Each point represents one experimental session, and
the red points are the mean values, which are significantly greater for the attended condition (y axes) than the unattended condition (x axes; paired t-tests,
P<0.01). (C) The maximum number of circular features is correlated with the mean rSC in both attention conditions both are z-scored for each animal; (Attended:
r = −0.52, P = 1.3e−18; unattended: r = −0.42, P = 7.9e−12; paired t-test (attended and unattended, peak of the Betti curve): P = 8.41e−5). (D) Same, for the
maximum number of spherical features 2nd homology group (attended: r = −0.44, P = 4.9e− 13; unattended: r = −0.36, P = 5.3e− 9; paired t-test (attended
and unattended, peak of the Betti curve):P = 3.09e − 6). (E) There is a strong relationship between the maximum number of circular features and behavioral
performance (d− or sensitivity calculated for a single orientation change for each session; both measures are z-scored; Attended: r = 0.32, P = 2.34e − 7;
Unattended: r = 0.3, P = 1.41e − 5). (F ) Same, for the maximum number of spherical features (Attended: r = 0.27, P = 2.06e − 5; Unattended: r = −0.28,
P = 4.67e− 5).

case, visual stimuli, cognitive processes, or random fluctuations)
to alter the state of a network (43) could provide intuition about
the relationship between TDA and the function of our neuronal
network. While network control theory is primarily used in
engineering, recent work has used controllability to quantify
the flexibility of large neural systems, constrained by fMRI
data (44).

These methods focus on quantifying the energy required to
move between states of the neural population. We define a state
as the vector of neural population activity on a given trial, and
the energy required to move between states is constrained by
the noise correlation matrix (e.g., in Fig. 4A). For example, if
the responses of all the neurons are highly positively correlated,
then reaching a state in which the response of some is high while
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Fig. 3. TDA can distinguish between different mechanistic models of attention. (A) Model schematic of a two-layer network of spatially ordered spiking neurons
modeling primary visual cortex (V1) and area V4, respectively. The visual inputs to the model are the same Gabor stimuli used in our experiments. (B) Two
distinct attention mechanisms can decrease correlated variability in a low rank way that is similar to linear descriptions of our data. We can reduce correlations
either by increasing the currents to all inhibitory neurons (�i ) or decreasing the decay timescale of inhibitory currents (�di ). The plots depict the shared variance
in each mode (the top five eigenvalues from the shared covariance, with private variance removed using Factor analysis), normalized by the shared variance
in the first mode, for different values of �i (left) or �di (Right; error bars represent SEM). The two mechanisms appear indistinguishable using linear methods.
(C) The two mechanisms cause different changes in the topological descriptions of the modeled V4 populations. As �i increases (Left panel), so does the shared
variance present outside the first mode (x axis) as well as the peak Betti number (shown for the circular (i.e., 1st dimension) features in the y axis). Changes in
�i (Right panel) result in a different relationship between the peak Betti number and the shared variance in higher dimensions, affecting the peak Betti number
only at very short (unrealistic) timescales (those with the greatest shared variance; red lines in B). The peak Betti number is computed from the same simulated
responses as in (B). Error bars represent SEM. (D) The peak Betti number (y axis) has a different relationship with average noise correlation (x axis) when
modulated by changing the mean current to the inhibitory neurons (�i , Left panel) or decreasing the decay timescale (�di , Right panel). Error bars represent
SEM. (E) Same as (D), except zoomed in to exclude parameter values that result in an unrealistically low mean noise correlation (<0.03). In this physiologically
realistic range, changing �i is associated with monotonic changes to the peak Betti number, while changing �di does not appreciably change peak Betti number.

the others are low is unlikely and therefore requires significant
energy.

If our starting point (e.g., the horizontal Gabor in Fig. 4B) is
the population response to a horizontal Gabor stimulus presented
before the orientation change in our task (see Fig. 1A), a nearby
state might be the population response to the changed stimulus
(e.g., the oblique Gabor in Fig. 4B). A distant state might
be a population response when the monkey is concentrating
on something very different and task-irrelevant (e.g., thinking
about the banana in Fig. 4B). Average controllability quantifies
how readily the population moves from the starting point to
nearby states while modal controllability quantifies how readily
the population moves to distant states.

There is no mathematical relationship between average and
modal controllability. Indeed, average and modal controllability
were uncorrelated across sessions in our data (R = 0.008; P = 0.9).

However, we found that the topological descriptions of
neuronal population are strongly related to both average and
modal controllability, and both are related to attention. High
peak Betti value (which occurs more readily in the attended
state) is associated with decreases in the energy required to drive
the system to nearby states (high-average controllability; Fig. 4 C
and E). In contrast, there is a negative relationship between the
peak Betti value and the energy required to drive the system to
distant states (modal controllability; Fig. 4D andF ) but changing
attention conditions increases modal controllability (compare the
red and yellow points in Fig. 4 D and F ).

The different relationships between topology and average
and modal controllability observations provide insight into the
tradeoffs associated with attention. Attending to a stimulus
improves the network’s ability to respond to subtle interventions,
which is consistent with the attention-related improvements
in the animal’s ability to detect a subtle change in the visual
stimulus (Fig. 1A), but it has complex effects on the ability of
the network to change states dramatically, which may mean that
attention reduces cognitive flexibility. In future work, it would
be interesting to study whether changes in controllability can
account for change blindness and other behavioral demonstra-
tions that attention reduces the ability of observers to notice very
unexpected stimuli, such as the classic example of failing to notice
a gorilla walking through a basketball game (45).

Indeed, average and modal controllability have distinct rela-
tionships with the monkeys’ performance in our task. We sorted
the experimental sessions by average controllability (colors in
Fig. 4G) or modal controllability (colors in Fig. 4H ). Increased
average controllability was associated with improvements in the
monkeys’ ability to detect all orientation change amounts (except
the smallest changes in which a floor effect meant that they were
rarely detected). In contrast, modal controllability was unrelated
to the monkeys’ ability to detect subtle orientation changes and
was anticorrelated with the ability to detect large, easy orientation
changes. One interpretation is that when modal controllability
is high, the monkeys’ minds wander more easily to distant,
potentially task-irrelevant states, increasing the lapse rate on easy
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Fig. 4. TDA and controllability provide insight into network function. (A and B) Illustration of our controllability calculation. We consider the noise correlation
matrix (A) as a functional connectivity matrix, and use this to calculate an energy landscape (illustrated for a hypothetical situation in B; colors indicate energy).
Average controllability is defined as the energy required to move from a starting point (e.g., a response to a horizontal Gabor stimulus) to nearby states
(e.g., a response to an oblique Gabor), and modal controllability is defined as the energy required to move to distant states (e.g., thinking about a banana).
(C) High-average controllability is associated with maximum number of circular (i.e., 1st dimension) features. Both measures were z-scored for each animal, and
the lines were fit for each attention condition; attended: r = 0.65, P = 1.03e− 31; unattended: r = 0.68, P = 1.28e− 33; paired t-test (attended and unattended,
average controllability): P = 7.5e − 61. (D) High modal controllability is associated with lower number of circular (i.e., 1st dimension) features (Conventions as
in A; (attended: r = −0.37, P = 7.7e − 10; unattended: r = −0.23, P = 3.2e − 4; paired t-test (attended and unattended, modal controllability): P = 1.5e − 38).
(E) Relationship between average controllability and maximum number of spherical features (i.e., 2nd dimension) (attended: r = 0.59, P = 3.5e−25; unattended:
r = 0.59, P = 9.5e − 24). Conventions as in (C). (F ). Relationship between modal controllability and number of spherical (2nd dimension) features (attended:
r = −0.38, P = 3.12e− 10; unattended: r = −0.18, P = 4.7e− 3). Conventions as in (D). (G) High-average controllability is associated with better performance at
all orientation change amounts. Colors represent z-scored average controllability (the experimental sessions were split into six equally sized bins by average
controllability), and the plot shows proportion correct detections (hit rate) as a function of orientation change amount. (H) High modal controllability (bluer
colors) is associated with a worse lapse rate (worse performance on easier trials). Conventions as in (H).
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trials. Together, these results demonstrate that in addition to
linking to behavior and mechanism, topological signatures of
the structure of noise correlations can provide insight into the
function of the network and the behavioral trade-offs associated
with changes in correlated variability.

E. Comparing Topological Summaries and Mean Noise Corre-
lations. The results in Figs. 1–4 demonstrate that topological
summaries of noise correlation matrices are related to many
quantities of interest, including behavior, average and modal
controllability, and the mean pairwise noise correlation. If all
of these quantities are related to each other, what is the added
value of TDA over the simpler and more common mean noise
correlation metric?

Others have written about the value of TDA for many
applications, including analyzing signals from groups of neurons
as opposed to noise as we have done here; 22. Our results suggest
two key advantages of TDA over mean noise correlations for
understanding the mechanisms by which populations of neurons
guide behavior. First, we demonstrated that TDA can distinguish
between models in which the mean noise correlations (and
even the dimensionality of the noise correlation matrix) were
indistinguishable (Fig. 3).

Second, we found that the relationships between topological
summaries and other quantities of interest (including perfor-
mance on our change detection task, average controllability,
and modal controllability) are stronger and dissociable from
the relationships between those quantities and mean noise
correlations (Fig. 5). To established this, we first computed
the raw session-to-session correlation coefficient between each
quantity of interest (Fig. 5 A and D, which are identical except
that Fig. 5A contains the peak Betti value in the first dimension
as a representative topological summary and Fig. 5D contains
mean noise correlations). Next, we computed partial correlations
between those same quantities while controlling for the effect of

mean noise correlation (Fig. 5B) or the peak Betti value (Fig.
5E). The difference between the raw and partial correlations
reflects the extent to which, for example, the relationship between
behavior and average controllability, can be attributed to the
relationship between each of those and mean noise correlation
(Fig. 5C ) or the peak Betti value (Fig. 5F ).

Controlling for the peak Betti value had a bigger impact
on every pairwise relationship than controlling for mean noise
correlation (and this difference was statistically significant for all
three common off diagonals in Fig. 5 C and F ; P < 0.05 with a
Bonferroni). This result indicates that statistically speaking, the
peak Betti value provides more and independent insight into
behavioral and control theory measures of circuit function than
mean noise correlation.

It is worth noting that in all likelihood, none of the measures
discussed here (e.g., from TDA, control theory, or other
descriptions of the noise correlation matrix) are quantities that
are directly used by the brain in neural computations. Neural
computations are performed to guide behavior at individual
moments or on individual trials, and noise correlations, or any
derivative of them, are computed over many ostensibly identical
trials. The value of any of these metrics is that they provide
insight into the underlying computations. Our results (especially
in Fig. 5) demonstrate that TDA provides insight into some
key quantities (perhaps most importantly into behavior) that are
distinct from the insights that can be gleaned from mean noise
correlations alone.

2. Discussion

A. Implications for Topology. Although TDA has been used for
many scientific applications (18), our use of TDA differs from
most previous work. The prevailing paradigm used in most TDA
applications, including many in neuroscience (13, 17), focuses
on identifying persistent topological features, such as holes that
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Fig. 5. A partial correlation analysis reveals that topological summaries of noise correlation matrices provide insights that are distinct from the mean noise
correlation. (A) Raw correlation coefficients summarizing the session-to-session correspondence between modal controllability, average controllability, behavior
(defined as perceptual sensitivity as in Fig. 2), and the peak Betti value (maximum number of circular features). The relationships between the controllability
and behavioral metrics and other topological descriptions (including the maximum number of spherical features and total persistent) are qualitatively similar,
so for simplicity, we focus on the maximum number of circular features here. Diagonals represent self-correlations, and are therefore 1 by definition. (B) Same
as A, but the colors reflect partial correlations that control for session-to session-variability in mean noise correlation. (C) Difference between A and B, showing
that the raw and partial correlations are qualitatively similar. (D) Same as A, but the last row is mean noise correlation instead of the peak Betti value. (E) Partial
correlations controlling for session-to-session variability in peak Betti value. (F ) Difference between D and E.
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persist across many thresholds (Fig. 1B). These persistent features
are appealing because they can reveal the structure of a simple
network. However, applying these methods to analyze neural
circuits may not lead to any scientific discoveries, since persistent
features are not expected in neural response variability, which is
thought to arise from complex network properties that make it
relatively unstructured (4).

However, we demonstrated that using TDA to analyze
correlated variability in neuronal responses is useful, even in
the absence of persistent features. The link that we demonstrated
between the topology of noise correlations, which have been
shown to reflect both cognition and the anatomy of the system
(3), and the controllability of the network on individual trials
(which are what matter for guiding behaviors) therefore has
implications far beyond neuroscience. Throughout the natural
and physical sciences, natural systems are complex and call for
sophisticated data analytics pipelines. In astronomy, for example,
TDA has been used to understand the relationship between
planets, stars, and galaxies on a huge range of spatial scales.
Our use of TDA to analyze nonpersistent topological features
(ref. 23) will be a bridge between neuroscience and other fields.
These tools for analyzing and interpreting complex networks can
be deployed in many other scientific domains.

B. Implications for Neuroscience. We demonstrated here that
using TDA to analyze the variability neural populations can
illuminate interesting links between behavior, neurons, compu-
tations, and mechanisms. This sort of bridge between different
levels of investigation has the potential to be broadly trans-
formative. In an age of massive improvements in experimental
technologies and tools for measuring the activity of large numbers
of neurons, perhaps the greatest barrier to success understanding
the neural basis of behavior is that it is different to compare and
integrate results from experiments using different methods in
different model systems. TDA can reveal relationships between
neural networks, computations, and behaviors that are robust
to the differences in neuronal responses that occur between
every different experimental system (46). These analytical links
make it possible to leverage the complementary strengths of each
approach.

A holistic view of neuronal populations is necessary for
understanding any neural computation. Essentially every normal
behavioral process or disorder of the nervous system is thought to
involve the coordinated activity of large groups of neurons span-
ning many brain areas. Tools for understanding and interpreting
large populations have lagged far behind tools for measuring
their activity. Standard linear methods have provided a limited
view, and the field is in dire need of a new, holistic window into
population activity. Our results demonstrate a hopeful future for
using the topology of neural networks to fulfill that need.

3. Materials and Methods
C. Experimental Methods. Different analyses of these data have been
presented previously (5). Briefly, two adult rhesus monkeys (Macaca mulatta)
performed an orientation change detection task with a spatial attention
component (30). The monkeys fixated a central spot while two peripheral Gabor
stimuli flashed on (for 200 ms) and off (for a randomized period between 200
and 400 ms). At a random and unsignaled time, the orientation of one stimulus
changed, and the monkey received a liquid record for making an eye movement
to the changed stimulus within 500 ms. We cued attention in blocks of 125
trials, and the orientation change occurred at the cued location on 80% of
trials. Our analyses are based on responses to the stimulus presentation before

the change, which was the same on every trial within a recording session. The
location, contrast, and spatial frequency of the Gabor stimuli were the same
during every recording session, but the orientation differed across sessions. The
location of one stimulus was within the receptive fields of the recorded neurons
and the other stimulus was in the opposite hemifield.

We presented the stimuli on a CRT monitor (calibrated to linearize intensity;
120-Hz refreshed rate) placed 52 cm from the monkey. We monitored the
animals’ eye position using an infrared eye tracker (Eyelink 1000; SR Research)
and recorded eye position, neuronal responses (30,000 samples/s) using Ripple
Hardware.

While the monkey performed the task, we recorded simultaneously from a
chronically implanted 96-channel microelectrode array (Blackrock Microsystems)
in the left hemisphere of visual area V4. We include both single units and sorted
multiunit clusters (mean 34 and 15 units for Monkeys 1 and 2, respectively). The
average number of simultaneously recorded pairs of units (for computing noise
correlations) was 561 for Monkey 1 and 105 for Monkey 2. The data presented
are from 42 recording sessions from Monkey 1 and 28 recording sessions from
Monkey 2.

D. Data Preparation. To examine how the topology of networks of neurons in
visual cortex or outputs of spiking models depend on attention, we constructed
difference matrices from noise correlation matrices (3). We defined the noise
correlation for each pair of neurons [also known as spike count correlation;
(3)] as the correlation coefficient between the spike count responses of the two
neurons in response to repeated presentations of the same stimulus. We based
our analyses on spike count responses between 60 and 260 ms after the onset
of the visual stimulus to allow for the latency of visual responses in area V4. We
used responses to the stimulus before the orientation change because those
are the same on every trial. We focused on trials when the monkey correctly
identified the changed stimulus and compared responses in the two attention
conditions.

Many measures of neuronal activity depend on experimental details like the
number of recorded neurons or their mean firing rates, which were different for
the two monkeys (ref. 5 for details). To allow us to combine across animals, we
z-scored the results for each animal (across both attention conditions) and plot
those normalized measures in the figures.

E. Behavioral Measures. To analyze the relationship between neuronal
responses and behavior, we adopted a signal detection framework (47, 48)
to assess how behavior depends on neurons and attention (49–55). Criterion is
defined as

c = −
1
2
[8−1(Hit Rate) +8−1(False Alarm Rate)], [1]

where 8−1 is the inverse normal cumulative distribution function. Negative
values of c indicate that the subject has a liberal criterion (bias toward reporting
changes), and positive values indicate a conservative criterion (bias toward
reporting nonchanges).

Sensitivity is defined as

d′ = 8−1(Hit Rate)−8−1(False Alarm Rate). [2]

Larger values of d′ indicate better perceptual sensitivity.
Different orientation change amounts were used in different recording

sessions. To compare across sessions, we fit the psychometric curve using a
Weibull function and computed performance at a single, fixed orientation
change for each session, Fig. 1A and (5).

F. Topological Measures. We examine the topology of the noise correlations
in each attention condition using a Vietoris Rips construction. This consists of
defining a difference matrix (better understood as a weighted adjacency matrix),
which we constructed from the noise correlation matrix rSC , to define pairwise
(and higher order) connections between the vertices (representing neurons) in
the simplicial complex. The difference metric was chosen to be 1− rSC , so that
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higher weighted interactions (i.e., those neurons which are strongly correlated)
are defined as more similar and therefore entered the simplicial complex first.

We consider a difference threshold which defines those pairwise interactions
that are permitted to be considered in the simplicial complex. Such a
process allows us to examine the evolution of the simplicial complex across
different difference thresholds. We assess several properties of the simplicial
complex at each threshold value, including the existence of holes (or higher
dimensional voids) of a given dimensionality (termed homology dimension).
A hole signifies a lack of connections (i.e., differences in the degree of
correlation) between a subset of neurons at the current difference threshold.
We focus our analysis on the first and second homology dimensions (which
correspond to holes that are topologically equivalent to circles and spheres,
respectively) because they can be estimated reliably given the size of our
datasets.

In most applications of TDA, researchers focus on persistent features that
imply a nontrivial structure. For example, imagine a set of people seated around
an oval-shaped table. We could use as a difference metric the physical distance
between them, and we would consider two people to be “connected” if they are
sitting closer than some distance threshold. At very small distance thresholds,
no pair of people would be close enough to be considered connected. At
very large thresholds (e.g., longer than the length of the room), all pairs of
people would be connected. But for a large range of intermediate distance
thresholds, each person would be connected to at least their nearest neighbor
but would not be connected to everyone else, and the resulting graph would
have a “hole”, corresponding to the center of the table. In TDA, this hole
would represent a persistent feature and would indicate that the seating
arrangement has a particular structure. The presence of a single, persistent
hole in the first homology dimension (equivalent to a circle), would imply that
the people had arranged themselves around a table, but it would not specify
whether that table was a circle, a rectangle, or another topologically equivalent
shape.

Next, consider a situation where the same people simply sat in a haphazard
arrangement on the floor. By chance, there would at some distance thresholds
be holes around which, for example, a subgroup of people were arranged. Those
chance holes would not persist for a very long range of distance thresholds.
An intermediate situation, in which there is some structure to the seating
arrangement (e.g., people sitting in small clusters), might have a smaller number
of holes that persist for only a small range of thresholds.

Some recent studies have used TDA to investigate the signals encoded by
populations of neurons or brain areas (19–22). In these studies, the vertices
represent trials, stimuli, or time periods, and the authors construct a distance
metric to relate population responses at those different times. Because neural
signals have structure, those authors were able to analyze features that persist
over a long range of distance thresholds.

Our approach was orthogonal. We took each neuron to be a vertex, and the
difference between them was given by the pairwise noise correlation. Although
they are typically low rank, noise correlation matrices are in general thought
to be unstructured within that small number of dimensions (3, 10). For this
reason, most previous studies focus on their mean or linear dimensionality (10).
Consistent with the idea of low rank but unstructured correlation structures, we
did not observe notable persistent features (Fig. 1C for an example of observed
features). Therefore, the ’holes’ in our data should be thought of as topological
noise. The relationship between this topological noise and other quantities of
interest (e.g., behavior) indicates that although no individual hole is particularly
important, the distribution of them can provide insight into neurobiological
processes.

We therefore adopted the approach of focusing on the distribution of
topological features rather than on looking for long persistent cycles (24).
We examined how properties of the generated Betti curves (such as the peak
or total persistence) relate to common measures of attention like average noise
correlations and behavioral performance.

G. Topological Data Analysis Example. We provide here a detailed walk-
through of the schematic in Fig. 1B. Suppose that we have a group of vertices.
You can think of these vertices as a collection of neurons where each vertex is a

neuron. Indeed, this is the view that we take in this work. Along with this group
of vertices, we have an underlying weight matrix that expresses not only what
vertices are connected to one another but the strength of these connections. A
neuroscience interpretation of this weight matrix is the connectivity matrix of a
population of neurons. If we look at a pair of vertices, say n1 and n2 and observe
an entry of 0.5 in the weight matrix, then we know that not only are n1 and n2
connected but the strength of their connection is 0.5.

With both a group of vertices and a weight matrix expressing how the
vertices are connected, we can now apply topological methods. These methods
will allow us to examine relationships between subgroups of vertices. We
define a threshold value that will determine which connections in the weight
matrix are allowed. Allowed connections are those whose value is at most
the threshold value. However, given that the “optimal” threshold value is
unknown, the typical approach is to vary the threshold value over a range
while simultaneously tracking the properties of the evolving graph. We choose
to track the number of holes (i.e., an empty space in the graph due to a lack
of connections). As we continuously increase the threshold, certain connections
will enter the graph and the connections that are lacking may form holes within
the graph.

We examine this process in the context provided in Fig. 1B. Initially there
are seven disconnected vertices. We can assume that this is the case because
the difference threshold is zero at the beginning. As we increase the difference
threshold, we have one isolated vertex and a ring structure. Given that there is a
lack of connections between different subsets of these vertices, a hole is formed.
Thus, the number of holes for our structure (i.e., referred to as the Betti Number
in the literature) is one. As we increase the difference threshold further, the
isolated vertex becomes connected to two vertices and we signify this all-to-all
connected subgraph by a shaded region. Observe that although the difference
threshold has increased, the hole in the center of the ring is still present, and
thus, our Betti Number is still one. Finally, we increase the threshold, and all
vertices in the ring become connected. Our Betti number is now zero. This has
occurred because the weights of those connections are at most the value of the
difference threshold. We apply this same process to our neural data where the
weight matrix is one minus the noise correlation value between a pair of neurons
in the overall noise correlation matrix.

H. Spatial Model Construction. Our spatial model is a variation of the two-
layer network of neurons discussed in ref. 10. Neurons in this network are
arranged uniformly on a [0, 1]× [0, 1] grid. The first layer (i.e., the feed-forward
layer) consists of Nx = 2,500 excitatory neurons that behave as independent
Poisson processes. The second layer consists of 40,000 excitatory and 10,000
inhibitory neurons that are recurrently coupled. The second layer receives input
from the first layer. The network’s connectivity is probabilistic but dependent on
a Gaussian of width σ∗. Thus, neurons that are further away from each other on
the grid are less likely to connect.

The parameters are the same as the two-layer network in Huang et al. (10),
and are chosen to approximate known biology of cortical circuits (ref. 10 for
details). Specifically, the synaptic strengths are scaled by 1/

√
N, where N is

the total number of neurons in the network, as used in the so-called balanced
networks (56) such that the recurrent network can internally generate variability
in neural spiking for largeN. The projection widths of the excitatory and inhibitory
neurons are chosen to be the same (σe = σi = 0.1), which is consistent with
anatomical findings from visual cortex (57, 58). Each neuron is modeled as an
exponential integrate-and-fire neuron model, following standard formulation
in past work (59).

The only differences between the published model and one here are the
following. The feedforward connection strength from layer 1 to layer 2 is Jex =
140 and Jix = 0 for excitatory and inhibitory neurons, respectively. Fig. 3 B,
Left: µi = 0, 0.1, 0.2, 0.3, 0.4 and τi is 10. Fig. 3 B, Right: µi = 0, and
τi = 6, 7, 8, 9, 10 ms. These parameters were chosen so that the manipulations
ofµi and τi begin with the same parameter set at high correlation value, which
is unstable with turbulent wave dynamics. There were a total of 15 simulations
of 20 s each for each parameter conditions. The first 1 s in each simulation was
removed. The spike counts were computed using 140-ms time window to mimic
the data.
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We implemented this model using EIF neurons. The voltage dynamics of
these neurons are governed by the following equation (10):

Cm
dVαj
dt

= −gL(V
α
j − EL) + gL1T e

(Vαj −VT )

1T + Iαj (t), [3]

where τm = Cm
gL

= 15 ms, EL = −60 mV, VT = −50 mV, Vth = −10 mV,
1T = 2 mV, Vre = −65 mV ,τref = 1.5 ms and the total current Iαj (t) obeys
the following equation:

Iαj (t)

Cm
=

NF∑
k=1

JαF
√
N

∑
n
ηF(t−t

F,k
n )+

∑
β=e,i

Nβ∑
k=1

Jαβjk
√
N

∑
n
ηβ(t−tβ ,kn )+µα ,

[4]
where N is the total number of neurons in the second layer andµα is the static
current to the α(∈ {E, I}) population. ηβ is the postsynaptic current given by
the following equation:

ηβ(t) =
1

τβd − τβr

e
−t
τβd − e

t
τβr , t ≥ 0.

0, t < 0
[5]

where the rise time constant τβr = 5. We consider multiple values of the decay
time constant τβd . For both dimensionality (Factor Analysis) and topological
(TopologicalMeasures) comparisons, we also considered a range of values of the
µI parameter, which correspond to the overall depolarization of the inhibitory
population and which has been shown to affect the dimensionality of the
generated data.

I. Factor Analysis. To assess the dimensionality of the population simulated
using the spatial model with different parameters, we used factor analysis (39).
We based our analysis on a number of neurons by the number of trial matrix
of spike counts of the simulated excitatory neurons. We then used that matrix
to compute a spike count covariance matrix. Factor analysis separates the spike
count covariance matrix into a shared component that represents how neurons
covary together and an independent component that captures neuron-specific
variance. Following the notation of ref. 39, use L to refer to the loading matrix
relating m latent variables to the matrix of neural activity. In this way, the
rank, m, of the shared component LLT is the number of latent variables that
describes the covariance. We refer to the independent component as9 , which
is a diagonal matrix of independent variances for each neuron. We then assess
the dimensionality of the network activity by analyzing the eigenvalues of LLT .
To focus on dimensionality rather than the total amount of independent or
shared variance (which depends on many model parameters), we normalized
each eigenvalue by dividing by the largest eigenvalue.

We performed this analysis on the spike count responses of a randomly
sampled 500 simulated neurons. All analyses were cross-validated. Error bars
in the figures come from analyzing many instances of the network generated
using fixed model parameters.

J. Controllability Measures. The goal of our controllability measures is to
understand how the noise correlation matrix in each attention state constrains

estimates of the function of the network. We consider a hypothetical (possibly
nonlinear) dynamical system whose dynamics can be linearized and whose
effective connectivity is defined by the noise correlation matrix. We analyze the
properties of the system to assess the amount of effort it takes to change the
system’s state using external input. We summarize these calculations using
two standard measures of controllability (43, 60): average controllability, which
relates to the ability to push the system into nearby states or states with little
energy and modal controllability, which relates to the ability to push the system
into distant states or states that require more energy.

We take the effective connectivity matrix A to be the noise correlation matrix
generated from the spike count responses to repeated presentations of the same
visual stimulus as described above. To align with the controllability methods in
previous cognitive neuroscience studies (e.g., refs. 60–63) and to remove the
influence of self-connections (which are defined as 1 for a correlation matrix),
we set the diagonals of the effective connectivity matrix A to 0. (Leaving the
diagonals as 1 did not qualitatively change our results).

We then consider the energy required to steer the network from an initial
state x0 to a target state x(T) = xT .

The average controllability %c is defined as

%c = Trace(Wc), [6]

where Wc =
∫ tf

0 eAτ BBT eA
T
τ dτ is the controllability Gramian matrix in which

B represents a matrix of nodes (neurons) in which we could inject hypothetical
inputs to change the network state (the full matrix in our case) and τ represents
the fact that the input could be in principle time varying. Trace() is the trace of
the matrix (i.e., the sum of the diagonal elements of the matrix).

The modal controllability φi is defined as

φi =
N∑
j=1

= (1− eλj(A))v2
ij , [7]

where λj is the jth eigenvalue of the effective connectivity matrix A. v•j
corresponds to the eigenvectors of the effective connectivity matrix A.

We used the equations given above to compute the average and modal
controllability of the recorded population of neurons. To determine the
relationship between controllability and behavior (Fig. 4G andH), we computed
average and modal controllability for each session, z-scored those measures
for each monkey, and divided the sessions into six equally sized bins for each
controllability measure.

Data, Materials, and Software Availability. Electrophysiology and behavior
data have been deposited in Open Science Framework (https://doi.org/10.
17605/OSF.IO/RN7TU (64); https://github.com/TCR23/TopologyForAttention.
git (65)) . Previously published data were used for this work (5).
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