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Abstract
Background  An association has been indicated between atopic dermatitis (AD), a prevalent chronic inflammatory 
skin disease, and diabetes mellitus. However, the exact causal relationship between AD and both type 1 diabetes 
(T1D) and type 2 diabetes (T2D) remains controversial. This study aimed to explore the causal association between AD 
and diabetes by Mendelian Randomization (MR) approaches.

Methods  Public genetic summary data for AD was obtained from EAGLE study. Single nucleotide polymorphisms 
of diabetes were retrieved from four genome-wide association studies that had been performed in European 
populations. Inverse variance weighted (IVW) in MR analysis was used as the primary means of causality estimation. 
Several complementary analyses and sensitivity analyses were performed to calculate MR estimates and to enhance 
the causal inference, respectively. The R package ‘TwoSampleMR’ was used for analysis.

Results  Genetically predicted AD led to a higher risk of T1D (OR, 1.19; 95% CI, 1.05, 1.34; P = 0.006) and T2D (OR, 1.07; 
95% CI, 1.02, 1.11; P = 0.003) based on random-effect IVW method. The complementary analyses provided similar 
positive results. Cochran’s Q test and I2 statistics indicated moderate heterogeneity between AD and both T1D and 
T2D. No significant horizontal pleiotropy was detected by MR-Egger Intercept p except summary data from FinnGen 
consortium.

Conclusion  Genetically predicted AD is a risk factor for both T1D and T2D. These findings imply potential shared 
pathological mechanisms between AD and diabetes, thus suggesting the significance of early clinical diagnosis and 
prevention of AD in reducing the incidence of diabetes.
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Introduction
Diabetes is a collection of disorders characterized by 
impaired glucose metabolism, particularly hyperglyce-
mia, which can cause long-term microvascular compli-
cations and non-specific macrovascular complications 
[1]. The latest International Diabetes Federation report 
shows that more than 10.5% of adults worldwide are dia-
betic and expected to account for 12.2% by 2045 [2]. Type 
1 diabetes (T1D) is an autoimmune disease characterized 
by T cell-mediated destruction of pancreatic β cells and 
absolute deficiency of insulin [3, 4]. The risk of cardiovas-
cular events in patients with T1D is ten times higher than 
in non-diabetic population [5]. High plasma concentra-
tions of Omega-3 fatty acids in infancy and childhood 
vitamin D supplementation may reduce the risk of islet 
autoimmunity [6, 7]. Type 2 diabetes (T2D) is defined as 
a chronic metabolic disease featured with insulin resis-
tance and deficiency in insulin secretion [8], which is 
associated with additional metabolic disorders such as 
dyslipidemia and atherosclerosis [9]. T2D patients carry 
an essential risk for cardiovascular disease (CVD) [10]. 
Lifestyle changes can reduce the risk of T2D [11], allow-
ing better diabetes prevention, lower family financial bur-
den and increased life expectancy. Recently, it has been 
revealed that atopic dermatitis (AD) is related to the risk 
of T1D and lifetime prediabetes [12, 13].

Previously called atopic eczema, AD is a complex 
chronic inflammatory skin disease with diverse clini-
cal manifestations and symptoms suffered by approxi-
mately 20% of children and 3% of adults worldwide, with 
the incidence still increasing [14]. AD was proved to be 
a potential risk factor for several autoimmune diseases 
(OR = 1.97; 95% CI, 1.93–2.01) including T1D (OR = 1.08; 
95% CI, 1.03–1.14) [15]. Wu et al. showed that the preva-
lence of T1D was significantly higher in patients with AD 

[13]. In addition, AD directly increased the risk of meta-
bolic diseases especially T2D after adjusting for age, sex, 
metabolic disorders and other CVD (HR = 2.96; 95% CI, 
2.56–3.41, P < 0.001) [16]. In multivariate models con-
trolling for socio-demographic characteristics, smoking 
history, drinking history and strenuous activity, AD was 
still associated with a higher risk of diabetes (OR, 1.37; 
95% CI, 1.16–1.63) [12]. However, the causal relation-
ship between AD and diabetes remains controversial 
[17–19], which makes it indispensable and significant to 
verify the relationship between AD and diabetes. In addi-
tion, due to residual confounding in observational stud-
ies with different ethnicities of the population as well as 
different sample sizes and data collection methods, there 
can be bias in the process of deciphering the relationship 
between AD and diabetes.

As a method in genetic epidemiology, Mendelian ran-
domization (MR) is widely used for its practical and eco-
nomic advantages. It involves using genetic variants of a 
disease as instrumental variables (IVs) to explore whether 
there is a causal relationship between exposure and out-
comes [20, 21]. As genetic variants are randomly assigned 
at meiosis, MR studies are able to reduce the risk of con-
founding factors and to minimize the susceptibility of 
reverse causality [20, 21]. In this MR study, we analyzed 
the summary statistics to explore the causal relationship 
between AD and diabetes, thus providing new ideas for 
the management of diabetes. We present a Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) for this MR study (Additional File 1) [22].

Methods
Study design
The process of this MR analysis is shown in Fig. 1. Over-
all, genetic variations were used as IVs to reveal the 

Fig. 1  Study design flow diagram of Mendelian randomization (MR). Three key assumptions should be met: Assumption 1: Instrumental variables (IVs) 
should directly and significantly affect the risk of atopic dermatitis (AD). Assumption 2: IVs associated with any potential confounders should be absolutely 
avoided. Assumption 3: IVs should only affect type 1 diabetes (T1D) and type 2 diabetes (T2D) through AD. SNPs, single nucleotide polymorphisms
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relationship between AD and both T1D and T2D based 
on three key hypotheses [23]. Firstly, IVs should directly 
and significantly affect the risk of AD. Secondly, IVs asso-
ciated with any potential confounders should be abso-
lutely avoided. Thirdly, IVs should only affect T1D and 
T2D through AD. Ethical approval and informed consent 
were obtained in the original studies.

Data sources
Summary statistics and detailed data sources for T1D and 
T2D in this MR study are provided in Table 1. Summary-
level statistics for T1D were derived from two recent 
large datasets: meta-analysis of genome-wide association 
study (GWAS) on T1D from Forgetta et al. (9,358 cases 
and 15,705 controls) [24] and FinnGen consortium (5,928 
cases and 183,185 controls). Cases were defined by Inter-
national Classification of Diseases (ICD)-8 in FinnGen 
and are available online at https://gwas.mrcieu.ac.uk/
datasets/finn-b-E4_DM1/. Summary-level data for T2D 
were derived from a European-descent meta-analysis 
(74,124 cases, 824,006 controls) [25] based on 32 studies 
and another GWAS datasets from Xue et al., including 
62,892 cases and 596,424 controls [26].

To investigate whether higher genetical levels of AD 
increased the odds of T1D and T2D, we selected single 
nucleotide polymorphisms (SNPs) as IVs for AD identi-
fied in a largest GWAS meta-analysis performed by the 
EArly Genetics & Lifecourse Epidemiology (EAGLE) 
eczema consortium (21,399 cases, 95,464 controls) [27]. 
All participants included in this study were of European 
ancestry. No samples overlap except between EAGLE 
and Mahajan et al. [25] (Additional File 2: Table S1).

IVs selection
We extracted 21 SNPs with genome-wide signifi-
cance (P < 5 × 10− 8) in the EAGLE study [27]. An SNP 
(rs12730935) was removed due to linkage disequilibrium 
(r2 < 0.01, clump distance < 10,000 kb) [28] based on 1000 
genomes European population [29]. SNPs with minor 
allele frequencies (MAF) < 0.01 also need to be excluded 
since they usually tend to have low confidence and no 
SNPs were excluded in this step. To exclude those SNPs 
with potential confounders, we searched each of these 

in the PhenoScanner database [30] to satisfy the second 
fundamental assumption that IVs should avoid being 
associated with potential confounders. SNP rs4713555 
was excluded because it was significantly associated with 
potential factors for T1D and T2D, including “Medica-
tion for cholesterol, blood pressure or diabetes: insulin” 
(P < 5 × 10− 8). To satisfy the third key assumption that 
IVs should affect T1D and T2D through AD only, we 
performed MR-Steiger analysis [31] and removed two 
SNPs “rs10214237 and rs6827756”, because they were 
demonstrated to explain more of the outcomes than 
AD and suggested a reverse causal relationship in For-
getta et al. (Additional File 2: Table S3) [24]. Since two 
SNPs (rs12188917 and rs6419573) could not be found 
in Forgetta et al. [24] and Mahajan et al. [25], three SNPs 
(rs12188917, rs6419573 and rs4809219) could not be 
found in and Xue et al. [26], we searched proxy-SNPs 
(r2 > 0.8) from an online website (http://snipa.helmholtz-
muenchen.de/snipa3/) as a substitute (rs6596090 for 
rs12188917, rs1035127 for rs6419573, rs6011018 for 
rs4809219, respectively). Three SNPs were excluded 
(rs61813875, rs7127307, rs12951971) since they could 
neither be found nor replaced in Xue et al. [26].

We calculated the R2 and F statistic to assess the pres-
ence of weak IVs. It is generally accepted that the F sta-
tistics higher than the threshold of 10 indicates a low 
risk of weak IV bias. F = R2(N − 2)/(1 - R2) [32], where R2 
indicates the degree of explanation of AD by IVs [33], 
N indicates the sample size. These 19 SNPs collectively 
explained 6.76% of the genetic variance of AD. All F sta-
tistics are higher than 10, indicating the absence of any 
weak IVs (Additional File 2: Table S2). Ultimately, we 
obtained 19 SNPs as IVs for this MR analysis, while only 
17 SNPs for Forgetta et al. [24], 16 SNPs for Xue et al. 
[26]. (Additional File 2: Table S2 and 3).

Statistical analysis
The associations of SNP-AD and SNP-diabetes were 
combined into one ratio to estimate causal effects. 
Inverse variance weighting (IVW) of different models 
was the predominant approach for this MR analysis [34], 
which provides the highest statistical power when the 
three key MR assumptions mentioned earlier are met and 
is more reliable for estimation when there is heterogene-
ity among SNPs. In addition, to make the results more 
reliable and robust, we performed a set of complemen-
tary analyses. Even if up to 50% of the information in the 
analysis comes from invalid IVs, the weighted median 
method still allows the results to be an unbiased esti-
mate of causality [35]. Simple median method with equal 
weights was also used to estimate causality [35]. Due to 
its robustness in identifying pleiotropy, the MR-robust 
adjusted profile score (MR-Raps) was well received 
[36]. MR-PRESSO outlier test can detect outliers thus 

Table 1  Summary statistics and data sources in this MR study
Data Source Phenotype Sample 

Size
Cases Population

EAGLE AD 116,863 21,399 European

Forgetta et al. T1D 25,063 9,358 European

FinnGen 189,113 5,928 European

Mahajan et al. T2D 898,130 74,124 European

Xue et al. 659,316 62,892 European
EAGLE, EArly Genetics & Lifecourse Epidemiology; AD, atopic dermatitis; T1D, 
type 1 diabetes; T2D, type 2 diabetes

https://gwas.mrcieu.ac.uk/datasets/finn-b-E4_DM1/
https://gwas.mrcieu.ac.uk/datasets/finn-b-E4_DM1/
http://snipa.helmholtz-muenchen.de/snipa3/
http://snipa.helmholtz-muenchen.de/snipa3/
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providing a more precisely MR estimation after remov-
ing them [37]. Scatter plots were provided to describe the 
causal relationship between genetically predicted AD and 
both T1D and T2D. Two-sided P < 0.05 was considered 
statistically significant. For multiple comparisons, Bon-
ferroni correction was performed (P < 0.05/2).

Based on a type I error rate threshold of 0.05, power 
calculations were performed by calculating each study’s 
sample size, the proportion of cases and the explanation 
of variance by mRND [38].

Sensitivity analyses
Heterogeneity among IVs was assessed by the calcula-
tion of Cochran’s Q and I2 statistics [39]. A Cochran’s Q 
P value of < 0.025 (0.05/2) or I2 statistic > 25% implies a 
heterogeneity that cannot be ignored [39], then IVW 
random-effects was considered to estimate the MR 
results with; otherwise, the IVW fixed-effects model 
was used [40]. MR-Egger regression was used to calcu-
late the horizontal pleiotropy by estimating the intercept 
based on weighted linear regression of SNP-diabetes 
genetic susceptibility on SNP-AD associations [41]. A P 
value < 0.025 (0.05/2) of MR-Egger regression implies a 
potential bias in the IVW estimates. Meta-analysis com-
bining the results of two T1D datasets and two T2D data-
sets respectively was performed by random-effects model 
without any significant heterogeneity (I2 = 0%, P = 0.50 for 
T1D; I2 = 0%, P = 0.82 for T2D) for the sake of estimating 
a more robust result. Leave-one-out method possesses 
powerful features to detect the bias of any single SNP on 
MR results [42]. SNPs strongly and independently influ-
enced causality by leave-one-out method were retained.

R packages ‘TwoSampleMR’ [43], ‘MR-PRESSO’ [37] 
and ‘mr.raps’ [36] were used for this MR analysis. All sta-
tistical analyses for this study were performed in R soft-
ware (version 4.1.3).

Results
Causal estimates between AD and the risk of diabetes
Main findings are presented in Fig. 2. The random-effects 
IVW analysis indicated that genetically predicted AD 
was positively associated with increased risk of T1D (OR, 
1.24; 95% confidence interval (CI), 1.04, 1.49; P = 0.018) 
in Forgetta et al. Despite the null causal relationship 
found between AD and T1D in FinnGen consortium, 
meta-analysis by combining Forgetta et al. and FinnGen 
consortium reinforced the positive causal relationship 
(OR, 1.19; 95% CI, 1.05, 1.34; P = 0.006) (Fig. 2). We used 
the same approach to analyze the causal relationship 
between AD and T2D. Genetically predicted AD led to 
a higher risk of T2D in Xue et al. by random-effects IVW 
(OR, 1.07; 95% CI, 1.02, 1.14; P = 0.013). AD presented a 
suggestive significance for the risk of developing T2D in 
Mahajan et al. (OR, 1.06; 95% CI, 1.00, 1.13; P = 0.036). 
Meta-analysis by combining Xue et al. and Mahajan et 
al. consolidated the result (OR, 1.07; 95% CI, 1.02, 1.11; 
P = 0.003) (Fig.  2). Complementary analyses showed a 
consistent causal direction with the random-effects IVW 
analysis (Table 2; Fig. 3).

Three SNPs with significant pleiotropy were identi-
fied by MR-PRESSO outliers test (rs2212434, rs2041733, 
rs4809219) in Mahajan et al. (Additional File 2: Table 
S4). After removing these outliers, we performed a rep-
licate analysis (OR, 1.08; 95% CI, 1.03, 1.13; P = 0.002), 
and found that the results maintained the same direction 
without any horizontal pleiotropy by MR-Egger intercept 
(Additional File 2: Table S5).

Sensitivity analyses of MR
Cochran’s Q and I2 statistics indicated moderate hetero-
geneity between AD and both T1D and T2D (PCochran’s Q 
< 0.025 or I2 > 25%) (Table 3). However, we did not detect 
horizontal pleiotropy by MR-Egger Intercept p (threshold 
set at P < 0.025) except for FinnGen (Table 3, Additional 

Fig. 2  Association of genetically predicted AD on the risk of both T1D and T2D. Results were obtained from the inverse variance-weighted method in the 
random-effects model. AD, atopic dermatitis; T1D, type 1 diabetes; T2D, type 2 diabetes; OR, odds ratio; CI, confidence interval
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File: Table S4). In leave-one-out analysis, several SNPs 
crossed the zero line after being removed (in Mahajan 
et al. and Xue et al.), while removing rs6419573 did not 
cause such a change (in FinnGen), indicating an individ-
ual SNP-driven causal estimation of genetically predicted 
AD on the risk of T1D and T2D. Attention needs to be 
directed to the robustness of causal relationships and 
result interpretations with caution (Fig. 4).

Power calculations of MR
This study had a sufficient power (> 80%) to detect OR of 
1.24 for T1D based on Forgetta et al. (Power = 99%), OR 
of 1.06 for T2D based on Mahajan et al. (Power = 98%), 
and OR of 1.07 for T2D based on Xue et al. (Power = 99%). 
However, it did not provide enough confidence 
(Power = 78%) to calculate the OR of 1.14 for T1D based 
on the FinnGen consortium.

Discussion
To our knowledge, it is the first study to systematically 
explore the causal relationship between AD and diabetic 
risk by the approach of MR. We found that AD could 
increase the risk of both T1D and T2D in the European 
population.

AD is a chronic inflammatory skin disease primarily 
driven by T helper (Th) 2 and characterized by frequent 
episodes of persistent pruritus. Its growing prevalence 
causes a huge skin health burden and family financial 
burden both in the pediatric and adult populations [44]. 
The pathogenesis of AD is complex and usually involves 
the interaction between genetic susceptibility, skin bar-
rier abnormalities, immune dysfunction and environ-
mental factors [45]. Reduced expression of the protein 
filaggrin induced by mutations in FLG gene is found in 
50% of AD patients [46, 47], which increases the risk of 
early-onset AD and is recognized as a major genetic pre-
disposing factor for AD [48]. Lower levels of total cerami-
des accelerate water loss from the stratum corneum of 
skin among AD patients [49]. In the acute phase, AD is 
characterized by Th2 polarization [50, 51]. Pro-inflam-
matory cytokines induced by epidermal barrier damage 
activate innate immune components, leading to massive 
production of Th2 cytokines such as IL-4, IL-5 and IL-13 
[52, 53].

As an autoimmune disease mediated primarily by 
Th1, T1D also displays association with AD by accumu-
lating evidences. A large case-control study from Swe-
den including 104,832 AD cases and 1,022,435 controls 
showed that AD was significantly associated with mul-
tiple autoimmune disorders including T1D [15]. Wu et 
al. showed a higher prevalence of T1D in AD patients 
by analyzing 41,950 cases and 167,800 controls from the 
National Health Insurance Research Database (NHIRD) 
of Taiwan [13]. Several potential mechanisms have 
been proposed to explain these findings. As a Th2 cyto-
kine, IL-4 contributes to autoimmune diabetes through 
increased expression of self-antigens in pancreatic islets 
[54]. Anderson et al. considered that β-cell destruction 
in T1D is a Th2-, not a Th1-mediated event [55]. Recent 
studies suggest that IL-4, IL-17 and IL-33 are simulta-
neously involved in the pathogenesis of AD and T1D by 
regulating autoimmune responses, implying the possibil-
ity of shared pathological process between AD and T1D 
[56]. As it is difficult to explain the association between 
T1D and AD by the traditional Th1/Th2 paradigm, an 
upgraded model with sophisticated T cell functional 
compartmentation may help to illustrate the underlying 
mechanism [57, 58].

Our findings in exploring the causal relationship 
between AD and T2D are consistent with several previ-
ous studies. Results from a National Health Interview 
Survey (NHIS) showed that AD increases the risk of 

Table 2  Association of genetically predicted AD with T1D and 
T2D risk in complementary analyses
Data 
Source

Outcome SNPs, 
n

Methods OR 95% 
CI

P 
value

Forgetta 
et al.

T1D 17 Weighted 
median

1.11 0.92, 
1.35

0.276

17 Simple 
median

1.17 0.96, 
1.43

0.114

17 MR-raps 1.20 1.00, 
1.43

0.045

17 MR-PRESSO† NA NA NA

FinnGen T1D 19 Weighted 
median

1.11 0.93, 
1.33

0.255

19 Simple 
median

1.15 0.96, 
1.39

0.138

19 MR-raps 1.09 0.91, 
1.30

0.340

19 MR-PRESSO† NA NA NA

Mahajan 
et al.

T2D 19 Weighted 
median

1.08 1.02, 
1.14

0.011

19 Simple 
median

1.10 1.04, 
1.16

0.001

19 MR-raps 1.07 1.01, 
1.12

0.014

16 MR-PRESSO‡ 1.08 1.03, 
1.13

0.007

Xue et al. T2D 16 Weighted 
median

1.09 1.01, 
1.17

0.025

16 Simple 
median

1.09 1.01, 
1.17

0.023

16 MR-Raps 1.08 1.02, 
1.15

0.015

16 MR-PRESSO† NA NA NA
AD, atopic dermatitis; T1D, type 1 diabetes; T2D, type 2 diabetes; SNPs, single 
nucleotide polymorphisms; MR-Raps, MR-Robust adjusted profile score; 
MR − PRESSO, MR − pleiotropy residual sum and outlier
†No outliers detected
‡Calculated after removing 3 outlier SNPs (rs2212434, rs2041733, rs4809219)
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lifetime prodromal diabetes [12]. Compared to controls, 
AD patients had a significantly higher risk of metabolic 
disorders such as hyperlipidemia and T2D [16]. Kok et 
al. found a significant association between moderate to 
severe AD and metabolic complications such as hyper-
tension, hyperlipidemia, and T2D [59]. The exact mech-
anism how AD increases the risk of T2D is not clear. 
Chronic low-grade inflammation and immune system 
activation may function in the pathogenesis of obesity-
related metabolic disorders [60–63]. T2D patients carry 
an elevated incidence of filaggrin null mutations, which 
is highly consistent with what happens in AD [64]. T2D 
patients expressed higher levels of IL-4 and IL-5 in their 
serum, suggesting the role of Th2-mediated inflamma-
tory responses [65]. In addition, IL-17 exacerbated the 
inflammatory state in T2D, and IL-13 was significantly 
elevated in the serum of insulin-resistant patients [66, 

67]. Based on above evidences, both AD and T2D have 
similar over-production of cytokines and inflammatory 
mediators, which may account for the increased risk of 
T2D in AD patients.

However, controversies still exist concerning the asso-
ciation between AD and diabetes. A population-based 
cohort study showed that AD did not increase the risk 
of T1D [68]. Schmitt et al. concluded that AD was asso-
ciated with a reduced risk of T1D [18]. Andersen et al. 
showed adult AD patients either treated as inpatients or 
outpatients are unrelated to risk of new-onset T2D [69]. 
A cross-sectional study from Canada even showed that 
AD is a protective factor for T2D [70]. These inconsistent 
results could be attributed to several aspects of reasons. 
First, observational studies have their intrinsic limita-
tions of selection and information biases that may lead 
to inaccurate results. Second, the conventional Th1/Th2 

Table 3  Assessing heterogeneity and horizontal pleiotropy by different methods
Data Source Outcome Heterogeneity Pleiotropy

IVW MR-Egger MR-Egger

Q/Q_df Cochran’s 
Q P

I2 (%) Q/Q_df Cochran’s 
Q P

I2 (%) Intercept In-
ter-
cept 
P

Forgetta et al. T1D 31.53/16 0.012 49 29.26/15 0.015 49 0.025 0.297

FinnGen T1D 37.85/18 0.004 52 27.55/17 0.051 38 0.061 0.022

Mahajan et al. T2D 50.86/18 < 0.001 65 50.76/17 < 0.001 67 -0.001 0.859

Xue et al. T2D 21.26/15 0.129 29 21.07/14 0.100 34 -0.005 0.73
Q, heterogeneity statistic Q; df, degree of freedom; I2 = (Q - Q_df ) / Q; AD, atopic dermatitis; T1D, type 1 diabetes; T2D, type 2 diabetes; IVW, the inverse variance 
weighting method; MR-Egger, Mendelian Randomization-Egger.

Fig. 3  Scatter plot of the MR estimates for the association of AD with the risk of T1D and T2D based on Forgetta et al. (A), FinnGen (B), Mahajan et al. (C) 
and Xue et al. (D). AD, atopic dermatitis; T1D, type 1 diabetes; T2D, type 2 diabetes; MR-Raps, MR Robust adjusted profile score; MR-PERSSO, MR Pleiotropy 
Residual Sum and Outlier
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model may be insufficient to describe the immune dys-
regulation of T1D and AD. Third, environmental factors 
are involved in the occurrence of T2D, while MR study is 
based on the genetic level. Finally, MR study explains the 
lifetime effect of AD on diabetes, whereas observational 
studies are usually based on a limited period. Though we 
used the MR-Steiger method to exclude potential reverse 
causal confounding, it only supported a uni-directional 
causality and failed to explore the risk of AD in T1D 
patients. Therefore, a series of subsequent studies are still 
needed to investigate the relationship between AD and 
diabetes.

Generally, the IVW method provides the highest sta-
tistical power than other MR approaches in cases where 
the three key assumptions of MR are met without any 
significant pleiotropy among SNPs [34]. Most MR studies 
consider IVW as a primary analysis method [71], which 
becomes more persuasive after meta-analysis [72]. Sev-
eral complementary analyses including weighted median, 
simple median and MR-raps between AD and T1D indi-
cated a null causal association, which required us to pay 
more attention to the robustness of the results. However, 
all of complementary analyses provided consistent beta 
direction, which was strictly required by researchers in 
most MR studies [73, 74].

MR study is an emerging method utilizing genetic 
variations to explore the causal relationship between 
exposure and outcomes. The present study was designed 
upon the MR framework and showed distinct advan-
tages. Environmental factors including diet, air pollutant 

and microbiota are involved in the onset of AD, which 
are inevitable confounders in observational studies and 
may contribute to the controversial causal relationship 
between AD and diabetes [75]. However, the instrumen-
tal variables consisting of SNPs overcame the causality 
effect limited to a span of time in observational studies, 
excluded the potential interference of residual confound-
ers and were not affected by reverse causality with MR-
Steiger analysis in current MR study, leading to more 
credible results and more convincing clinical guidance. 
All studies used for the analysis were based on Euro-
pean ancestry, thus avoiding causal bias due to ethnic 
differences.

The present study should be viewed in the light of its 
limitations. A nonlinear association between AD sever-
ity and diabetes could be neglected since our study was 
based on summary data. Whereas sensitivity analyses 
were performed, we need to be aware of the heterogene-
ity among SNPs. Horizontal pleiotropies were detected 
and the statistical power threshold of 80% of the associa-
tion between AD and T1D from FinnGen was failed to 
reach. Several SNPs could drive the results separately and 
sample overlap existed between EAGLE and Mahajan et 
al. These factors may lead to bias in estimating causal-
ity and need our attention. MR-Egger was abandoned 
for use to estimate causality since the algorithm would 
lead to overly wide CIs, potentially leading to incorrect 
conclusions.

Fig. 4  Leave-one-out plots for the MR analyses of AD on both T1D and T2D based on (A) Forgetta et al., (B) FinnGen, (C) Mahajan et al. and (D) Xue et 
al. Leave-one-out sensitivity analysis possesses powerful features to detect the bias of any single SNP on MR results. AD, atopic dermatitis; T1D, type 1 
diabetes; T2D, type 2 diabetes; SNPs, single nucleotide polymorphisms
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Conclusion
As the first Mendelian randomization study to explore 
the causal association between AD and diabetes, the 
present study advocated that AD contributed to the 
occurrence of both T1D and T2D. These findings imply 
potential shared pathological processes underlying AD 
and diabetes and suggest that early prevention and diag-
nosis of AD may reduce the risk of developing T1D and 
T2D.
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