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Abstract

Objectives: The aim was to determine the accuracy of cell-free DNA testing (cfDNA) for 

detecting sex chromosome aneuploidies (SCA) in singleton pregnancies.

Methods: A systematic review and meta-analysis was performed to assess cfDNA accuracy for 

prenatal detection of 45,X, 47,XXY, 47,XXX and 47,XYY. Inclusion was restricted to studies 

published between January 2010 and December 2021 reporting both cfDNA and confirmatory 

diagnostic test results.

Results: For 45,X, the sensitivity was 98.8% (95%CI 94.6%–100%), specificity 99.4% (95%CI 

98.7%–99.9%) and positive predictive value (PPV) 14.5% (95%CI 7.0%–43.8%). For 47,XXY, the 

sensitivity was 100% (95%CI 99.6%–100%), specificity 100% (95%CI 99.9%–100%) and PPV 

97.7% (95%CI 78.6%–100%). For 47,XXX, the sensitivity was 100% (95%CI 96.9%–100%), 

specificity 99.9% (95%CI 99.7%–100%) and PPV 61.6% (95%CI 37.6%–95.4%). For 47,XYY, 

the sensitivity was 100% (95%CI 91.3%–100%), specificity 100% (95% CI 100%–100%) and 
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PPV 100% (95%CI 76.5%–100%). All four SCAs had estimated negative predictive values (NPV) 

exceeding 99.99%, though false negatives were reported.

Conclusions: This analysis suggests that cfDNA is a reliable screening test for SCA, though 

both false negatives and false positives were reported. These estimates of test performance are 

derived from pregnancies at high pretest risk for aneuploidy, limiting the generalisability to 

average risk pregnancies.

1 | INTRODUCTION

Cell-free DNA (cfDNA) analysis enables non-invasive prenatal screening for sex 

chromosome aneuploidies (SCA), common trisomies (trisomy 13, 18 and 21), and certain 

monogenic disorders, copy number variants and rare autosomal trisomies.1–4 Since the 

discovery of circulating cell-free fetal DNA in 1997, its use has rapidly expanded and 

cfDNA is now recommended to be offered to all pregnant individuals in the United States.5,6 

However, cfDNA remains a screening test, and diagnostic testing with chorionic villus 

sampling (CVS) or amniocentesis is recommended after a high-risk screening result. The 

test performance of cfDNA varies by the genetic disorder tested, with higher positive 

predictive values for trisomy 21 with increasing ovum age, in contrast to lower positive 

predictive values for more rare conditions such as 22q11.2 deletion syndrome.1,7–9

SCAs are the most frequent aneuploidies in humans, with an estimated incidence of 1/440 

live births. SCAs detectable with cfDNA include Klinefelter syndrome (47,XXY), Turner 

syndrome (45,X), Jacobs syndrome (47,XYY) and triple X syndrome (47,XXX). Klinefelter 

syndrome (47,XXY) is the most common of the SCAs, with a frequency of 0.16%–0.24% 

among pregnancies in those 35 years and older.6,10,11

Prior studies have assessed the overall test performance of cfDNA, but few publications 

have focused on the detection of SCA specifically.1,12–19 Sensitivities of cfDNA for the 

common trisomies have been reported as 95.8%–99.7%, with specificities above 99%1. In 

contrast, sensitivities of cfDNA for SCA have been more variable, reported as 83.4%–93.9% 

for monosomy X and 76.3%–93.0% for XXY, XYY and XXX (1,12,14). Prior analyses 

suggest that test performance may vary based on the underlying assay with, for example, 

higher sensitivity for detecting monosomy X by using massively parallel shotgun sequencing 

(MPSS) compared to targeted massively parallel sequencing (TMPS).14 Further, until 2020, 

the American College of Obstetricians and Gynecologists (ACOG) recommended cfDNA 

only for high-risk pregnancies, so most existing studies of cfDNA performance include 

populations at higher risk for aneuploidy. Additionally, among larger published cohorts of 

unselected pregnancies at low or average risk undergoing cfDNA screening, detection of 

common trisomies has usually been the primary focus.

It is important to acknowledge though, that interpretation of cfDNA results for SCA can 

pose challenges for patients and providers. Both placental and maternal mosaicism are 

known contributors of false negative and false positive results.20,21 SCA phenotypes vary 

significantly between affected individuals, and many with SCA may be mildly affected. It 

is estimated, for example, that only 25% of the patients with 47,XXY receive a clinical 

diagnosis during their lifetime.22 Given this variable expressivity and the potential for mild 
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ultimate outcomes, the utility of cfDNA testing for SCA has been questioned.23 However, 

prenatal screening for SCA is available through most laboratories and detection of SCA in 

utero can be important for pregnancy decision-making for many individuals, for preparation 

for the needs of the neonate and child, and for early interventions to improve outcomes.24,25

Through this systematic review and meta-analysis, we used the currently available evidence 

to determine the accuracy of cfDNA for detecting SCA (45,X; 47,XXY; 47,XYY; and 

47,XXX) in singleton pregnancies. We hypothesised that cfDNA would perform well for the 

detection of SCA and that variations in performance would be observed by specific SCA 

disorders.

2 | METHODS

This systematic review was performed according to PRISMA guidelines. The search 

protocol and aims were registered a priori on PROSPERO (CRD42022292376). As this 

study included only de-identified data from previously published manuscripts, this study was 

exempt from IRB approval.

2.1 | Study identification

PubMed, MEDLINE, EMBASE, Google Scholar, CINAHL, LILACS and ClinicalTrials.gov 

were queried for eligible studies using the following search terms: “cfDNA,” 

“cffDNA,” “ffDNA,” “Free fetal DNA,” “Free fetal DNA,” “Cell free DNA,” “Cell-free 

DNA,” “Cell-free fetal DNA,” “Cell-free fetal DNA,” “Sex chromosome aneuploidy,” 

“Sex chromosome aneuploid,” “Non-invasive prenatal testing,” “Non-invasive prenatal 

screening,” “Noninvasive prenatal testing,” “Noninvasive prenatal screening,” “NIPT,” 

“NIPS,” “Monosomy X,” “XO,” “Turner syndrome,” “Turners syndrome,” “Klinefelter 

Syndrome,” “XXY,” “Jacobs Syndrome,” “XYY,” “Triple X Syndrome,” and “XXX”. Due 

to technical limitations with study identification by using the above search terms, the results 

from Google Scholar were excluded.

2.2 | Study selection

The exclusion of duplicate studies was performed electronically by assessing PubMed ID, 

digital object identifier (DOI) or exact title matches using Microsoft excel. The initial 

cohort of titles was cross-referenced against previously published meta-analyses evaluating 

cfDNA for SCA to ensure inclusion of potentially relevant studies. MAS performed this title 

screen independently. A random selection of 10% of candidate abstracts were then screened 

independently by a combination of two researchers (MAS and either KS or RG), with >95% 

agreement in terms of inclusion demonstrated between researchers, so the remainder of 

abstracts were screened independently. The full manuscripts for these potentially relevant 

abstracts were then independently reviewed, and a random selection of 10% was screened by 

a combination of two researchers (MAS and either KS or RG). Greater than 95% agreement 

was demonstrated and any disagreements regarding inclusion or exclusion were adjudicated 

by a third researcher (TS).
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2.3 | Eligibility criteria

Inclusion was restricted to studies reporting singleton pregnancies that underwent cfDNA 

testing and were published online or in print in English from January 1, 2010 to December 

1, 2021. Studies were eligible only if they utilised diagnostic genetic testing during 

pregnancy or after delivery to confirm cfDNA results for SCA. Acceptable diagnostic 

test results included karyotype, fluorescence in situ hybridisation (FISH), microarray or 

polymerase chain reaction (PCR) performed prenatally using samples from CVS, amniotic 

fluid, cord blood, products of conception (POC) or postnatally on any neonatal tissue source. 

Studies were excluded if the results of diagnostic testing were known to researchers prior 

to undergoing cfDNA, or if the results of diagnostic testing were either unknown or not 

available for >20% of the cohort to avoid the risk of reporting bias.17 Preimplantation 

genetic testing, prenatal ultrasound and/or postnatal clinical exam alone were not considered 

an acceptable diagnostic confirmation of fetal sex chromosome complement. Studies of 

experimental methods of cfDNA, proof-of-concept studies of novel laboratory methods of 

cfDNA analysis, case reports and conference abstracts were excluded.

2.4 | Data extraction

The cfDNA results for SCA and corresponding confirmatory diagnostic reference test 

results were extracted and recorded in Excel. These were converted into 2 × 2 table 

format representing true positive, true negative, false positive or false negative results. 

Additional data were extracted where available including platform used (Single Nucleotide 

Polymorphism (SNP), MPSS, other), study design, pretest risk for aneuploidy (high/low), 

percent of the cohort with reportable diagnostic test results, diagnostic test (karyotype, 

FISH microarray, or PCR), tissue source (CVS, amniocentesis, cord blood and POC). 

High pretest risk of aneuploidy was defined as ≥50% of the reported cohort with one or 

more of the following characteristics: abnormal serum analyte screening, maternal age ≥35 

years, or fetal abnormality detected by ultrasound including, but not limited to: absent or 

hypoplastic nasal bone, renal pyelectasis, echogenic bowel, ventriculomegaly, short femur 

length, echogenic intracardiac foci or choroid plexus cyst, enlarged nuchal translucency, 

cystic hygroma or thickened nuchal fold.6 Clarification regarding missing or incomplete data 

was requested from the corresponding authors of included studies as appropriate.

2.5 | Bias assessment

All studies included in the final analysis were assessed for publication bias by two 

independent reviewers by using the QUADAS-2.26 Bias assessments were compared 

between reviewers and any discordance between these assessments was resolved by a third 

reviewer (TS).

2.6 | Data analysis

Meta-analysis of the 2 × 2 table summary statistics for cfDNA detection of SCA was 

performed using exact binomial methods (Clopper-Pearson) via the metaprop package in 

Stata version 17.0 (StataCorp; College Station, TX).27 Forest plots with pooled estimated 

sensitivity and specificity were calculated in aggregate with 95% confidence intervals (CI). 

Separate analyses were carried out for individual SCA, including 45,X, 47,XXY, 47,XYY 
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and 47,XXX. Joint meta-analysis of sensitivity and specificity using MIDAS and metandi 

Stata packages was not possible due to high sensitivity and specificity levels.

Positive predictive values (PPV) and negative predictive values (NPV) were calculated 

using standard formulas (supplementary appendix). The estimated population prevalence of 

each individual SCA was derived from previously published cohorts.10,11,28,29 The 95% 

confidence interval upper and lower boundary estimates for PPV and NPV were derived by 

using varying estimates of the population prevalence of SCA along with the upper and lower 

boundaries of the estimated sensitivity and specificity.

3 | RESULTS

A total of 31,718 studies resulted from the database search, and 10,877 of these were 

duplicates. 20,831 titles were assessed for relevance, of which 19,563 were excluded and 

1268 underwent abstract or full text screening. Ultimately, after applying the exclusion 

criteria as outlined in the methods, 21 articles were included in the final meta-analysis30–50 

(Figure 1). Characteristics of included studies are shown in Table 1.

3.1 | 45,X

All 21 included studies reported cfDNA results for monosomy X(30–50). This represented 

12,926 cell-free DNA tests with 254 confirmed affected pregnancies, 133 false positive tests 

and 18 false negative tests (Supplemental Table 1). The pooled estimated sensitivity was 

98.8% (95%CI 94.6%–100%), and specificity was 99.4% (95%CI 98.7%–99.9%) (Table 

2). The forest plots of included studies are reported in Figure 2. The estimated PPV was 

14.5% (95%CI 7.0%–43.8%), and the negative predictive value (NPV) was 100% (95% 

CI 99.995%–100%). The PPV and NPV for the detection of 45,X based on estimates of 

SCA prevalence are included in Table 3. Two studies reported results for 45,X from 74 

duplicate cases.30,31 A sensitivity analysis was performed excluding one of these studies,31 

yielding a pooled estimated sensitivity of 98.8% (95%CI 94.3%–100%), specificity of 

99.4% (95%CI 98.7%–99.9%), PPV 13.7% (95%CI 7.0%–43.8%) and NPV 100% (95%CI 

99.994%–100%). The results of the sensitivity analysis are included in Supplemental Table 5 

and Supplemental Table 6.

3.2 | 47,XXY

A total of 16 included studies reported cfDNA results for Klinefelter Syndrome 

(47,XXY).30,32–39,41,44,46,48–50 This represented 11,248 cell-free DNA tests with 62 

confirmed affected pregnancies, 10 false positive tests and 10 false negative tests 

(Supplemental Table 2). The pooled estimated sensitivity was 100% (95%CI 99.6%–100%) 

and specificity was 100% (95%CI 99.9%–100%) (Table 2). The forest plots of included 

studies are reported in Figure 2. The estimated PPV was 97.7% (95%CI 78.6%–100%), 

and NPV was 100% (95%CI 99.999%–100%). The PPV and NPV for detection of 47,XXY 

based on estimates of SCA prevalence are included in Table 3.

Shear et al. Page 5

Prenat Diagn. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 | 47,XXX

A total of 13 included studies reported cfDNA results for triple X syndrome 

(47,XXX).30,33,35–39,41,44,46,48,49 This represented 10,255 cell-free DNA tests with 38 

confirmed affected pregnancies, 18 false positive tests and one false negative test 

(Supplemental Table 3). The pooled estimated sensitivity was 100% (95%CI 96.9%–100%) 

and specificity was 99.9% (95%CI 99.7%–99.99%) (Table 2). The forest plots of included 

studies are reported in Figure 2. The estimated PPV was 61.6% (95%CI 37.6%–95.4%), 

and the NPV was 100% (95% CI 99.994%–100%). The PPV and NPV for the detection of 

47,XXX based on estimates of SCA prevalence are included in Table 3.

3.4 | 47,XYY

A total of nine included studies reported cfDNA results for Jacobs syndrome 

(47,XYY).30,35–38,41,44–46 This represented 8473 cell-free DNA tests and with 22 confirmed 

affected pregnancies, two false positive tests and no false negative tests (Supplemental Table 

4). The pooled sensitivity was 100% (95% CI 91.3%–100%). The pooled specificity was 

100% (95% CI 100%–100%) (Table 2). The forest plots of included studies are reported in 

Figure 2. The estimated PPV was 100% (95%CI 76.5%–100%), and the NPV is 100% (95% 

CI 99.993%–100%). The PPV and NPV for detection of 47,XYY based on the estimated 

prevalence of SCA by age are included in Table 3.

3.5 | Bias assessment

The results of the QUADAS-2 assessment for bias are summarised in Supplemental Figure 

1. The majority of studies (81%, 17/21) had concerns for introduction of bias based on the 

included patient populations, as the majority of published studies on cfDNA to date have 

included high-risk populations for aneuploidy. Two studies (10%, 2/21) had a high concern 

for bias based on the nature of the index test used, as one or more authors stated a potential 

conflict of interest in an association with a company or commercial laboratory performing 

prenatal genetic testing.

4 | DISCUSSION

Cell-free DNA screening is increasingly utilised for prenatal risk assessment of aneuploidies 

in the United States and globally.6 Overall, we found high sensitivity, specificity and high 

NPV for cfDNA in the detection of SCA. PPVs were more variable across SCAs due 

to differing underlying disease prevalence, with often wide confidence intervals. This meta-

analysis adds to the literature in this area as few prior studies have focused specifically on 

cfDNA performance for the detection of SCAs. However, it is important to emphasise that 

as studies meeting inclusion criteria were based primarily on the application of cfDNA to 

populations with greater a priori risk for aneuploidy, this limits generalisability to average 

risk pregnancies.

Estimates of PPVs varied from 14.5% (95%CI 7.0%–43.8%) for 45,X to 100% (95%CI 

76.5%–100%) for 47,XYY. All four SCAs investigated had NPVs exceeding 99.99% 

regardless of the estimated population prevalence and reproductive age. We acknowledge 

that variations in risk of SCA may exist with increasing ovum age6,10,11,28,29 and that 
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such changes can affect estimates of PPV as reflected in Table 3, although when present 

these are generally attenuated relative to the common trisomies. Our findings support that 

cfDNA is a reliable test for ruling out SCA, though false negatives have been reported. 

These findings are overall consistent with previously published studies.1,14,17 However, it is 

important to highlight that positive screening results should be confirmed with diagnostic 

testing considering the population prevalence of SCA and variable PPV, and that false 

positives have been reported.

Many published analyses of the accuracy of cfDNA screening for the common trisomies 

have relied on clinical exams or ultrasound for confirmation of screening results, as the 

common trisomies have strong patterns of phenotypic differences at birth and are usually 

readily diagnosed at delivery.51 Reliance on neonatal exam or ultrasound has limitations 

for SCA though, as these may manifest with milder or less characteristic features in the 

newborn relative to the common trisomies.52 While 45,X may present with a prenatal 

phenotype such as cystic hygroma or bicuspid aortic valve, the prenatal phenotypes for 

47,XXY, 47,XYY or 47,XXX are more likely to be normal.53

Prenatal detection of SCAs is important, as it allows for genetic counseling and preparation 

for an infant that may have physical differences and unique health needs. For patients 

with 47,XXX, this may include assessment for hypotonia, monitoring of developmental 

milestones or evaluation for seizure activity.54 For pregnancies affected by 47,XXY, prenatal 

diagnosis offers the opportunity for genetic counseling and education on associated health 

outcomes such as androgen deficiency and neurocognitive differences. Implications of 

prenatal detection of SCAs and other genetic disorders extend beyond discussions of 

termination of pregnancy to detailed conversations about expected prognosis for those who 

choose to continue, as well as recurrence risk. Prenatal diagnosis also allows early referral to 

appropriate subspecialists at birth. In cases of monosomy X, for example, there is a life-long 

schedule of screening and treatment including early echocardiography.55 A 2019 survey of 

parents who underwent cfDNA with a confirmed SCA found that 88% of respondents felt 

the early referral and interventions were made possible by prenatal diagnosis, which had a 

beneficial effect on their child’s health.25

4.1 | Strengths

There are several strengths of our approach to note. Data extraction, bias assessment 

and abstract and manuscript review were confirmed by two independent reviewers and 

adjudicated by a third reviewer. Unlike some previously published studies, we included only 

studies with confirmatory diagnostic testing. To further minimise reporting bias, we included 

only studies in which diagnostic testing was performed on >80% of study participants.17 

Despite these restrictive selection criteria, the final analysis included over 12,000 cfDNA test 

results, significantly adding to the literature beyond recent published analysis.14

4.2 | Limitations

There are also important limitations of our work to highlight. Because the existing literature 

on cfDNA has primarily included pregnancies at high pretest risk of aneuploidy, our results 

are less generalisable to pregnancies with low pretest risk of aneuploidy. The PPV for 
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each SCA resulted in wide 95% confidence intervals, and PPV varied significantly based 

on estimated prevalence. Application of these results to post-test counseling may therefore 

pose challenges.23 We did not assess accuracy by sequencing the platform, although some 

evidence does suggest this may impact accuracy of the test.14 Finally, we did not include 

studies of multifetal gestations, although reporting of SCA for multifetal gestations was 

generally not available in the commercial setting during the time period defined in the study 

selection criteria of this analysis.

5 | CONCLUSION

This systematic review and meta-analysis demonstrate that cfDNA testing for SCA has 

high sensitivity and specificity in the prenatal detection of 45,X, 47,XXY, 47,XYY, and 

47,XXX, with NPV exceeding 99.99% for all SCA included. Further confirmatory studies in 

average risk pregnancies are needed, as these estimates of test performance are derived from 

pregnancies at high pretest risk for aneuploidy.
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Key points

What’s already known about this topic?

• The test performance of cfDNA for SCAs are incompletely understood, with 

prior studies often based upon small cohorts and varying technologies.

What does this study add?

• cfDNA for prenatal detection of sex chromosome aneuploidies is both highly 

sensitive and specific, but with differences in positive predictive value due to 

varying disease prevalence.

• Further confirmatory studies in average risk pregnancies are needed, as these 

estimates of test performance are derived from the existing literature which 

largely reflects pregnancies at high pretest risk for aneuploidy.
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FIGURE 1. 
PRISMA diagram of study selection.
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FIGURE 2. 
cfDNA accuracy for prenatal detection of sex chromosome aneuploidy. Data are presented 

as author (year) with calculated sensitivity and specificity displayed as point estimates 

with 95% confidence intervals. Forest plots for sensitivity and specificity are included 

for 45,X (A,B), 47,XXY (C,D), 47,XXX (E,F) and 47,XYY(G,H). The overall estimated 

pooled summary statistic. I^2 = variation in the estimated pooled sensitivity or specificity 

attributable to heterogeneity.
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