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A B S T R A C T

The COVID-19 pandemic has illustrated the unprecedented challenges of ensuring the continuity of operations
in a supply chain as suppliers’ and their suppliers stop producing due the spread of infection, leading to
a degradation of downstream customer service levels in a ripple effect. In this paper, we contextualize a
dynamic approach and propose an optimal control model for supply chain reconfiguration and ripple effect
analysis integrated with an epidemic dynamics model. We provide supply chain managers with the optimal
choice over a planning horizon among subsets of interchangeable suppliers and corresponding orders; this will
maximize demand satisfaction given their prices, lead times, exposure to infection, and upstream suppliers’
risk exposure. Numerical illustrations show that our prescriptive forward-looking model can help reconfigure
a supply chain and mitigate the ripple effect due to reduced production because of suppliers’ infected workers.
A risk aversion factor incorporates a measure of supplier risk exposure at the upstream echelons. We examine
three scenarios: (a) infection limits the capacity of suppliers, (b) the pandemic recedes but not at the same pace
for all suppliers, and (c) infection waves affect the capacity of some suppliers, while others are in a recovery
phase. We illustrate through a case study how our model can be immediately deployed in manufacturing
or retail supply chains since the data are readily accessible from suppliers and health authorities. This work
opens new avenues for prescriptive models in operations management and the study of viable supply chains
by combining optimal control and epidemiological models.
1. Introduction

The COVID-19 pandemic has illustrated the unprecedented chal-
lenges of ensuring the continuity of operations in a supply chain as
suppliers’ and their suppliers stop producing due to the spread of in-
fection, leading to a degradation of downstream customer service levels
and the ripple effect (Llaguno et al., 2021). This study was motivated
by the practical example of a French subsidiary of a Belgian chemical
company which packages some intermediate product in powder form
in big bags for delivery to other customers. The big bags are sourced
from an international supplier in Turkey. The manufacturing of big
bags is highly labor intensive. In April 2020, the plant in Turkey was
closed due to the infection of its labor force. Supply had to switch
to a plant in Bangladesh. The lead time for delivery to the French
company increased from three to 12 weeks. After some months, the
Bangladeshi plant in turn had to close. The delivery of such big bags
was then entrusted to a Chinese plant for which the lead time was now
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14 weeks. The French company was able to handle such dire situation
through constant high level communication with suppliers, delaying
some deliveries to its customers and fast-tracking a batch of big bags
using aerial transport. In this example, a manifestation of both the
ripple effect and the supply chain reconfiguration can be observed.

Disruptions at one supplier upstream frequently have a cascading
effect that propagates through the whole supply chain network (Sinha
et al., 2020; Nuss et al., 2016; Garvey and Carnovale, 2020; Lücker
et al., 2020). As shown by the COVID-19 pandemic (which has now
been demoted to the status of an epidemic), epidemic outbreaks qualify
as a distinctive source of such disruptions, which then ripple down the
chain to the final customer (Ivanov, 2020; Sawik, 2022). The ripple
effect occurs when a disruptive event triggers a wave of disturbances
at different echelons (Kinra et al., 2020; Li and Zobel, 2020; Park
et al., 2021; Llaguno et al., 2021; Ivanov et al., 2021) in the supply
chain (Dolgui et al., 2018; Li and Zobel, 2020; Sinha et al., 2020;
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Li et al., 2021; Park et al., 2021). Therefore, it becomes crucial for
managers to both understand how their supply chain’s operations can
be affected by the ripple effect, so as to prepare for and mitigate the
disruptions by reconfiguring their supply base (Choi, 2021; Paul and
Chowdhury, 2021; Paul et al., 2021).

Proactive approaches to supply chain risk management involve
taking preventive measures to mitigate risks before they occur, while
reactive approaches involve responding to disruptions after they hap-
pen. The use of forward-looking prescriptive tools can be applied
to both strategies by providing a means to anticipate and plan for
potential disruptions proactively.

In the literature, disruptions and associated ripple effects have
been usually related to the context of supply chain resilience. During
the COVID-19 pandemic, a novel concept of supply chain viability
has been developed (Ivanov, 2022; Ivanov and Keskin, 2023; Sawik,
2023). However, the research on the ripple effect in the setting of
viability is still in its infancy — our study contributes to this important
research area. Viability is an extended resilience perspective related
to deep uncertainty and severe crises (Ivanov and Dolgui, 2020; Lowe
et al., 2020; Ivanov et al., 2023). In optimization terms, the principal
difference between resilience and viability can be explained as follows.
Resilience is the ability to recover after a disruption (e.g., an earth-
quake) and return to the initial state. Viability is the ability to operate
and keep serving markets with products and services in the presence
of a long-term disruption or crisis through structural adaptations and
reconfigurations. While literature is rich on models related to resilient
recovery strategies, our study is among the first papers that consider
the viability perspective.

Our study develops a model that can assist a focal company in
preventively reconfiguring the supply base to take into account the
ripple effect that arises from an epidemic context. The types of supply
chains to which this model can be applied includes all those for
which there exist alternative suppliers of a substitutable product which
requires manpower to be produced. For example, foundries manu-
facturing wafers for electronic chips are not affected but the plants
checking the quality of those chips would (Hille, 2021). Other examples
include many food processing industries as well as labor-intensive
manufacturing sectors. The model accounts for the impact of infection
dynamics on the production capacity at the focal company and sup-
pliers and from the ripple effect that results from the propagation of
epidemic disruptions along each supplier’s supply network.

The model is prescriptive and proactively offers a focal company the
optimal choice over a planning horizon among subsets of interchange-
able suppliers, given their prices, lead times, exposure to infection
risks, and their upper-level suppliers’ risk exposure. It combines two
different models: one is an epidemiological model, while the other is
an optimal control one. Such a combination allows us to provide a
forward-looking risk decision support tool. This departs from the usual
operations management methods that propose decision-support models
built on extrapolations using data from the past.

Our model and managerial insights represent an innovative contri-
bution to supply chain management, with an immediate and practical
application to supply base dynamic reconfiguration in a epidemic con-
text with mediation of the ripple effect. Our contribution also extends
the research on disruptions, ripple effect, supply chain reconfiguration
and the selection of suppliers.

To conclude, to the best of our knowledge, no studies have com-
bined an epidemiological model with an optimal control one in the
context of supply chain viability (as recommended in Ghadge et al.,
2012). Our model provides both a risk characterization and decision
support framework for selecting suppliers in an epidemic context; in
addition, this model does not rely on a subjective Bayesian degree of
belief (Paté-Cornell and Dillon, 2006). The main contributions of our
2

study are as follows:
• A dynamic approach to supply chain reconfiguration and ripple
effect analysis in an epidemic context contextualized and formal-
ized using continuous optimization and differential equations for
both epidemic and supply chain modeling.

• A model for ripple effect analysis and mitigation in the epidemic
context within the setting of viability.

• A forward-looking, proactive model for supply chain reconfigura-
tion that integrates disruption dynamic prediction and recovery
decisions and considers a multi-echelon supply base.

The remainder of the paper is organized as follows. After reviewing
the literature in Section 2, we describe the problem that we aim to
solve in Section 3. We then describe the model, which combines a
generic epidemic framework in Section 4.1 with an optimal control
model in Section 4.2. In Section 5, we show how the proposed model
helps a supply network to recover and become viable. We then perform
a sensitivity study in Section 6 through three infection scenarios: (a)
when the epidemic limits the ability of all suppliers to fulfill the focal
firm’s orders, (b) when the epidemic recedes but not at the same
rate in all suppliers, and (c) when infection waxes and wanes thus
affecting suppliers differently. We further illustrate how such a model
can be implemented through a case study in Section 7. We conclude
in Section 8 by summarizing the major results and outlining future
research avenues.

2. Literature review

We build on and contribute to three research streams: supply base
reconfiguration under disruptions (including supplier selection), impact
of epidemic disruptions in supply chains and the corresponding rip-
ple effect, and epidemic models in supply chains. The corresponding
references are listed in Table 1. We organize our literature review
accordingly.

2.1. Supplier base reconfiguration under disruptions

Supply network disruption is generally defined as an unplanned
and unanticipated event that disrupts the normal flow of goods and
materials in a supply network (Garvey et al., 2015; Ivanov and Dol-
gui, 2020). Few papers propose forward-looking prescriptive tools to
help managers in reconfiguring their supplier base. Esmaeili-Najafabadi
et al. (2019) investigate supplier selection under two possible attitudes
of the decision-maker with respect to risk: risk neutrality and risk
aversion. The results flag the impact of the decision maker’s attitude on
supplier selection and order quantity. Given the increased complexity of
disruptions, Kaur and Singh (2021) propose a multistage hybrid model
for integrated supplier segmentation, selection, and order allocation.

As noted by Naqvi and Amin (2021), there is an extensive literature
on supplier selection; some of these studies focus on resilience and
disruption risks (Hamdi et al., 2018; Esmaeili-Najafabadi et al., 2019,
2021; Kaur and Singh, 2021; Govindan et al., 2017, to cite a few of
them). We now focus on the relevant ones.

Torabi et al. (2015) propose a forward-looking, mixed possibilistic,
two-stage stochastic programming model with recourse for resilient
supplier selection. The model requires data about proactive supplier
fortification, suppliers’ business continuity plans, and prepositioned
inventories. This work has been extended in Vahidi et al. (2018), which
considers both the sustainability and resilience criteria in supplier se-
lection. The above papers address single occurrence disruptions where
mitigation and recovery decisions are separated in time (Aldrighetti
et al., 2023), whereas we consider disruptions which extend in time,
such as epidemics. However, other factors such as the recovery time
and lead time at the different layers of the network are not accounted
for, even though they are also critical in practical settings (Li et al.,
2023).

Kellner et al. (2019) propose a multi-objective Pareto optimiza-

tion regarding supplier choice, which is done by using a nonstandard
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Table 1
Summary of research works on viability, ripple effect, reconfiguration and supplier
selection, and epidemics and optimal control models in supply chain management
literature.

References Viability Ripple Reconfig. Epidemic &
(alphabetical order) effect supp. selec. cont. models

Aldrighetti et al. (2023) x
Bakare et al. (2014) x
Bensoussan et al. (2011) x
Brusset et al. (2022b) x
Brusset et al. (2022) x
Brusset et al. (2023) x
Buonomo et al. (2014) x
Cavalcante et al. (2019) x
Chick et al. (2008) x
Choi (2021) x
Deng et al. (2019) x
Dolgui et al. (2018) x x
Enayati and Özaltın (2020) x
Esmaeili-Najafabadi et al. (2019) x
Esmaeili-Najafabadi et al. (2021) x
Garvey et al. (2015) x x
Garvey and Carnovale (2020) x
Govindan et al. (2017) x
Govindan et al. (2020) x
Gupta et al. (2021) x
Hamdi et al. (2018) x
Hosseini et al. (2019) x
Ivanov et al. (2018) x
Ivanov and Dolgui (2020) x x x
Ivanov (2020) x
Ivanov et al. (2021) x x
Ivanov (2022) x x
Ivanov and Dolgui (2021) x
Ivanov et al. (2023) x x
Llaguno et al. (2021) x
Kaur and Singh (2021) x
Kellner et al. (2019) x
Kinra et al. (2020) x
Li and Zobel (2020) x
Lowe et al. (2020) x x
Lücker et al. (2020) x
Mamani et al. (2013) x
Nagurney (2021) x
Naqvi and Amin (2021) x
Nuss et al. (2016) x
Park et al. (2021) x
Paul and Chowdhury (2020) x
Paul and Chowdhury (2021) x x
Paul et al. (2021) x
Queiroz et al. (2022) x
Rothan and Byrareddy (2020) x
Sawik (2022) x
Sawik (2023) x
Ouardighi et al. (2021) x x
Shamsi et al. (2018) x
Sinha et al. (2020) x
Torabi et al. (2015) x
Torabi et al. (2018) x
Vahidi et al. (2018) x
Li et al. (2023) x
Yusuf and Benyah (2012) x
Our paper x x x x

portfolio selection problem with past supplier data and four criteria:
purchasing cot, logistic service, risk, and sustainability. Hosseini et al.
(2019) propose a stochastic multi-objective optimization model for
resilient supplier selection and demand allocation using probabilistic
graphical model for computing the probability disruption of the sup-
plier. However, none of the above explicitly incorporate disruptions
resulting from the ripple effect from suppliers that are further upstream.

Cavalcante et al. (2019) propose a combined simulation machine
learning approach for supplier selection; this approach is based on
dynamic analysis of supplier performance risk profiles according to on-
time delivery. A ranking of suppliers is dynamically established using
3

machine learning techniques on prior records of delivery. However, the
use of past data makes it less useful in an epidemic context in which
there are new waves of infections with different effects on suppliers.
Overall, our review of the literature reveals the paucity of works
on resilient supplier selection that consider the particular features of
pandemic or epidemic disruptions and their propagation which extend
over a period of time.

2.2. Epidemic disruptions in supply chains and the ripple effect

The pandemic context has spawned a relatively large number of
studies that have mostly described the pandemic’s impact on supply
chains and ex-post remedies or mitigating measures, rather than sug-
gesting prescriptive, proactive measures (Rothan and Byrareddy, 2020;
Queiroz et al., 2022; Paul and Chowdhury, 2020; Ivanov et al., 2021;
Govindan et al., 2020; Sinha et al., 2020; Nagurney, 2021).

Such literature underlines the necessity of considering epidemic
dynamics in decision-support models (Paul and Chowdhury, 2021;
Ouardighi et al., 2021).

Nagurney (2021) addresses the pandemic context of supply chain
disruptions. The proposed model analyzes a supply network through
the modeling of competition for a common labor pool under illness-
driven constraints. This study does not consider the supply chain
manager, who must contend with uncertain or delayed inputs. Nor
does it consider the ripple effect as a major supply chain disruption
driver (Choi, 2021; Ivanov, 2020; Sawik, 2022).

Regarding specific features of our study, i.e., product substitution
and multi-stage network, the research is scarce. Gupta et al. (2021)
consider product substitutability from a retailer’s perspective in the
context of supply disruption. But only the price decisions of the retailer
and non-disrupted retailer are studied.

In Deng et al. (2019) the propagation of risk along a food supply
chain is countered by countermeasures involving the reorganization of
the modules of the supply chain so as to privilege the best-performing
ones according to data envelopment analysis. Another approach is
presented in Garvey and Carnovale (2020), which uses the conditional
probability functions of the inventory ordering decisions and the binary
probabilities for risks occurring in a Bayesian network, here deriving
the results through numerical simulations.

To summarize, the literature on the COVID-19 pandemic is char-
acterized by several distinct aspects. First, mitigation and recovery
decisions happen simultaneously. Second, these decisions are taken
in the presence of disruption and prediction of disruption dynamics.
Especially the last aspect has not been addressed in literature. We
address this gap by proposing a combination of epidemiological and
reconfiguration models.

2.3. Epidemic and optimal control models in supply chains

Only a few supply chain or operations management models have
integrated epidemic models. The models proposed in Torabi et al.
(2018), Chick et al. (2008), and Mamani et al. (2013) consider con-
tract design problem with multiple governments and possibility of
intranational transmission of the disease. Yusuf and Benyah (2012)
and Buonomo et al. (2014) determine by an optimal control model
the equilibrium between infection and the cost of vaccination and
treatment strategies. Bakare et al. (2014) finds the optimal treatment
and educational campaign strategies in an SIR optimal control model.
All such models only consider a macro-economic or social policy frame-
work and implicitly assume that production facilities are not affected by
the epidemic. Shamsi et al. (2018) looks into the procurement of vac-
cines and uses an optimal control model to minimize the procurement
and social costs using the SIR epidemic model. Whereas Enayati and
Özaltın (2020) addresses the optimal influenza vaccine doses number
for distribution.
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Because of its ability to address optimization problems by combin-
ing several objectives at a time while taking into account dynamic non-
linear feedback effects, optimal control theory has been frequently used
in the modeling and analysis of dynamic operational systems (Ivanov
et al., 2018) such as, scheduling and planning problems (Dolgui et al.,
2018). In particular, Ivanov et al. (2021) illustrates how a produc-
tion environment can support highly flexible individual jobs when a
dynamically reconfigurable process design and operation sequencing
system is used. Moreover, optimal control has been extensively used
in modeling production–inventory systems (Bensoussan et al., 2011;
Ouardighi et al., 2021).

Since most of the known epidemic control models are based on
differential equations, optimal control is a convenient method for repre-
senting both epidemic dynamics and supply chain dynamics within the
unified theory of continuous optimization. For example, Brusset et al.
(2022) shows how a production manager can optimize the effort in
prophylactic and social distancing measures for a plant or facility work-
force to balance the corresponding cost with the demand addressed to
the plant. Brusset et al. (2022) evaluate and quantify the ripple effect
when an epidemic impacts the production capacity of suppliers. Brusset
et al. (2023) present models which describe how, in time, a supply
chain manager must deploy prophylactic measures. However, all these
papers do not address how a supply chain can be reconfigured in the
case of disruptions due to epidemics.

3. Problem context and statement

Our problem and model are motivated by the following practical
context: A network today has a tree structure with hundreds, if not
thousands, of leaves that can all suffer from disruptions (Nuss et al.,
2016). These disruptions ripple down to the trunk at varying speeds,
thus affecting the overall output to various degrees over time. The
output at the focal company – as well as suppliers and their own
suppliers – depend on the presence of workers at the production sites.
Workers’ presence depends on an epidemic’s dynamics: the workforce
availability decreases during an infection wave and increases when this
wave ebbs. The quarantines imposed by governmental authorities also
impact worker presence which can be forecast based on curve fitting of
the pandemic dynamics (Nikolopoulos et al., 2021).

To mitigate the effects of such disruptions and so increase the viabil-
ity of the whole network, managers need to both anticipate the capacity
disruptions and proactively modify the network by reconfiguring the
supplier base. To do so, early warnings about disruptions are required;
this can be obtained using epidemic forecast models. In the case of
the COVID-19 pandemic, as in any type of epidemic, dynamic effects
have to be considered. Specifically, in the epidemic setting, mitigation
and reaction decisions are integrated and based upon prediction of
disruption dynamics.

We state our problem as follows: A focal company needs to source
a component from different suppliers to produce final products and
satisfy demand, which varies over time. We consider a multi-echelon
supplier base. The lead time and unit product costs of suppliers at the
upstream echelons and to the focal company are known. The focal com-
pany output and that of suppliers at different upstream stages depend
on the number of workers, which may vary because of the epidemic’s
dynamics. The latter can be forecast using an epidemiological model
ahead of the actual capacity disruptions because of missing workers,
allowing for time to reconfigure the supplier base. We assume in this
paper that the focal company can turn to a set of alternative (backup)
suppliers which can all provide substitute products. The selection of
the backup suppliers is based on price, lead time, exposure to infection
risks, and their upper-level suppliers’ risk exposure. The objective is to
minimize the total penalty for not matching supply and demand, the
total sourcing costs, and the risk among the selected suppliers through
4

a risk aversion function. i
The main purpose of the model is to equip supply chain managers
with the optimal choice over a planning horizon among the subsets
of interchangeable suppliers and corresponding orders. Doing this will
maximize the demand satisfaction level of the focal firm given its
exposure to infection, and upstream suppliers’ risk exposure and so
preserve the viability of the whole network. As the epidemic waxes and
wanes, a manager will run the model again for a new set of suppliers
and orders over a new planning horizon. The main assumptions in this
problem are as follows:

• A focal company has a choice of substitutable products that
can be purchased from 𝑁 suppliers exposed to epidemic-induced
disruption risk.

• The inventory is empty at the beginning of the planning horizon
[0, 𝑇 ], and all products have a shelf life largely superior to the
planning horizon.

• Suppliers have different delivery lead times, production capaci-
ties, risk exposure to capacity loss, and prices.

• The supply structure of the 𝑁 first-tier suppliers is known.
• Demand for focal company products varies over time.
• Production at any supplier is directly proportional to the produc-

tivity of the healthy workers (Brusset et al., 2022b).

4. Combination of an epidemiological and optimal control model

In the next two subsections, we present the combined epidemiolog-
ical and optimal control models.

4.1. An epidemic framework

There is a growing interest in understanding the mutual relation be-
tween epidemics and economics, and several studies have determined
the optimal policy measures to control the epidemic spread and limit
the negative effects on the economic system (see, e.g., Capasso et al.,
2013; Goldman and Lightwood, 2002; La Torre et al., 2020, 2021a,b;
Ma, 2020; Nikolopoulos et al., 2021).

To model the epidemic spread, any susceptible–infected (SI) frame-
work in which the individuals can be either infectives or susceptibles
(as they are named in the epidemiological literature) to the disease but
cannot acquire permanent immunity are suitable. The SI epidemiolog-
ical models represent a general framework that can analyze disease
dynamics and, depending on the particular structure of the model,
capture complex behavior. They are best suited for discussing the im-
plications of infectious diseases that do not confer immunity, including
sexually transmitted diseases or diseases caused by bacteria, seasonal
influenza, and other diseases characterized by seasonal patterns.

Note that several epidemiological models can be included into the
general SI framework used in this work. The aim is to be able to
model the spread of infection over time in a limited, homogeneous
population that is sharing the same location. This framework allows
for modeling how, over time, the workers in a facility become unable
to work because, since they are not isolated and have contacts with
people outside, they become infected. In this framework, both infected
and quarantined workers are taken into account because they impact
production capability, as can be observed in the COVID-19 pandemic
and in the later epidemic infection waves (Cookson and Barnes, 2022).

If we denote by 𝐼(𝑡) the number of infected people at time 𝑡, by 𝑆(𝑡)
he number of susceptible people at time 𝑡, and by 𝑀 the size of the
otal population, we have 𝑆(𝑡) = 𝑀 − 𝐼(𝑡). The model takes the general
orm (Capasso, 2008):
{

𝐼̇(𝑡) = 𝑓 (𝐼(𝑡)),
𝐼(0) = 𝐼0,

(4.1)

ith 𝐼̇(𝑡) > 0 implying a local growth of the epidemic and decrease
f 𝐼̇(𝑡) < 0. Different factors influence 𝐼̇(𝑡): infection rate, effort for

mplementing prophylactic measures, recovery rate, or vaccination
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campaign efforts. From a practical perspective, it is always possible to
approximate 𝑓 at the first order using Taylor’s formula and, following
ocal linear approximation over a generic interval [𝑇𝐼 , 𝑇𝐹 ], get 𝐼̇(𝑡) =
𝛼[𝑇𝐼 ,𝑇𝐹 ]𝐼(𝑡) with 𝐼(𝑇𝐼 ) = 𝐼𝑇𝐼 where 𝛼[𝑇𝐼 ,𝑇𝐹 ] is the growth rate of
nfection, with the closed-form solution

(𝑡) = 𝐼𝑇𝐼 𝑒
𝛼[𝑇𝐼 ,𝑇𝐹 ](𝑡−𝑇𝐼 ). (4.2)

Note that in the absence of any intervention to curb the spread of the
nfection (such as a vaccination campaign), 𝛼[𝑇𝐼 ,𝑇𝐹 ] = 𝛽[𝑇𝐼 ,𝑇𝐹 ] − 𝛿[𝑇𝐼 ,𝑇𝐹 ],
here 𝛽[𝑇𝐼 ,𝑇𝐹 ] and 𝛿[𝑇𝐼 ,𝑇𝐹 ] are the infection and the recovery rate during

he interval [𝑇𝐼 , 𝑇𝐹 ], respectively. This approach is sufficiently general
o capture any epidemiological model described by the function 𝑓 , as
ell as to capture the different waves of an epidemic in time.

.2. The optimal control model

Consider 𝑁 suppliers that a focal company has identified to source a
et of substitutable products. The demand of the focal company can be
ulfilled by any of the considered substitutable products indifferently.
sually, a product is sourced from a principal supplier, and the others

epresent backup sources (as defined in Torabi et al., 2015; Vahidi
t al., 2018). Therefore, for the sake of simplification, they will not be
istinguished in the model.

The notation used in our model is presented in Table 2. Note that
𝑖(𝑡) = 0 means that at time 𝑡, no product is ordered and departing
rom the 𝑖th supplier. Furthermore, we suppose that 𝑢𝑖(𝑡) = 0 for any
< 0 and 𝑡 > 𝑇 − 𝑇𝑖. To maximize the viability of the supply chain,
e define an objective function (4.3) to minimize the following: (a)

he supply at risk of the selected suppliers through the risk aversion
unctions 𝑅𝑖(.); (b) the penalty for not matching the supply with the
emand; (c) the fixed cost of managing the selected suppliers; (d) the
urchasing cost; (e) and the holding inventory cost. Note that 𝑅𝑖(.) is

used by the focal company to assess the supply at risk of the 𝑖th supplier
and, when combined with the second term, enhance the viability of the
supply chain over the whole planning horizon 𝑇 . This function will be
detailed in Section 4.4. Moreover, as can be noted from (b) and (c),
the supply of the focal company depends on the number of available
workers in its plant at time 𝑡, 𝑆(𝑡) = 𝑀 − 𝐼(𝑡). We emphasize that
this number is a function over time of the number of infected at the
beginning of the planning horizon and of the infection and recovery
rates (𝛽 and 𝛿) at the facility of the focal company.

min
𝑢𝑖 (𝑡),𝑦𝑖 ,
𝑖=1,…,𝑁

𝐽 (𝑢𝑖(𝑡), 𝑦𝑖) ∶=
𝑁
∑

𝑖=1
∫

𝑇

0
𝑅𝑖(𝑢𝑖(𝑡), 𝑡) 𝑑𝑡

+ 𝜉 ∫

𝑇

0

(

𝜃
𝑀 − 𝐼(𝑡)

𝑀
𝐾(𝑡) −𝐷(𝑡)

)2
𝑑𝑡 +

𝑁
∑

𝑖=1
𝛾𝑖𝑦𝑖

+
𝑁
∑

𝑖=1
𝑝𝑖 ∫

𝑇

𝑇𝑖
𝑢𝑖(𝑡 − 𝑇𝑖) 𝑑𝑡

+ ℎ∫

𝑇

0

[

𝜃
𝑀 − 𝐼(𝑡)

𝑀
𝐾(𝑡) −𝐷(𝑡)

]+
𝑑𝑡,

(4.3)

subject to

𝐾(𝑡) =
𝑁
∑

𝑖=1
𝑢𝑖(𝑡 − 𝑇𝑖), 𝑡 ∈ [0, 𝑇 ] (4.4)

𝑢𝑖(𝑡) ≤ 𝜃𝑖(𝑀𝑖 − 𝐼𝑖(𝑡))𝑦𝑖, 𝑖 = 1,… , 𝑁, 𝑡 ∈ [0, 𝑇 − 𝑇𝑖], (4.5)

𝑢𝑖(𝑡) = 0, 𝑖 = 1,… , 𝑁, 𝑡 ∈ [𝑇 − 𝑇𝑖, 𝑇 ], (4.6)

𝐼̇𝑖(𝑡) = 𝑓𝑖(𝐼𝑖(𝑡)), 𝑖 = 1,… , 𝑁, 𝑡 ∈ [0, 𝑇 ], (4.7)

𝐼̇(𝑡) = 𝑓 (𝐼(𝑡)), 𝑡 ∈ [0, 𝑇 ], (4.8)

𝑢𝑖(𝑡) ≥ 0, 𝑖 = 1,… , 𝑁, 𝑡 ∈ [0, 𝑇 ], (4.9)
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𝐾(𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇 ], (4.10)
Table 2
Notations.

Time-independent parameters

𝑁 Number of suppliers considered by the focal company
𝑇 Length of the planning horizon
𝑀 Total number of workers at the facility of the focal company
𝛽 Infection rate at the facility of the focal company
𝛿 Recovery rate from infection at the facility of the focal company
𝑀𝑖 Total number of workers at the facility of the 𝑖th supplier, 𝑖 = 1…𝑁
𝛽𝑖 Infection rate in supplier 𝑖’s location, 𝑖 = 1…𝑁
𝛿𝑖 Recovery rate from infection in supplier 𝑖’s location, 𝑖 = 1…𝑁
𝑇𝑖 Lead time of the 𝑖th supplier, 𝑖 = 1…𝑁 . For simplicity,

𝑇1 ≤ 𝑇2 ≤ … 𝑇𝑁
𝜃𝑖 Productivity rate per worker at the facility of the 𝑖th supplier,

𝑖 = 1…𝑁
𝜉 Penalty for not matching supply with demand at the focal

company, 𝑖 = 1…𝑁
𝜃 Number of units produced from each input unit supplied to the

focal company
𝑝𝑖 Unit product price purchased from supplier 𝑖, 𝑖 = 1…𝑁
𝛾𝑖 Fixed cost of managing the 𝑖th supplier, 𝑖 = 1…𝑁

Time-dependent parameters

𝐷(𝑡) Demand of the focal company at time 𝑡, 𝑡 ∈ [0, 𝑇 ]
𝐼(𝑡) Number of infected workers at the focal company at time 𝑡,

𝑡 ∈ [0, 𝑇 ]
𝑆(𝑡) Number of healthy workers at the focal company at time 𝑡,

𝑡 ∈ [0, 𝑇 ] (𝑆(𝑡) = 𝑀 − 𝐼(𝑡))
𝐼𝑖(𝑡) Number of infected workers at the facility of the 𝑖th supplier,

𝑖 = 1…𝑁 , at time 𝑡, 𝑡 ∈ [0, 𝑇 ]
𝑆𝑖(𝑡) Number of healthy workers at the 𝑖th supplier at time 𝑡, 𝑡 ∈ [0, 𝑇 ]

(𝑆𝑖(𝑡) = 𝑀𝑖 − 𝐼𝑖(𝑡))

Decision variables

𝑦𝑖 = 1 if the 𝑖th supplier, 𝑖 = 1…𝑁 , is selected; 0, otherwise
𝑢𝑖(𝑡) Quantity of product leaving the 𝑖th supplier of the focal company,

𝑖 = 1…𝑁 , at time 𝑡, 𝑡 ∈ [0, 𝑇 ]
𝐾(𝑡) Total quantity of product received by the focal company at time 𝑡,

𝑡 ∈ [0, 𝑇 ]

𝑦𝑖 ∈ {0, 1}, 𝑖 = 1,… , 𝑁. (4.11)

This is an optimal control problem with mixed variables and delays.
Constraint (4.4) determines the total supply of the focal company.
Constraint (4.5) caps the quantity sent by each supplier 𝑖 at time 𝑡
to the quantity the latter can produce given the number of available
workers at its facility, 𝑆𝑖(𝑡) = 𝑀 − 𝐼𝑖(𝑡). As such, for each supplier 𝑖,
this quantity is a function over time of the number of infected at the
beginning of the planning horizon and of the infection and recovery
rates, (𝛽𝑖 and 𝛿𝑖) at its facility location. Constraint (4.6) considers
only the quantities delivered to the focal company during the planning
horizon. Constraints (4.7) and (4.8) express the dynamics in the number
of infected workers in each supplier’s facility and in the focal company
facility respectively. They are based on the functions 𝑓 and 𝑓𝑖 that
describe the epidemiological model at the facility of the focal company
and each supplier 𝑖’s location, respectively. Constraints (4.9)–(4.11) are
domain constraints.

Having defined what happens at the focal firm, we now turn to
understanding how the epidemic impacts upstream suppliers. Consider
one of the first upstream suppliers of the focal firm. As decision maker
in his own right, this supply firm receives inputs and components from
upstream suppliers. This firm is also at risk of not receiving goods from
an upper level of suppliers and so suffer from disruption at its own
production facility because of infected workers.

Hence, without loss of generality, we can state that an upstream
supplier, as decision maker, can also use our model, here represented by
(4.3), subject to the constraints in (4.4)–(4.11). Obviously, this applies
to any supplier of any layer 𝑗 of a given supply network. Indeed, any
supplier should pursue an objective similar to the one at the focal
company.
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4.3. Accounting for the upper layers of the supply chain

Let us consider a supplier 𝑖 at the layer 𝑗 of the focal company’s
upstream supply chain. We denote by 𝐾𝑗

𝑖𝑝 the set of suppliers 𝑘 of
supplier 𝑖 providing a part 𝑝 and 𝐶𝑗

𝑖 the set of parts needed by supplier
𝑖 to satisfy the demand. If 𝑢𝑗+1𝑘 (t) is the quantity of part 𝑝 leaving the
facility of supplier 𝑘 at the layer 𝑗 + 1 at time 𝑡 and 𝑇𝑘 is the lead time
of supplier 𝑘 then the quantity 𝑢𝑗𝑖 (t) of the product that can be obtained
from supplier 𝑖 verifies the following inequality:

𝑢𝑗𝑖 (𝑡) ≤ 𝑀𝑖𝑛𝑝∈𝐶𝑗
𝑖

∑

𝑘∈𝐾𝑗
𝑖𝑝

𝑢𝑗+1𝑘 (𝑡 − 𝑇𝑘) (4.12)

Note that 𝑢𝑗𝑖 and 𝑢𝑗+1𝑘 should both verify inequality (4.5) because the
roduced quantity in any supplier facility is restricted by the number of
ealthy workers. For example, for 𝑗 = 1, 𝑢1𝑖 and 𝑢2𝑘 represent for supplier

𝑖 the quantity that this supplier can deliver to the focal company and the
quantity that can be received from its supplier 𝑘, respectively. Hence,
𝑢1𝑖 is not only capped by the loss in production capacity of supplier 𝑖 in
layer 1 of the focal company upstream supply chain, but it can also be
limited by the loss of capacity of the suppliers in layer 2. This applies
to all suppliers at the different layers of the focal company upstream
supply chain. More importantly, this allows us to capture the ripple
effect because of the loss of capacity resulting from the infection of
workers at the various upper nodes of the supply chain over time. So if,
for example, the supplier 𝑘 of a supplier 𝑖 of the focal company is unable
to provide the full quantity of a particular part (or service), supplier 𝑖
can still consider other supply options. However, the possible different
lead times ripple down to the focal company, which can no longer be
delivered the needed quantity on time.

What we show here is that for a focal firm to place an order for a
product needed at time 𝑡, the focal firm must be aware, at time 𝑡 - 𝑇𝑖,
not only of the number of infected at the facility of each tier 1 supplier
𝑖 (next level up node in the supply chain), but also of the availability
of the parts needed for its production which, in turn, depends on the
number of infected at the suppliers’ facilities. The focal firm must be
made aware of the same availability at the tier 2 suppliers (two levels
up) and with the corresponding lead time. By repeating this exercise,
we can easily see that for a product that has 3 or 4 levels of suppliers,
as in Nuss et al. (2016), the system requires constant and updated
information about the number of infected workers at each level, not
only in time 𝑡, but also in prior periods, given the lead times for any
correct orders and deliveries to take place. Casual empirical evidence
from managers and the motivating example in introduction show that
managers have been engaging in intense and continuous requests for
extra information about lead times, recovery times, and availabilities
from the upper levels in the supply chain. It is arguably extremely
unlikely that a decision maker at a focal firm will have the needed
information to accurately assess the ripple effect risk exposure due to
the propagation of loss of capacity faced by suppliers at different levels
of the supply chain.

This is clearly a tall order for a supply chain with four to six levels,
as evidenced in Nuss et al. (2016). Thus, we propose to incorporate this
information ‘‘short-sightedness’’ in the selection of suppliers through a
risk aversion function.

4.4. Definition of the risk aversion factor

The risk aversion function introduced in the objective function is
expressed as the sum of the quantity of product received from each
supplier times the associated risk aversion factor (RAF). The latter
represents a proxy for evaluating the disruption risk that a specific first-
tier supplier might cause to the focal company. It takes into account the
risk of a first-tier supplier as assessed through the possible maximum
loss of capacity to deliver on time a needed quantity. Therefore, it is
6
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based on the maximum loss of capacity stemming from the propagation
of disruption across the supply chain including the first-tier supplier of
the focal company and its upper-level suppliers, and hence it embeds
an assessment of the ripple effect exposure (REE). At this level, it is
worth noting that the RAF associated with a first-tier supplier 𝑖 does
not distinguish the risk among its upper-level suppliers but aggregates
it into a single time-independent factor that is hereafter denoted by 𝑎𝑖.

As such, 𝑎𝑖 is a proxy of the REE of the upstream supply chain of the
first-tier supplier 𝑖 based on the exposure of its upper-level suppliers to
epidemic risk. It is determined following the scheme proposed in Kinra
et al. (2020) but based on the possible maximum loss of capacity, not
of profit.

As mentioned above,

𝑅𝑖(𝑢𝑖(𝑡), 𝑡) = 𝑢𝑖(𝑡)𝛺𝑖(𝑡), (4.13)

where

𝛺𝑖(𝑡) = 𝑒−𝜙
(1−𝛽𝑖 )𝑆𝑖 (𝑡)

𝑎𝑖𝑀𝑖 (4.14)

is the RAF, with 𝑎𝑖 as a proxy for the risk exposure of supplier 𝑖 from
its upper-level suppliers and 𝜙, a scaling parameter. We consider that
upplier 𝑖 assembles various subcomponents or parts, as in Kinra et al.
2020), is exposed to epidemic risk, and its suppliers are also exposed
o the same type of risk and so are subject to a potential loss of capacity.

These suppliers to supplier 𝑖 generate a risk that evolves over time
ased on their respective recovery time. Showing how such a factor
volves is left for further study.

Note that at the supplier level, we do not consider substitutable
roducts: if one of the parts needed by supplier 𝑖 is not available,
hen supplier 𝑖 cannot complete the product that should be sold to
he focal firm. If supplier 𝑖 adopts a single sourcing strategy, then the
ider the variety of parts needed by supplier 𝑖, the higher the risk
f supplier 𝑖 failing and the higher 𝑎𝑖 must be. Markedly, this risk

is reduced whenever a multi-sourcing strategy is adopted by supplier
𝑖. In addition, 𝑎𝑖 captures the structure of the supply network. For
example, if two suppliers of the focal company, 𝑖 and 𝑖′, source parts
from the same pool of suppliers then 𝑎𝑖 and 𝑎𝑖′ are equal. Oppositely,
if these two suppliers source from different suppliers, then 𝑎𝑖 and 𝑎𝑖′
are independent and each relies on the deployed sourcing strategy, the
variety of purchased parts, and the location of the upper-level suppliers.

The RAF 𝛺𝑖(𝑡) evolves between 1 when 𝑆𝑖(𝑡) = 0 or when 𝛽𝑖 = 1

nd 𝑒−
(1−𝛽𝑖 )
𝑎𝑖 when all workers are working in the supplier’s production

facility. If the infection rate is 𝛽𝑖 = 0 and all workers are producing,
𝛺𝑖(𝑡) = 𝑒−

1
𝑎𝑖 for all 𝑡. Note that 𝑒−(1−𝛽𝑖)

𝑆𝑖 (𝑡)
𝑎𝑖𝑀𝑖 ≤ 1 for all 0 < 𝑆𝑖(𝑡)∕𝑀𝑖 ≤ 1,

𝛽𝑖 > 0 and 𝑎𝑖 > 0. By easy computation, we get the following:

• 𝜕𝛺𝑖
𝜕𝛽𝑖

> 0, if 𝛽𝑖 increases , then the RAF increases;

• 𝜕𝛺𝑖
𝜕𝑎𝑖

> 0, if 𝑎𝑖 increases, then the RAF increases;

• 𝜕𝛺𝑖
𝜕𝑆𝑖

< 0, if the number of susceptibles at the 𝑖th supplier increases,

then the RAF decreases.

The RAF is a forward-looking factor that can help the decision
maker choose the suppliers (while considering their upper-level sup-
pliers) with consideration of their risk exposure in terms of maximum
capacity loss.

5. Recovery process of a viable supply chain

Having modeled how a supply chain can suffer from the ripple
effect, we now explain how it recovers to full operation and provide
some indications as to how to make such a supply chain viable (Ivanov
and Dolgui, 2020; Ivanov, 2022). We first observe that in this model,
available information about 𝛽𝑖, 𝛿𝑖, 𝑀𝑖, the initial number of infected
nd estimated risk exposure 𝑎𝑖 of supplier 𝑖 are mandatory and must
e updated as new information becomes available. For instance, when
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Fig. 1. Evolution of 𝛺𝑖(𝑡) in terms of 𝛽𝑖 and of 𝑎𝑖 when 𝜙 = 100.

𝛽𝑖 decreases, the model would suggest ordering larger quantities of
the product from supplier 𝑖 in 𝑡 because the workforce is expected to
turn up for work in upcoming periods. In this way, our model shows
how a supply chain can meet demand in a degraded mode while still
trying to minimize the costs for a period of time and then progressively
come back to optimal operation (see Section 6.3 for the numerical
illustration). If all suppliers apply the same criteria and the same model
for selecting suppliers, the overall supply chain should progressively see
its demand-satisfying capability come back to a higher level. Ensuring
that over successive planning horizons allows the viability of the supply
chain.

Contrary to most models in supply chain risk quantification, our
model is a forward-looking one thanks to its ability to combine both the
information available to a supply chain manager and epidemiological
information relative to the evolution of the epidemic. Ours extends the
quantitative model presented in Kinra et al. (2020) by assessing the
supplier risk exposure based on the possible maximum loss of capacity
in epidemic context.

To obtain insights into the behavior of the RAF 𝛺𝑖 for a supplier 𝑖,
its evolution in terms of 𝑎𝑖 and of the infection rate 𝛽𝑖 is presented in
Fig. 1. Note how the RAF is increasingly sensitive as 𝛽𝑖 increases.

In the next section, we illustrate numerically this mechanism for a
focal firm with five suppliers of substitutable products through three
infection scenarios and a baseline one where no infection limits the
supplier selection.

6. Numerical illustration for three infection scenarios

We start by the infection-free baseline scenario where the suppliers
can operate at full capacity (Section 6.1). In Section 6.2 infection limits
the ability of all suppliers to satisfy the focal firm’s ability to serve
demand; in Section 6.3 the epidemic recedes but not at the same pace
for all suppliers, we evaluate the results with an extended planning
horizon of 20 periods; and in Section 6.4 infection waves affect some
suppliers while others are in a recovery phase. In Section 6.5, as in
our baseline infection-free scenario, suppliers 0 and 2 are optimally
selected, but this time both suppliers suffer from a relatively high risk
exposure compared with the other three.

We proceed by enumeration and determine the optimal solution by
exploring all possible supplier configurations. Without loss of generality
and for the sake of a numerical simulation, we propose using the
susceptible–infected–susceptible (SIS) model to determine the number
of infected at both the focal company facility and at the suppliers’
facility locations. In this epidemiological model, individuals can move
from the susceptible to the infected group when a susceptible person
comes in contact with an infected person. This is modeled, for the
7

Table 3
Supplier parameters under increasing, recovering, and mixed infection trend scenarios.
The five suppliers are listed in the first column.

Supp. 𝑝𝑖 𝜃𝑖 𝑇𝑖 𝑎𝑖 𝐼0 Scenarios

𝛽𝑖 𝛿𝑖
increas. recover. mixed increas. recover. mixed

0 0.1 1.7 1 1 .010 0.3 0.1 0.3 0.0 0.2 0.2
1 0.2 1.4 2 2 .015 0.5 0.1 0.1 0.2 0.4 0.4
2 0.1 1.5 2 1 .035 0.4 0.0 0.4 0.1 0.3 0.1
3 0.2 1.6 1 1 .200 0.8 0.4 0.4 0.5 0.7 0.7
4 0.1 1.7 2 2 .100 0.7 0.3 0.3 0.4 0.6 0.6

Table 4
Table of supplier sets (the best are in bold with an asterisk).

Supplier sets Scenarios

Infection Mixed infection

None Increasing Increasing Recovering Profiles

(𝑇 = 10) (𝑇 = 10) (𝑇 = 20) (𝑇 = 10) 𝑎0 = 10 𝑎2 = 10

(0, 0, 0, 0, 1) 14.79 18.77 35.01 15.33 15.33 14.43
(0, 0, 0, 1, 0) 12.01 18.74 35.14 13.22 13.22 18.98
(0, 0, 0, 1, 1) 13.37 11.35 18.49 12.68 12.68 14.27
(0, 0, 1, 0, 0) 15.04 17.90 39.31 15.28 17.90 19.18
(0, 0, 1, 0, 1) 14.65 13.33 21.90 14.06 13.81 14.19
(0, 0, 1, 1, 0) 10.30 10.25 18.81 10.14 10.08 14.12
(0, 0, 1, 1, 1) 37.88 21.20 29.03 34.53 31.67 31.53
(0, 1, 0, 0, 0) 17.15 18.57 36.54 17.24 17.24 16.38
(0, 1, 0, 0, 1) 14.99 13.96 21.57 14.53 14.53 12.76
(0, 1, 0, 1, 0) 10.75 10.92 18.48 10.72 10.72 12.72
(0, 1, 0, 1, 1) 36.61 21.87 31.26 33.66 33.66 31.47
(0, 1, 1, 0, 0) 12.32 12.83 22.48 12.21 12.43 12.84
(0, 1, 1, 0, 1) 36.46 26.58 34.40 34.49 31.91 31.42
(0, 1, 1, 1, 0) 30.70 20.50 28.08 28.92 26.52 26.78
(0, 1, 1, 1, 1) 82.36 49.35 67.45 76.33 71.13 67.26
(1, 0, 0, 0, 0) 9.99 11.70 29.14 10.06 11.70 13.74
(1, 0, 0, 0, 1) 13.12 11.09 18.54 12.49 12.59 13.73
(1, 0, 0, 1, 0) 11.58 9.73* 17.06* 10.69 10.88 12.81
(1, 0, 0, 1, 1) 42.60 24.62 34.18 38.64 37.33 35.09
(1, 0, 1, 0, 0) 9.85* 9.90 19.57 9.70* 9.90* 13.21
(1, 0, 1, 0, 1) 39.15 27.56 35.81 36.99 32.88 35.30
(1, 0, 1, 1, 0) 36.09 23.20 31.15 33.43 29.60 29.81
(1, 0, 1, 1, 1) 92.90 55.94 74.74 85.85 77.72 73.80
(1, 1, 0, 0, 0) 10.19 10.60 19.02 10.12 10.46 11.64*
(1, 1, 0, 0, 1) 37.77 28.24 37.77 35.96 34.80 35.07
(1, 1, 0, 1, 0) 34.81 23.91 33.11 32.51 31.44 29.59
(1, 1, 0, 1, 1) 89.90 56.64 79.20 83.48 80.90 74.93
(1, 1, 1, 0, 0) 31.66 26.79 35.35 30.97 27.57 30.02
(1, 1, 1, 0, 1) 85.04 62.28 80.53 81.28 73.57 75.12
(1, 1, 1, 1, 0) 80.56 54.95 72.71 76.07 68.64 65.11
(1, 1, 1, 1, 1) 161.44 105.52 145.11 151.52 139.78 132.12

focal company, by means of the system of coupled differential equations
(6.1).

⎧

⎪

⎨

⎪

⎩

𝐼̇(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛿𝐼(𝑡),
𝑆̇(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡) + 𝛿𝐼(𝑡),
𝐼(0) = 𝐼0, 𝑆(0) = 𝑆0,

(6.1)

By substituting 𝑆(𝑡) = 𝑀−𝐼(𝑡), the model (6.1) becomes a Bernoulli-
type equation in 𝐼(𝑡) whose solution is:

𝐼(𝑡) =
𝐼0(𝛽𝑀 − 𝛿)

𝛽𝐼0 + 𝑒−(𝛽𝑀−𝛿)𝑡
(

(𝛽𝑀 − 𝛿) − 𝐼0𝛿
) . (6.2)

The fraction 𝛽∕𝛿 is defined as the reproduction number and denoted
by 𝑅0. Obviously, the same model is considered and solved for the
suppliers.

In all the numerical experiments, demand is fixed 𝐷(𝑡) = 2.5, 𝜉 = 0.6,
𝑀𝑖 = 1, and 𝜙 = 0.3. The results are listed in Table 4. The lowest
objective function value is marked in bold and with an asterisk marking
the corresponding optimal configuration.
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Fig. 2. Baseline scenario.
Fig. 3. Increasing infection profile scenario: level of infected 𝐼𝑖.

6.1. Supplier selection with no infection

This baseline scenario considers a world where a select group of five
suppliers labeled from 0 to 4 work under normal circumstances and are
all able to supply a precise product or component (see Fig. 2). Such
suppliers in an infection-free environment operate as characterized by
the productivity, price, and lead time parameters in the first three
columns in Table 3. The best choice of suppliers are 0 and 2 (see
Fig. 2(b)) yielding a cost of 9.85 (see second column in Table 4).

6.2. Supplier selection under infection dynamics

In this scenario, we model the evolution in the choice of supplier
under increasing infection using the parameters defined in Table 3 and
present in Fig. 3 how the suppliers’ workforce becomes increasingly
infected over time, with suppliers 0 and 1 doing slightly better. Even
though any of these five suppliers can produce the required product
for the focal firm, the best solution is now to drop supplier 2 and
pick supplier 3 (see the third column in Table 4) because the infection
progresses faster for supplier 2, implying that this supplier would not
be able to deliver the expected quantities (Fig. 4(b)).

Our model enables the decision maker to estimate ex ante the cost
of this switch. This can be seen in Table 4 by subtracting the reported
values of the objective function 𝐽 (.) in column 3 from the ones in
column 2. The objective function value for the choice of suppliers 0
and 3 under an increasing infection scenario is 9.73, as opposed to 9.85
in the baseline scenario: there is basically no impact when considered
over 𝑇 time periods. In addition, when comparing the service level (SL)
per period in both scenarios from Figs. 2(a) and 4(a), we see that the
SL is better in the first periods in the infection scenario and is only
8

superseded from periods 8 to 10. This is because of the low lead time
for supplier 3, even though 𝑝𝑖, 𝐼0, 𝛽𝑖 are higher.

The overall SL almost reaches 100% by period 10 (Fig. 4(a)),
implying that this choice of suppliers does not satisfy demand but
cannot be complemented by a third as this would exceed demand and
increase the inventory holding cost. Incidentally, when the planning
horizon period 𝑇 is augmented to 20, the optimal configuration does not
change, even as, obviously, the objective function value has increased
(see the fourth column of Table 4).

6.3. Supplier selection in a recovery phase

In this scenario, the infection becomes endemic: the disease still
exists but the recovery rate 𝛿𝑖 is higher than the infection rate 𝛽𝑖 for
all suppliers 𝑖, as characterized in Table 3. In Fig. 5, suppliers 0 and
1 are the least infected and consistently have the highest proportion
of their workers back to work. Given this pattern of recovery in the
suppliers’ workforce, the eligible set of suppliers that achieves the
lowest objective function 𝐽 (.) is back to {0, 2}, as in the baseline
scenario (see the fifth column in Table 4). Note in figure Fig. 6(a) that
much like the base case, a 100% SL can be achieved toward the end of
the planning horizon period (even as orders are lower, as can be seen
in Fig. 6(b)). More importantly, this result indicates that in the endemic
phase, a focal company would select the suppliers it once sourced from
before the epidemic.

6.4. Supplier selection during mixed infection dynamics

In this scenario, we suppose that the suppliers are in different
regions of the world: in some areas (suppliers 0 and 2), the infection
rate is increasing, while in others (suppliers 1, 3, and 4), the peak has
passed and they are in a recovery phase (see Table 3 and Fig. 7). Once
again, the best choice consists in selecting suppliers 0 and 2 (see the
sixth column in Table 4).

6.5. Supplier selection under risk variation

To see the impact of 𝑎𝑖 on supplier selection, we consider a scenario
in which suppliers 0 and 2, given their respective upstream supply
chain, have high risk exposure in terms of capacity loss. For this
scenario, we keep all parameters as in Table 3, except for 𝑎0 and 𝑎2,
which are both set to 10. Now, even if supplier 0 is retained as the best
in terms of lead time and low starting point for infection, supplier 2
is discarded and replaced by supplier 1, as can be seen from the last
two columns in Table 4. The orders addressed to both are presented in
Fig. 9 and the corresponding SLs in Fig. 8. This scenario shows how our
model enables the decision maker to navigate around the dangers of a
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Fig. 4. Increasing infection scenario.
Fig. 5. Recovery scenario: level of infected 𝐼𝑖.

reappearing infection. The necessary information for the model to work
are: infection and recovery rates available at each supplier location,
available suppliers (costs, lead time, capacity), and upstream supply
chain (upper-level suppliers, supplier importance, supplier location).
Some of this information needs to be updated often (infection per
location, capacity), others less so (costs, lead times, importance of
upper-level suppliers).

To get a sense of how this scenario might develop in practice,
consider the case in the introduction of the French subsidiary selling an
intermediate product and in need of big bags. Upon first knowledge of
infection in the Turkish plant, a simulation is made using the available
big bag suppliers worldwide, so as to select a set valid throughout
the increasing infection planning period. Whenever COVID-19 turns
into an endemic disease, the decision maker updates the supplier set
over a new planning horizon by using our model. This illustrates our
statements in Section 5: the prescriptive model helps the decision maker
in meeting demand in a degraded mode while still trying to minimize
costs. The reader will note that our method extends and completes
the one exposed in Kinra et al. (2020) in that it is a prescriptive and
anticipatory managerial tool.

7. A case study: the role of the RAF

This section is devoted to the illustration of our model in a specific
real life case and is distinct from the previous theoretical example.
We solicited one of the most important automotive manufacturers
located in Germany for information about its brake suppliers. Its top
9

Table 5
Lead times, country of origin, RAF, and regional infection rates for brake suppliers.

Brake suppliers Origin Lead time RAF Regional infection rates

Beringer SAS France 74 0.29 0.006
Brembo Italy 86 0.48 0.011
Continental USA 362 0.91 0.012
EBC Brakes UK 98 0.72 0.005
Stoptech Australia 1154 0.41 0.078

five automotive high-performance brake system market vendors are1:
Beringer SAS, Brembo, Continental, EBC Brakes, StopTech. Table 5
shows the lead times (in days) of each of the above brake suppliers.
The infection rates have been calculated using the data available from
a public database with updated real data about COVID infection in
various countries (see the fifth column in Table 5).2

All the suppliers have been endowed with a specific risk factor,
evaluated using the RAF formula exposed in Appendix A.3, ranging
from Continental with the highest risk factor of approximately 0.91 to
the lowest risk factor of 0.29 scored by Beringer (see fourth column
in Table 5). Recall that the RAF 𝛺𝑖 is determined using 𝑎𝑖, the risk
exposure of each brake supplier 𝑖 from its own suppliers. To estimate
the RAF, we have taken into account the information provided by
the automotive manufacturer about the location of the brake system
suppliers, and public information about health protection policies and
infection figures in each of the countries where the suppliers are
located. In particular, the Australian government has put in place one
of the most restrictive strategy against COVID.

For lack of the necessary information about cost, reliability, or
other supplier quality criteria, we selected three random suppliers in
the initial combination: Brembo, Continental, and EBC Brakes. As we
consider that the suppliers provide substitutable brake systems, to find
the optimal combination of suppliers we ran the numerical algorithm
in Appendix A.3 10 times to obtain a new set of suppliers with only
Brembo in common with the initial combination. The two newly added
suppliers were Beringer and Stoptech, with a RAF of 0.29 and 0.41,
respectively.

The number of infected workers at each supplier is portrayed in
Fig. 10(a), while the orders placed with each of the three suppliers
selected are presented in Fig. 10(b).

The choice of Stoptech instead of Continental is counter-intuitive
as the latter’s lead time and infection rate are lower (see Fig. 10(a)).

1 https://www.businesswire.com/news/home/20170315005492/en/Top-
5-Vendors-in-the-Automotive-High-Performance-Brake-System-Market-from-
2017-to-2021-Technavio.

2 At https://www.worldometers.info/coronavirus/.

https://www.businesswire.com/news/home/20170315005492/en/Top-5-Vendors-in-the-Automotive-High-Performance-Brake-System-Market-from-2017-to-2021-Technavio
https://www.businesswire.com/news/home/20170315005492/en/Top-5-Vendors-in-the-Automotive-High-Performance-Brake-System-Market-from-2017-to-2021-Technavio
https://www.businesswire.com/news/home/20170315005492/en/Top-5-Vendors-in-the-Automotive-High-Performance-Brake-System-Market-from-2017-to-2021-Technavio
https://www.worldometers.info/coronavirus/
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Fig. 6. Recovery scenario.
Fig. 7. Level of infected 𝐼𝑖 in a mixed scenario.

We attribute this to the much lower RAF of Stoptech as opposed to
Continental. In other words, the RAF term is playing a major role in
the selection process. This result confirms our sensitivity assessment
made in Section 6.5 where we modified the RAF and observed that the
selected suppliers were different.

The optimal supplier selection is superior in terms of cost. It indeed
allows for a supply by the focal company that is closer to the demand.
In addition, it allows the selection of suppliers which are exposing the
focal company to lower risk in terms of loss of supply.

8. Conclusion

In this paper, we contextualized and formalized a dynamic approach
to supply chain reconfiguration and ripple effect mitigation during a
pandemic or an epidemic.

Whereas the first theoretical contribution of the present paper is
related to the decision support literature on supply base reconfigu-
ration under disruptions, this paper also contributes to the literature
on ripple effect in supply chains. By extending this through the epi-
demic context, the present paper also contributes to the literature on
pandemic-induced disruption modeling (and in particular to the predic-
tive forward-looking model in Nikolopoulos et al., 2021) and supply
chain reconfiguration with supplier selection, here following Queiroz
et al. (2022) and Li and Zobel (2020). It also contributes to the viability
in supply chains stream (Ivanov and Dolgui, 2020; Ivanov, 2022), as
well as to the upstream risk modeling one (Adhikari et al., 2020).

On the managerial level, we show how to model the reconfiguration
and ripple effect in a supply chain that is subject to disruptions at one or
various levels in any pandemic or epidemic context by considering the
associated epidemic propagation dynamics. The decision-support model
presented is a prescriptive forward-looking one that mitigates the ripple
effect by reconfiguring the supply chain.
10
Our academic contribution is a combination of epidemiological and
optimal control models that presents the supply chain manager with
the optimal choice over a planning horizon among subsets of inter-
changeable suppliers. In this way, demand satisfaction is maximized
given the suppliers’ prices, lead times, exposure to infection risks and
the risk stemming from their upper-level suppliers. The model can be
re-run whenever the parameters change beyond what was anticipated
initially. Doing that for successive planning horizons fosters the viabil-
ity of the supply chain through reconfiguration. The model builds on
the increasingly available epidemiological data about reinfection and
recovery at the regional or country level. This strengthens the decision
maker’s ability to plan changes between suppliers when a disease turns
from an endemic to epidemic state and when it varies across regions.

As noted in Nuss et al. (2016), managers sometimes do not under-
stand the complexity of their upstream supply chain. In our model, to
ensure tractability and feasibility, only the first echelon of suppliers is
taken into account, and a proxy is used to replace information about
disruption risk in the upper-level echelon of suppliers. As the manager
of the focal company becomes aware of risks in the upper echelons
of the supply chain, a new plan can be worked out. The practical
contribution is that, in this way, our model can be implemented quickly
and efficiently in any industrial or retailing sector where suppliers may
be located in regions sufficiently far apart as to have distinct infection
and recovery patterns. Further, if all suppliers of the focal firm also use
the present model, the ripple effect could be overcome.

Finally, the proposed model can be extended to other infection
outbreaks in supply chains that are more frequent, such as e-coli or
norovirus, bird flu outbreak that may affect supplier’s outputs. The
model can be adapted by changing the parameters associated with the
epidemic propagation dynamics and the risk exposure of the suppliers,
and by considering the specific characteristics of the new outbreak. By
doing so, the decision-support model can help mitigate the ripple effect
and optimize the supply chain configuration by selecting suppliers with
appropriate lead times, prices, and risk exposure.

Our paper still has some limitations. The RAF is very basically
described and should be discussed further in future work: it should
better take into account the risk exposure of each supplier’s supplier
maximum loss of capacity and the possibility that it varies over time.
Our model does not distinguish between main, preferred, or principal
supplier from the backup ones. The assumption is that a supply chain
manager or procurement manager at each echelon in the chain will
have previously built a list of alternative suppliers.3 A third limitation
is in the required data needed not just from the first-tier suppliers of
the focal company but also from their upper-level suppliers. As men-
tioned, such data include information about those infected, remaining

3 We refer here the reader to Lisa Ellram’s research: Ellram (1990) and
Weber and Ellram (1993).
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Fig. 8. Mixed infection scenario: service level of demand in the mixed infection scenario under two hypotheses of risk.
Fig. 9. Mixed infection scenario: level of 𝑢𝑖 in the mixed infection scenario.
Fig. 10. Case study of a German automotive firm for the selection of brake suppliers.
available production capacity, and the lead times at each level. This
access requires intense communications such as those mentioned in the
motivating example.

Data availability

Data will be made available on request.
11
Appendix

A.1. Model implementation

For tractability purposes and without loss of generality, we use a dis-
cretized version of the time-continuous model described in (4.3)–(4.11)
in Section 4.
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A.2. Model discretization

Let us suppose that the interval time [0, 𝑇 ] is split into integer time
nits. The discretized model becomes

min
𝑢𝑖(𝑡),𝑦𝑖 ,
=1,…,𝑁

𝐽 (𝑢𝑖(𝑡), 𝑦𝑖) ∶=
𝑁
∑

𝑖=1
∫

𝑇

0
𝑅𝑖(𝑢𝑖(𝑡), 𝑡) 𝑑𝑡

+ 𝜉 ∫

𝑇

0

(

𝜃
𝑀 − 𝐼(𝑡)

𝑀
𝐾(𝑡) −𝐷(𝑡)

)2
𝑑𝑡 +

𝑁
∑

𝑖=1
𝛾𝑖𝑦𝑖

+
𝑁
∑

𝑖=1
𝑝𝑖 ∫

𝑇

𝑇𝑖
𝑢𝑖(𝑡 − 𝑇𝑖) 𝑑𝑡

+ ℎ∫

𝑇

0

[

𝜃
𝑀 − 𝐼(𝑡)

𝑀
𝐾(𝑡) −𝐷(𝑡)

]+
𝑑𝑡,

(A.1)

subject to

𝐾(𝑡) =
𝑁
∑

𝑖=1
𝑢𝑖(𝑡 − 𝑇𝑖), 𝑡 = 0… 𝑇

𝑢𝑖(𝑡) ≤ 𝜃𝑖(𝑀𝑖 − 𝐼𝑖(𝑡))𝑦𝑖, 𝑖 = 1…𝑁 𝑡 = 0… 𝑇 − 𝑇𝑖
𝑢𝑖(𝑡) = 0, 𝑖 = 1…𝑁 𝑡 = 𝑇 − 𝑇𝑖 … 𝑇

𝐼𝑖(𝑡 + 1) − 𝐼𝑖(𝑡) = 𝑓𝑖(𝐼𝑖(𝑡)), 𝑖 = 1…𝑁 𝑡 = 0… 𝑇 − 1

𝐼(𝑡 + 1) − 𝐼(𝑡) = 𝑓 (𝐼(𝑡)), 𝑡 = 0… 𝑇 − 1

𝑢𝑖(𝑡) ≥ 0, 𝑖 = 1…𝑁 𝑡 = 0… 𝑇

𝐾(𝑡) ≥ 0, 𝑡 = 0… 𝑇

𝑦𝑖 ∈ {0, 1}, 𝑖 = 1…𝑁

his is a convex static model with Boolean and real variables. By con-
truction, the model is NP-hard (Bertsekas, 2016). The next subsection
escribes a numerical sorting algorithm that provides a sequence of
uboptimal solutions.

.3. Algorithm implementation

The complexity of the optimization model is NP-hard and therefore,
henever a large number of suppliers is considered, computation-
lly challenging. To determine an approximate solution, we propose
mplementing a heuristic that generates a sequence of suboptimal
olutions.

Let us consider each supplier’s corresponding risk aversion function
𝑖(𝑢𝑖(𝑡), 𝑡) = 𝑢𝑖(𝑡)𝛺𝑖(𝑡) and calculate the following average risk over the

interval [0, 𝑇 ]: 𝑅̄𝑖 = ∫ 𝑇
0 𝑅𝑖(1, 𝑡)𝑑𝑡 = ∫ 𝑇

0 𝛺𝑖(𝑡)𝑑𝑡. The value of 𝑅̄𝑖 is used to
sort the suppliers by risk and Algorithm 1 ranks the optimal solutions.
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