
UltraSEQ, a Universal Bioinformatic Platform for Information-
Based Clinical Metagenomics and Beyond

Bryan T. Gemler,a Chiranjit Mukherjee,a Carrie Howland,a Patrick A. Fullerton,a Rachel R. Spurbeck,a Lindsay A. Catlin,a

Anthony Smith,a Angela T. Minard-Smith,a Craig Bartlinga

aBattelle Memorial Institute, Columbus, Ohio, USA

Bryan T. Gemler and Chiranjit Mukherjee contributed equally to the manuscript. Author order was determined alphabetically.

ABSTRACT Applied metagenomics is a powerful emerging capability enabling the
untargeted detection of pathogens, and its application in clinical diagnostics prom-
ises to alleviate the limitations of current targeted assays. While metagenomics offers
a hypothesis-free approach to identify any pathogen, including unculturable and
potentially novel pathogens, its application in clinical diagnostics has so far been
limited by workflow-specific requirements, computational constraints, and lengthy
expert review requirements. To address these challenges, we developed UltraSEQ, a
first-of-its-kind accurate and scalable metagenomic bioinformatic tool for potential
clinical diagnostics and biosurveillance utility. Here, we present the results of the
evaluation of our novel UltraSEQ pipeline using an in silico-synthesized metagenome,
mock microbial community data sets, and publicly available clinical data sets from
samples of different infection types, including both short-read and long-read
sequencing data. Our results show that UltraSEQ successfully detected all expected
species across the tree of life in the in silico sample and detected all 10 bacterial
and fungal species in the mock microbial community data set. For clinical data sets,
even without requiring data set-specific configuration setting changes, background
sample subtraction, or prior sample information, UltraSEQ achieved an overall accu-
racy of 91%. Furthermore, as an initial demonstration with a limited patient sample
set, we show UltraSEQ’s ability to provide antibiotic resistance and virulence factor
genotypes that are consistent with phenotypic results. Taken together, the above-
described results demonstrate that the UltraSEQ platform offers a transformative
approach for microbial and metagenomic sample characterization, employing a bio-
logically informed detection logic, deep metadata, and a flexible system architecture
for the classification and characterization of taxonomic origin, gene function, and
user-defined functions, including disease-causing infections.

IMPORTANCE Traditional clinical microbiology-based diagnostic tests rely on tar-
geted methods that can detect only one to a few preselected organisms or slow,
culture-based methods. Although widely used today, these methods have several
limitations, resulting in rates of cases of an unknown etiology of infection of .50%
for several disease types. Massive developments in sequencing technologies have
made it possible to apply metagenomic methods to clinical diagnostics, but current
offerings are limited to a specific disease type or sequencer workflow and/or require
laboratory-specific controls. The limitations associated with current clinical metage-
nomic offerings result from the fact that the backend bioinformatic pipelines are
optimized for the specific parameters described above, resulting in an excess of
unmaintained, redundant, and niche tools that lack standardization and explainable
outputs. In this paper, we demonstrate that UltraSEQ uses a novel, information-
based approach that enables accurate, evidence-based predictions for diagnosis as
well as the functional characterization of a sample.
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Traditional clinical microbiology-based diagnostic tests rely on targeted methods
that can detect only one to a few preselected organisms by the use of molecular

methods (e.g., quantitative PCR [qPCR] or antigen detection methods) or slow, culture-
based methods. Although widely used today, these methods have several limitations,
especially for infections caused by more than one etiological agent, novel pathogens,
and unculturable organisms. Furthermore, these tests are often singleplex, requiring
multiple tests to be run prior to diagnosis. Due to these limitations, the rate of
unknown etiology of infection has been reported to be .50% for diseases such as
pneumonia and encephalitis (1, 2). This rate of unknown etiology is corroborated by
our initial analysis of commercial health claims of 2021 International Classification of
Disease (ICD) codes, which suggests that despite more than $5 billion being charged
in 2021, as many as 80% of pneumonia cases (average of inpatients and outpatients)
were coded with an “unspecified organism” ICD code (https://www.definitivehc.com/)
(C. Bartling, unpublished data).

Massive developments in sequencing technologies have made it possible to apply
metagenomic methods to clinical diagnostics, which may alleviate the issues described
above. Metagenomics offers a hypothesis-free approach to identify any pathogen,
including unculturable and potentially novel pathogens, in a massively multiplexed
assay that requires little to no wet-laboratory assay development for new etiological
agents. The approach is largely unbiased, can work well with very-low-biomass sam-
ples, can often replace invasive sampling regimes, and, ultimately, can lead to better
patient outcomes and reduce antibiotic misuse by the quick, accurate determination
of the cause of the disease (3). Clinical metagenomics is rapidly moving from research
to the clinic, with commercial offerings for diseases such as sepsis, respiratory disease,
and meningitis/encephalitis (3). However, current offerings are limited to a specific dis-
ease type or sequencer workflow and/or require laboratory-specific controls, thus limit-
ing their widespread adoption.

The limitations associated with current clinical metagenomic offerings result from
the fact that the backend bioinformatic pipelines are optimized for the specific param-
eters described above, resulting in an excess of unmaintained, redundant, and niche
tools that lack standardization and explainable outputs. For pathogen identification,
several different classifiers exist, including those that leverage alignment-based (both
nucleic acid and protein) and k-mer-based approaches (4, 5). Classification can be pro-
vided on the individual-sequence level (binning) as well as the whole-data-set level
(profiling). While k-mer-based methods are fast, efficiency must be weighed against
the optimization of k-mer sizes with each database update as well as the lack of granu-
larity in predictions due to exact matching (i.e., important variable sequence informa-
tion relevant to clinical settings may be lost [6]). Thus, k-mer-based approaches can be
highly specific but suffer from low sensitivity, particularly for the identification of novel
pathogens such as viruses with high mutation rates (7). Most clinical metagenomic
tools have adopted rapid alignment routines to achieve high sensitivity. However,
such routines often result in the overidentification of organisms in samples, many of
which may be false-positives (FPs). Tools may overcome these high false-positivity
rates by using background subtraction methods and thresholding on various settings
that are optimized for each specific workflow. Often, conservative predictions are
made at higher taxonomic levels (e.g., genus level) that are less informative for clinical
applications.

To address all of these challenges, we developed UltraSEQ, a first-of-its-kind metage-
nomics-based tool with diagnostic potential that is accurate and scalable and provides
an information-based approach for clinical research applications. As described above,
many bioinformatic routines for pathogen identification suffer from high false-positivity
rates, the inability to identify organisms not included in their reference database, and
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either complexity associated with the interpretation of results or nonexplainable “black
box” answers. In contrast, UltraSEQ uses a novel, information-based approach that lever-
ages a fast aligner that can handle both DNA and protein databases to make sample-
level predictions (including taxonomic profiling) at the most specific taxonomic levels
possible given the information for the sample and the database(s) used. UltraSEQ was
built from the ground up to make predictions for regions of sequences (including taxo-
nomic binning), full sequences, and collections of sequences (i.e., a sample) without
complicated user settings and the necessity for background data set subtraction. This
novel approach enables accurate, evidence-based predictions for diagnosis as well as the
functional characterization of a sample, including virulence factor and antibiotic resistance
(AbR) profiles. Predictions are backed by our curated database that provides end users
with additional contextual metadata of predictions, such as whether the identified patho-
gen typically or rarely causes disease or is a potential normal flora contaminant as well as
other user-defined characteristics. In our previous work, we described the development of
this database (8), which uses a function-centric approach to distinguish between patho-
genic and nonpathogenic organisms with increased confidence over the state of the art.
Here, we expand on this approach to leverage this database by building the flexible
UltraSEQ bioinformatic platform and demonstrate its potential utility for clinical metage-
nomic applications that go beyond simple taxonomic predictions. We demonstrate
UltraSEQ’s ability to handle a variety of different sample types, sequencing platforms, and
laboratory workflows and UltraSEQ’s superior performance compared to several other bio-
informatic platforms.

RESULTS

The overall schema of the UltraSEQ pipeline is presented in Fig. 1. Reads are first
optionally preprocessed to ensure high-quality data. Each read is then aligned to multi-
ple reference databases, and the query mapper server identifies regions in each read.
Context services assign taxonomy and functional annotations to each region of each
read. The metagenomics module combines information from all reads into a sample-
level taxonomy profile. The metagenomics diagnostics rules engine (MDRE) service ana-
lyzes and prioritizes results for clinical diagnostics. Results are subsequently reported
using UltraSEQ’s cloud-deployed Web application.

To comprehensively evaluate UltraSEQ’s ability to accurately taxonomically profile
metagenomic samples with the goal of data-set-agnostic diagnostic application, we
applied a 3-step evaluation approach. In step 1, we evaluated the specificity and sen-
sitivity of UltraSEQ using an in silico-synthesized metagenome consisting of genomic
DNAs from 22 different microbial species, including bacteria, fungi, viruses, and
humans. In step 2, we evaluated UltraSEQ against a mixed microbial community data
set to measure real-world performance. Finally, in step 3, we evaluated UltraSEQ
using publicly available clinical metagenomic data sets to compare our results with

FIG 1 Graphical representation of the UltraSEQ pipeline. Reads are optionally preprocessed and aligned to reference databases, and distinct regions within
each read are identified. Taxonomy and functional annotations are assigned at the read level and are subsequently combined into sample-level taxonomy
profiles by the metagenomics services. The metagenomics diagnostics rules engine (MDRE) service is specific for clinical diagnostics and uses decision trees
to identify species and their virulence factors in the sample that cause disease before the reporting of all results. PE, paired end; NN, neural net.
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clinical microbiology test results as well as those from other metagenomic pipelines.
The results for each of these comparisons are presented below.

In silico data sets. The information-theory-based approach combined with machine-
learning algorithms in UltraSEQ allows a highly tunable final report, ranging from very
conservative reporting, where false positives are minimized, to more permissive settings,
which allow more false positives while ensuring minimal false negatives (FNs). Using our
in silico-synthesized metagenomic sample, we extensively tested the different parame-
ters and found that the tuning of UltraSEQ’s metagenomics service module (metage-
nomic module) had the most consequential effect on taxonomic assignment reporting.
Within the metagenomic module, this tuning is achieved by altering the user-settable k-
means clustering centroid distance tolerance threshold, referred to here as the metage-
nomic clustering threshold (MCT) (see File S1A in the supplemental material). Our results
show that a minimum MCT of 0.5 results in the lowest FN counts for the data set tested,
with a very marginal increase in the FP count (Table 1). Using an MCT of 0.5, the 4 “false-
positive” species detected, all at very low relative abundances, were Aspergillus fumiga-
tus, Lacticaseibacillus paracasei, Prevotella intermedia, and Streptococcus equinus, which
indicates reads being assigned from the true-positive (TP) species Aspergillus niger,
Lactobacillus casei, Prevotella denticola, and Streptococcus mutans, respectively.

To compare the taxonomic classification results obtained using UltraSEQ’s metagenomic
module with the those of current gold standards in k-mer mapping-based taxonomy classifi-
cation tools, we processed the synthetic metagenome sample with Kraken2 using default
settings against the PlusPf database provided by the Langmead Lab (https://benlangmead
.github.io/aws-indexes/k2) (9). Bar plots comparing the taxonomy results for UltraSEQ (MCT
of 0.5) and Kraken2 are presented in Fig. 2. While the relative abundances for the false-posi-
tive samples were low (,1%) with both methods, Kraken2 had a higher number of false
positives (6) and also failed to detect A. niger in the sample.

Mixed microbial community data sets. To further test the metagenomics service
with real biological sequences, a mixed microbial community sample, sequenced using
both the Nanopore and Illumina platforms as described in Materials and Methods, was
processed using UltraSEQ. Based on our findings with the in silico data set, these sam-
ples were also processed with an MCT of 0.5. UltraSEQ correctly predicted the presence
of all 10 species for both the long- and short-read data sets with relative abundance
values close to the expected values (Table 2). The highest false-positivity rate detected
in both data sets was for Bacillus spizizenii, which is very closely related to the expected
species, Bacillus subtilis. For both data sets, any false-positive species detected were
present at a ,0.4% relative abundance compared to the expected species. These
results, and those observed for the synthetic metagenome, led us to apply a domain-
specific abundance filter to UltraSEQ’s results for subsequent application in clinical
metagenomics.

Clinical data sets. In total, 10 different sets of metagenomic data sets, encompassing
407 clinical comparisons from 216 samples, were analyzed. These data sets spanned a

TABLE 1 Effect of the metagenomic clustering threshold parameter on the specificity and
sensitivity of UltraSEQ’s taxonomic assignment reporting for our in silico-synthesized sample

MCT

No. of samples

False-negative result(s)True positive False positive
0.1 18 0 Human herpesvirus 1, Listeria monocytogenes,

Zika virus
0.2 19 2 Human herpesvirus 1, Zika virus
0.3 19 2 Human herpesvirus 1, Zika virus
0.4 19 2 Human herpesvirus 1, Zika virus
0.5 21 4 None
0.75 21 4 None
0.8 21 4 None
0.9 21 4 None
1.0 21 4 None
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range of clinical sample types (cerebrospinal fluid [CSF], nasal, and oral, etc.), disease
types (respiratory disease and encephalitis/meningitis), sequence types (RNA and DNA),
and sequence generators (Illumina, IonTorrent, and Nanopore). For each data set, we
evaluated UltraSEQ’s diagnostic capability by comparing the results from metagenomic
data sets of clinical samples to microbiological results for the same samples. For this
analysis, we calculated the positive percent agreement (PPA), negative percent agree-
ment (NPA), and accuracy (ACC) of UltraSEQ with the publicly available sequence data
sets or in-house data sets. Overall, UltraSEQ demonstrated 86% PPA, 97% NPA, and 91%
accuracy across all 10 sets of data, demonstrating UltraSEQ’s utility across the wide range
of data sets tested. For each data set, we further compared the performance of UltraSEQ
to those of other informatic tools with the above-mentioned metrics as well as additional
metrics (antibiotic resistance profiles and usability, etc.), as detailed below. In contrast to
other pipelines, no background data sets were used to generate UltraSEQ results, which
is the most direct comparison to clinical microbiological results. All results are shown in
File S3, with each study in a separate tab.

FIG 2 Bar plots showing the relative abundance of each species detected from the synthetic metagenome sample using UltraSEQ (left) and Kraken2 (right).

TABLE 2 UltraSEQ correctly identifies all organisms in a mock microbial community data set

Species
Expected relative
abundance (%)

Observed relative abundance (%)

Illumina data set Nanopore data set
Bacillus subtilis 12 11.9 8.9
Enterococcus faecalis 12 12.0 9.6
Escherichia coli 12 12.4 10.5
Lactobacillus fermentum 12 9.0 8.9
Listeria monocytogenes 12 12.9 14.6
Pseudomonas aeruginosa 12 14.7 8.5
Salmonella enterica 12 12.8 11.6
Staphylococcus aureus 12 10.4 18.8
Cryptococcus neoformans 2 0.5 1.5
Saccharomyces cerevisiae 2 1.8 2.1
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Figure 3 shows a summary of UltraSEQ’s clinical diagnostics accuracy against other
bioinformatic tools noted for each case study comparison.

Case study 1 (Miller et al.). A study by Miller et al. (10) (BioProject accession num-
ber PRJNA516289) investigated the use of both RNA sequencing (RNAseq)-based and
DNA sequencing (DNAseq)-based metagenomics to diagnose encephalitis/meningitis,
and the SURPI pipeline was used to make organism calls. For this study, the 90 data
sets derived from 76 samples without a high host background as reported by those
authors were run for comparison. The results for these 90 data sets were compared to
the results of 173 clinical and/or confirmatory tests (positive or negative). Overall,
UltraSEQ performed the same in terms of accuracy (95%) compared to Miller et al.’s
pipeline across all 173 clinical tests (Table SF1). UltraSEQ performed better than Miller
et al.’s pipeline in terms of NPA (100% for UltraSEQ) but not PPA (85% for UltraSEQ
compared to 86% for Miller et al.’s pipeline). Importantly, UltraSEQ reported zero false
positives even without the use of a background data set subtraction method. Across
the various categories tested, UltraSEQ performed better for fungi and bacteria, worse
for DNA viruses and RNA viruses, and the same for parasites (Table SF1). For fungi,
Miller et al.’s one false negative was due to the lack of identification of Sporothrix
schenckii, which UltraSEQ identified as a pathogen that can cause encephalitis/menin-
gitis (11). For bacteria, Miller et al. identified Bacillus species as a false positive in one
sample, whereas UltraSEQ did not identify any Bacillus species. For DNA viruses, two
false negatives were due to reported coinfections by two different types of herpesvi-
ruses. For RNA viruses, the two false negatives reported by UltraSEQ that were not
reported by Miller et al. were due to only 2 reads or fewer being identified as the true
virus, which did not enable high-enough confidence in UltraSEQ reporting a positive
result.

Case study 2 (Saha et al.). A study by Saha et al. (12) (BioProject accession number
PRJNA516582) also investigated the use of metagenomic RNA sequencing for the diag-
nosis of encephalitis/meningitis. Overall, UltraSEQ performed slightly better than those
authors’ pipeline for the PPA and ACC metrics, with one fewer false-negative result
(Table FS2). Not surprisingly, a general correlation between qPCR cycle threshold (CT)
values and positive results was observed. For the seven cases where qPCR values were
relatively high and both UltraSEQ and Saha et al. reported FNs, UltraSEQ detected
Streptococcus pneumoniae in 6/7 (86% of the cases). However, all were below the 1%
threshold used to make a positive call. If the criteria for S. pneumoniae were loosened
from these default criteria to require only a 0.3% relative abundance, 3 additional FNs
would become TPs (88% PPA for all samples). UltraSEQ reported no false positives for
all samples (100% NPA), but a direct comparison of NPA values to those of Saha et al.
could not be performed since those authors did not report false positives.

FIG 3 Comparison of UltraSEQ clinical diagnostic performances.
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Case study 3: CSF_metagenomics from idseq.net (Hasan et al.). The encephali-
tis/meningitis data set of Hasan et al. (13) was selected to compare UltraSEQ to CZ ID
(formerly IDseq) (14). Since most of the 20 available samples were true negatives (TNs),
5 samples with confirmed truth tests (i.e., comparative molecular tests) were selected
for a proof-of-concept comparison. For the 5 samples analyzed, UltraSEQ successfully
called all 5 correctly (100% accuracy), whereas Hasan et al. called 4/5 correctly (80% ac-
curacy). In the one case where Hasan et al. called a false positive, UltraSEQ did not
identify the pathogen (Streptococcus parasanguinis). To further demonstrate the differ-
ences between UltraSEQ and CZ ID, results from the analysis of sample CW322 by
UltraSEQ (Table SF3) and CZ ID (Fig. SF1 and SF2) were compared. UltraSEQ identified
only two species and automatically filtered out other species with low confidence,
without requiring user input. In contrast, CZ ID identified many bacterial and viral gen-
era (Fig. SF1), and within each genus, several species were identified. For example, Fig.
SF2 shows partial results for Neisseria in which 22 species were identified.

Case study 4 (Fischer et al.). In a previous study by Fischer et al. (15) (BioProject
accession number PRJEB7888), Illumina RNAseq reads from 24 different respiratory dis-
ease patients were evaluated in comparison to qPCR influenza clinical data. The
UltraSEQ results were compared to the results of Fischer et al.’s in-house BLAST pipe-
line and Explify. For this comparison, positive detection was defined as the identifica-
tion of influenza virus, and negative detection was considered a lack of influenza virus
detection. All pipelines demonstrated 100% NPA but varied in their PPAs, with
UltraSEQ failing to identify influenza virus in one more and two more cases than with
Fischer et al.’s and Explify’s pipelines, respectively (Table SF4 and File S3).

Case study 5 (Watts et al.). A study by Watts et al. (16) (BioProject accession num-
ber PRJNA554856) included samples from two patients with ventilator-associated
pneumonia (VAP), collected on day 1 and day 3, for a total of 4 samples sequenced
using the Thermo Fisher Scientific IonTorrent platform. For patient 1, UltraSEQ identi-
fied Staphylococcus aureus only on day 3, which is in good agreement with the culture
results and Watts et al.’s results (File S3). For patient 2, UltraSEQ identified S. aureus
and Klebsiella aerogenes on day 1, which is in good agreement with the culture results
and those authors’ results. Other positive results were identified as well, including
Prevotella melaninogenica, Pseudomonas aeruginosa, and human alphaherpesvirus for
patient 1.

UltraSEQ for antibiotic resistance profiling. In addition to pathogen identification,
UltraSEQ provides antibiotic resistance (AbR) profiles based on the presence of genes
that are known to cause resistance to various antibiotics, as described in Materials and
Methods. The results of AbR profiling for S. aureus from the sample under SRA acces-
sion number SRR9693434 are shown in Table SF5, which are consistent with the micro-
bial culture results and those authors’ results using ResFinder (17). UltraSEQ identified
a profile consistent with resistance of S. aureus to methicillin through the detection of
the mecA gene. The mecA gene was not detected in any other samples, consistent with
the authors’ report. Other potential resistance genes were identified as well, but no
other phenotype testing was performed, and thus, no comparative conclusions can be
drawn.

Case study 6 (Yang et al.). A previous study by Yang et al. (18) (BioProject acces-
sion number PRJNA554461) investigated the use of clinical metagenomics using an
Oxford Nanopore MinION sequencer for patients with VAP. Here, the UltraSEQ results
were compared to the results of Oxford Nanopore’s What’s in My Pot (WIMP) workflow,
as reported by Yang et al. As shown in Table SF6, UltraSEQ’s results demonstrated a
much higher NPA due to 4 fewer false positives but a slightly lower PPA due to one
more false negative. For the 4 culture-negative pneumonia cases (cases 10 and 12 to
14) and the 8 control cases (cases 15 to 22), the UltraSEQ results were consistent with
those authors’ (WIMP) results, with some exceptions, as detailed in the scores tab of
File S3. For the 10 culture-positive pneumonia cases (cases 1 to 9 and 11), UltraSEQ
identified at least one concordant pathogen in 8/10 cases (discordant for cases 7 and
9); in comparison, those authors identified the concordant pathogen in 9/10 cases.
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However, those authors identified 2 false positives for both case 1 and case 4, which
UltraSEQ correctly did not report. For case 1, UltraSEQ identified the FP organisms, but
both fell below the abundance threshold described in Materials and Methods. For case
4, UltraSEQ did not identify the 2 FPs at any abundance.

Antibiotic resistance profiling. To further test UltraSEQ’s ability to identify AbR
profiles based on genotypes, the UltraSEQ results were compared to the phenotype
results reported by Yang et al., who used ResFinder (17) (Table SF7). In general, the
UltraSEQ results showed excellent agreement with the phenotypic results, and the
results provide a direct interpretation of genotypes (i.e., UltraSEQ automatically inter-
prets antibiotic resistance based on CARD hits, whereas Yang et al. required manual
interpretation based on hits for various genes). Specifically, for 4 cases, the phenotypes
of antibiotic resistance to 11 antibiotics were identified using culture profiling; of these
11 antibiotics, UltraSEQ identified pathogen-specific evidence (i.e., the resistance genes
were likely derived from the identified pathogen) for resistance to 7 of those antibiotics
or classes of antibiotics. For 3 of the remaining 4 antibiotics (all fluoroquinolone antibi-
otics), UltraSEQ identified pathogen-agnostic evidence (i.e., the gene was not identified
to be associated with the identified pathogen); for the remaining 1 of 4, UltraSEQ iden-
tified pathogen-specific evidence of resistance to a closely related antibiotic (different
type of b-lactam antibiotic).

Case study 7 (Flygare et al. and Graf et al.). Previous studies by Flygare et al. and
Graf et al. (19, 20) (BioProject accession number PRJEB13360) investigated the use of
Illumina RNA sequencing of 24 upper respiratory tract samples for the diagnosis of dis-
eases caused by respiratory viruses. No negative controls were included in these stud-
ies, and all results were compared to the results of PCR tests. For these 24 samples,
Flygare et al. reported an average of 95% sensitivity (positive predictive agreement) for
their Protonomer module of Taxonomer software (average as reported in Fig. 3 in ref-
erence 19). In contrast, UltraSEQ identified the correct virus in all 24 samples (100%
PPA). Since the individual viruses that UltraSEQ identified in each of the 24 samples
were not reported by Flygare et al., we performed a head-to-head comparison of the
results of UltraSEQ for a subset of the samples to the results of Explify, the software
developed from Taxonomer software (21). For the 12 samples analyzed, Explify cor-
rectly identified 11/12 (92% PPA), whereas UltraSEQ identified 12/12 (100% PPA) (File
S3). For SRA accession number ERR1360082, Explify failed to identify enterovirus B. The
results for all other samples were very similar.

Case study 8 (Babiker et al.). A study by Babiker et al. (22) (BioProject accession num-
ber PRJNA634356) investigated Illumina RNA sequencing data sets from nasopharyngeal
(NP) swabs for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection. Pathogen detections were compared to the results for SARS-CoV-2
reverse transcription-PCR (RT-PCR)-positive patients (n = 45) and RT-PCR-negative subjects
(n = 30), including one viral coinfection confirmed by RT-PCR. We compared UltraSEQ’s
results to those of Babiker et al., who used KrakenUniq (23), and a subset was also run
using Explify. Molecular and confirmation testing used by those authors detected viruses
such as influenza virus, respiratory syncytial virus (RSV), parainfluenza virus, human meta-
pneumovirus (hMPV), rhinovirus, and/or human coronaviruses (HCoVs). Thus, a detection
by any pipeline was scored positive only if it detected one of the above-mentioned viruses
and the specific test was run for that sample. As compiled in Table SF8 and File S3,
UltraSEQ’s results demonstrated a higher PPA than both pipelines due to no false nega-
tives. In contrast, Babiker et al. reported 1 FN (GA-EHC-084F), and the use of Explify soft-
ware resulted in 3 FNs. For FPs, UltraSEQ identified two, in contrast to one FP reported by
Babiker et al. and zero by Explify. Taken together, these results demonstrate that UltraSEQ
has an overall accuracy of 96% for this data set, compared to 96% and 93% for Babiker et
al.’s pipeline and Explify, respectively.

Case study 9 (de Vries et al.). A previous study by de Vries et al. (24) compared 13
different bioinformatic pipelines for the diagnosis of respiratory disease and encephali-
tis from metagenomic data sets. For this data set, UltraSEQ showed a 100% positive
predictive value (PPV) (no false positives) and a 92% PPA (sensitivity), as shown in
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Table SF9. This PPA value was higher than those for 10 of the other 13 pipelines, but
only 1 (metaMix) of the 3 pipelines that had higher PPA values had an equivalent PPV.
The negative predictive value (NPV) or accuracy was not calculated here since no true-
negative samples were included in the data set.

Case study 10: in-house COVID-19 data set. To further test UltraSEQ’s ability to
diagnose respiratory disease with a different sample type (saliva), we generated and ana-
lyzed 8 RNAseq metagenomic data sets from coronavirus disease 2019 (COVID)-19-positive
patients (BioProject accession number PRJNA856680). These results were compared to
gold-standard PCR tests (File S3). For 6 of the 8 samples, we correctly identified SARS-CoV-
2 (75% true-positivity rate). No other pathogens (except for oral/throat bacterial contami-
nants) were identified. For the two false negatives, no reads were identified that aligned to
SARS-CoV-2, and the lack of detection did not correlate with the qPCR results, suggesting
that the lack of detection was due to a lack of a signal in the data set and not due to
UltraSEQ.

DISCUSSION

Applied metagenomics is a powerful emerging capability enabling the untargeted
detection and characterization of pathogens, reducing the time window for and enhanc-
ing the identification of emerging and traditional threats for both clinical and biosurveil-
lance applications. Realizing the potential for metagenomics requires bioinformatic solu-
tions that not only can keep pace with scientific discovery but also are scalable, accurate,
and science backed. While clinical metagenomic tools have been developed and vali-
dated for specific applications, their utility is limited by workflow-specific requirements,
computational constraints, lengthy expert review, and stagnant databases. For example,
SURPI has been validated for CSF samples/encephalitis using Illumina reads (10), Explify
has been validated for respiratory samples/disease using Illumina reads (19, 20), and
Karius has been validated for cell-free DNA/sepsis from Illumina reads (25), but each of
these requires specific wet-laboratory workflows, instrumentation, and background con-
trols. In parallel, numerous metagenomic tools have been developed for taxonomic iden-
tification with potential utility for surveillance, such as CZ ID (14) and What’s in My Pot
(WIMP) (26), but such tools will likely not have widespread clinical application until they
are validated across various use cases.

Here, we present results for the evaluation of our novel UltraSEQ pipeline using in
silico data sets, mock microbial community data sets, and publicly available clinical
data sets across a wide range of applications. For the in silico data set, UltraSEQ suc-
cessfully detected all 21 species across the tree of life, with fewer false positives than
with Kraken2 (Fig. 2). UltraSEQ also detected all 10 bacterial and fungal species in the
mock microbial community data set sequenced by both the Illumina and Nanopore
platforms (Table 2). Finally, the clinical data sets contained samples from different
infection types (encephalitis, meningitis, and other respiratory diseases), comprised of
both short-read (Illumina and IonTorrent) and long-read (Nanopore) sequencing data
in both RNAseq and DNAseq formats, and represented both sterile (e.g., spinal fluid
and blood) and “dirty” (e.g., saliva and nasal) sample types. Here, UltraSEQ’s pathogen
detection accuracy was the same as or better than those of the comparable bioinfor-
matic tools used in the studies for seven of the nine clinical data sets (Fig. 3). UltraSEQ
analyzed the set of diverse samples, identified pathogens, and achieved an overall ac-
curacy of 91%, even without requiring data-set-specific configuration setting changes,
background data set subtraction, or prior sample information. We also demonstrated
UltraSEQ’s ability to provide accurate antibiotic resistance and virulence factor geno-
types that are consistent with phenotypic results with a limited data set. Future work
will focus on a more extensive validation of this feature.

Taken together, the above-described results demonstrate that Battelle’s UltraSEQ
platform offers a transformative approach for microbial and metagenomic sample char-
acterization, employing biologically informed detection logic, deep metadata, and a flex-
ible system architecture for the classification and characterization of taxonomic origin,
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gene function, and user-defined functions, including disease-causing infections. A highly
curated pathogen and virulence factor database underpins the UltraSEQ analytics engine
and enables the rapid, accurate, and explainable detection and characterization of patho-
gens. In addition to the results shown here, we further discuss the important features of
UltraSEQ software compared to both the benchmarked software described in Results and
additional well-known software used for clinical diagnostics and/or surveillance research
(Fig. 4). While each of the 12 pipelines provides advantages and disadvantages, UltraSEQ’s
curated databases, logic-based approach, and modularity provide accurate predictions
across a wide range of data set types with best-in-class comprehensiveness of reference
database coverage, science-backed annotations, and flexibility.

Comprehensiveness. Metagenomic-based identification of pathogens relies on
matching query sequences to sequences in a database, followed by prediction. To
ensure the highest accuracy, maximal coverage across the tree of life is required to
ensure that query reads are not incorrectly assigned. For example, nontypical parasites
that can cause disease, such as Trichinella spp. (identified in the data set of Miller et al.
[10]), can be identified only if they are included in subject databases. When comparing
the 12 tools, UltraSEQ is one of the 9 tools that have taxonomy coverage across all rele-
vant biological domains (bacteria, eukaryotes, viruses, and fungi). Of the three tools that
do not have complete taxonomy coverage, Explify and WIMP are missing the eukaryote
domain, and Rapid Infectious Disease Identification (RIDI) is missing virus, fungus, and
eukaryote domains. Furthermore, UltraSEQ is one of only four tools that allow both nu-
cleotide and protein reference databases to be included in the analysis pipelines,
expanding the quantity of reference sequences that can be used to classify samples. In
addition to taxonomic coverage, UltraSEQ’s databases include coverage and provide
both virulence factor and antibiotic resistance genes, like two other tools (Fig. 4).

Science-backed annotations. While database coverage is important for pipeline
performance, curation of the data contained in the database is perhaps even more

FIG 4 Comparison of UltraSEQ to commonly used bioinformatic tools for clinical diagnostics or surveillance (https://www.cosmosid.com)
(10, 14, 21, 26, 27, 38–48). VF, virulence factor.
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important. All but two tools leverage curated lists of pathogenic organisms to enable
the specific reporting of pathogens identified in a sample. For example, SURPI is
backed by annotated lists of pathogens that cause encephalitis/meningitis, Karius is
backed by lists of sepsis-causing pathogens, and Explify is backed by lists of respira-
tory-disease-causing pathogens, including granularity on phenotypic groups (normal
flora and colonizers, etc.). UltraSEQ provides these curated lists as well but provides
additional granularity, including the likelihood of the pathogen causing disease (e.g.,
immunocompromised), contaminant type (e.g., from laboratory reagents versus from
native flora), and specific disease subtypes (e.g., ventilator-associated pneumonia), etc.

In addition, providing end users with human-readable text and primary references
related to organisms, gene functions, and other information can minimize the burdens
(such as review time) associated with bioinformatic predictions. Based on our research,
UltraSEQ and at least two additional tools provide such text and citations. For example,
CZ ID provides background information on organisms and provides Wikipedia cita-
tions, and WIMP provides background information on organisms at the genus level
(27). However, to our knowledge, UltraSEQ is the only tool that provides curated asser-
tions-citations of pathogens. Specifically, we provide end users with not only a short
text rationale (assertion) for why the data are curated in a particular way but also the primary
reference (e.g., PubMed identifier) in order to provide highly explainable and accurate
results. For example, in the data set of Yang et al. (18), WIMP identified Stenotrophomonas
maltophilia, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Klebsiella pneumoniae
for case 1, but only S. maltophilia was the likely disease-causing organism based on culture
results. UltraSEQ identified S. maltophilia and S. epidermidis, but S. epidermidis could be elimi-
nated because of its metadata (lack of association with VAP and known skin contaminant),
and the reference for this annotation is provided to the end user.

Flexibility and accuracy across data sets. Like some other tools, UltraSEQ provides
the functionality to both preprocess and remove host-derived reads. While most other
tools perform read preprocessing, at least five do not include a host read removal step,
which can increase the computation time. Furthermore, UltraSEQ and four other tools
can process both short-read (e.g., Illumina and IonTorrent) and long-read (e.g.,
Nanopore and PacBio) sequencing data. Furthermore, UltraSEQ provides the additional
flexibility of being deployed in different formats, including cloud deployment.

Most importantly, unlike the implementation of other tools described in this paper
across the clinical case studies discussed, we have demonstrated that the potential imple-
mentation of UltraSEQ for clinical metagenomics for different sample types does not rely
on parameters that are specific to read depth and background data set subtraction. For
example, in their implementation of CZ ID, Saha et al. used specific filters that were de-
pendent on read depth (e.g., NCBI NT reads of $10 and NCBI NR reads of $2, etc.) (12).
For background subtraction, Miller et al. used a 10� threshold above the background sam-
ple (10) with their implementation of SURPI. Similarly, with their implementation of CZ ID,
Hasan et al. and Saha et al. used (among other filters) an empirically derived Z score based
on test sets of samples (12, 13). In contrast, UltraSEQ uses an information theory approach
to calculate positive detections by utilizing the metagenomic module results and its own
rules engine. Thus, the predictions are not dependent on read depth, and no background
data set subtraction is required to achieve a high degree of specificity, allowing UltraSEQ
to produce excellent results for any type of data set without a priori knowledge.

To further illustrate UltraSEQ’s lack of reliance on arbitrary depth thresholds and a back-
ground sample, we ran several data sets at various read depths and saw no degradation
(or improvement) of UltraSEQ’s performance (data not shown). Furthermore, we noticed
that Escherichia coli was a pervasive contaminant in many of these data sets, including the
data sets of Hasan et al. and Miller et al. For these data sets, UltraSEQ also identified E. coli
in most samples. Unlike the authors who used several custom user-defined filters and
background samples to remove this contaminant, UltraSEQ correctly identifies E. coli as
being present in the sample but provides the metadata label of biological contaminant.
This context enables the end user, with minimal manual interpretation, to identify E. coli as
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a false positive and therefore eliminate it from the result without requiring background
data. Overall, UltraSEQ made all of its predictions without a background sample, main-
taining an accuracy comparable to or better than those in the studies that utilized a
background sample subtraction analysis step. As for qPCR and other molecular assays,
we suggest that background samples should be included as separate controls (and not
used for background subtraction). Therefore, we believe that this feature of UltraSEQ
will be a major benefit in its clinical metagenomics application since UltraSEQ does not
require specific empirical testing to remove background signals and apply specific
thresholds, thus expanding its utility across any sample type.

The future development of UltraSEQ will focus on improving its performance in
classifying samples coinfected with multiple pathogens in the same domain (e.g., two
viruses). For example, in the data set of Fischer et al. (15), UltraSEQ identified a false
negative (SRA accession number ERR690513). For this sample, human alphaherpesvirus
dominated the relative viral abundance maps (see Materials and Methods); thus,
UltraSEQ likely did not report influenza virus in this case due to a low number of influ-
enza virus reads relative to the number of human alphaherpesvirus reads. Another
area of future development would be toward expanding and optimizing UltraSEQ’s
ability to detect and classify emerging novel pathogens. Recent work in our laboratory
analyzing novel SARS-CoV-2 demonstrated that UltraSEQ could identify SARS-CoV-2 as
a SARS-CoV-1-related virus (data not shown). Furthermore, analytical models built from
hazardous function signals (using the methodology reported in our recent publication
[8]) demonstrated that SARS-CoV-2 clusters with other SARS-CoVs with similar host
ranges and human receptor types. Future work will expand on these advances and
improve UltraSEQ’s ability to characterize features of emerging pathogens of clinical
and research significance.

MATERIALS ANDMETHODS
Overall UltraSEQ architecture and information flow. The overall UltraSEQ pipeline is illustrated in

Fig. 1. UltraSEQ handles various input file types and relies on high-quality sequence regions for down-
stream predictions. Each sequence has the option to go through all or some of the services described
below, including a quality assurance preprocessing service, an aligner service, a query mapper service,
context services, and prediction services. Collections of sequences can then undergo additional predic-
tions, including taxonomic composition prediction (metagenomics module), a rules engine(s), and
reporting services. A high-level summary of the services used in this study is included below; details of
the services used in this study are provided in File S1A in the supplemental material, and other services
not used during this study are described in File S1B (for the sake of completeness). UltraSEQ has a modu-
lar architecture with nonrestrictive deployment, including both local, high-performance computing clus-
ter and cloud-based deployment. UltraSEQ is currently deployed on Amazon Web Services (AWS) in a
secure, scalable computing environment complete with a graphical user interface to submit samples
and download result reports and is available for use by contacting the corresponding author.

(i) Preprocessing service. UltraSEQ’s preprocessing routine includes steps to trim low-quality
sequence regions, remove adapter sequences, remove duplicate sequences, (optionally) merge paired-
end reads, and (optionally) remove host sequences (28–34). Different routines were applied for short-
read (Illumina and IonTorrent) and long-read (Nanopore) data sets, as detailed in File S1A. Furthermore,
to reduce cloud computing costs, enhance run times, and provide better comparisons across data sets,
subsampling was optionally performed prior to the alignment service, as described in File S1A. This strat-
egy enabled all samples to be run in minutes to hours (typically ,2 h) using the computational resour-
ces described in File S1A.

(ii) Aligner service. Each sequence is rapidly aligned using LAMBDA2 version 1.9.5 (35) against
selected databases, although other aligners can be used if desired. LAMBDA2 enables alignment against
both protein and nucleotide databases, but the results for this study leveraged only protein databases
since the inclusion of nucleotide databases did not improve the results based on an analysis of a subset
of the data sets (data not shown); the inclusion of only protein databases also improved the run times and
thus reduced the cloud computing costs. Specifically, for the analyses reported here, we used the publicly
available UniRef100 protein database (built in April 2021 [https://www.uniprot.org/help/downloads]).
UniRef100 provides coverage across the tree of life (pathogens and nonpathogens) and provides the foun-
dation for taxonomic calls in UltraSEQ. In addition, we used Battelle’s Sequence of Concern (SoC) protein
database, described previously (8). This database contains ;12,300 manually selected publicly available
UniProt protein sequences that have been curated based on functions such as enabling antibiotic resist-
ance, immune evasion, toxicity, and/or other threatening functions. The specific sequences are publicly
available, but the exact compilation of the database is not published. Notably, the sequences in the SoC
database are not required for taxonomic profiling as they are contained within UniRef100; they simply ena-
ble other downstream functionalities for UltraSEQ, including antibiotic resistance and virulence factor
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profiling. However, the SoC database further contains annotations of organisms (metadata) that are used
in downstream UltraSEQ services (after taxonomic profiles are determined), as described below.

(iii) Query mapper service. The query mapper service maps regions within query sequences (i.e.,
portions of the query sequence) to identify high-quality-alignment regions as well as chimeric reads/
out-of-context DNA sequences. For each query sequence, the positions of alignment starts and stops
from high-quality alignments were compiled. A k-means clustering approach was used to identify posi-
tions in the query sequence with a high abundance of alignment starts/stops, which were subsequently
used to identify regions of the query sequence.

(iv) Context services and subservices. Context services and subservices generate contextual infor-
mation and pass information to downstream services. Information from the context services is passed to
the prediction services and flagging system (rules engine), as described below.

(v) Region-based prediction subservices. For each region identified from the query mapper serv-
ice, UltraSEQ predicts the taxonomy, function (gene ontology terms), and threat associated with the
region. For this study, UltraSEQ’s sample-level taxonomy predictions (metagenomics module described
below) were used for sample-level taxonomy calls, and UltraSEQ’s region-based function and threat pre-
diction were not used. These calculations are provided in File S1B for the sake of completeness as they
are useful for other use cases.

(vi) Metagenomics service. The metagenomics service provides the sample-level taxonomic compo-
sition based on the regions identified from reads processed by the query mapper service in 3 steps: (i) fil-
tering out low-quality reads, (ii) scoring the remaining reads based on the information content of the
reads, and (iii) predicting the taxonomic composition based on the scores. Sequence-region-level taxon-
omy predictions are associated with confidence scores that are based on the alignment quality. For each
unique taxonomy identified in the sample, the confidence scores from the alignments from all query
regions that are associated with it are assigned. A k-means clustering approach was used to identify taxon-
omies with high sample-level scores independently by taxonomy domain (Bacteria, Archaea, Eukaryota,
and viruses). Detailed calculations are provided in File S1A.

(vii) Rules engine service. The rules engine service combines all of the above-described context
and prediction services for regions, sequences, and samples using user-defined logic rules for rapid
sequence triage. UltraSEQ currently has 4 default rules engines, but only the metagenomics diagnostics
rules engine (MDRE) service was leveraged for this study (Fig. 1). The MDRE service enabled flexibility for
diagnoses of different infectious disease types (e.g., respiratory disease and encephalitis/meningitis,
etc.), as outlined in File S1E. In brief, the MDRE service is specific for clinical diagnostics and uses an array
of decision trees to filter results based on curated data that are contained within the SoC database to
down-select species and their virulence factors in the sample that cause disease.

(viii) Reporting services. UltraSEQ provides several reports, as described below.
(a) Top-alignment report. The top-alignment report is a simple report that provides the top align-

ments from each database (UniRef100 and SoC databases for this study) for each query sequence from
the aligner and query mapper services. This report is used for downstream reports, as described below.

(b) Taxonomy report. The taxonomy report provides the alignments, annotated with the reference
accession’s taxonomy identifier (TaxID), used by the metagenomics service and is used to determine the
taxonomic composition of the sample. This report is used for downstream reports, as described below.

(c) Default report. The default report provides UltraSEQ’s region-level predictions for each sequence,
including predictions for coarse threat functions (described above), taxonomy, gene ontology, and the
sequence-level results of a rules engine(s) if applicable.

(d) Sample report. File S2 in the supplemental material provides a detailed description of the sample
report. The “main-report” tab provides a list of all organisms identified from the above-described meta-
genomics service, the results associated with the identified organisms (relative abundance and number
of SoCs identified, etc.), and the metadata associated with the organism from Battelle’s SoC database
(whether or not the organism is a human pathogen, whether or not the organism can cause meningitis
or respiratory disease, the types of respiratory disease, the likelihood that the organism causes disease,
whether or not the organism is a common biological or environmental contaminant, references to sub-
stantiate the metadata, and other information). These results and metadata are used in the MDRE service
(described above) for each disease type studied here (meningitis/encephalitis and respiratory disease),
which are summarized in the “trigger-summary” tabs. Virulence and antimicrobial resistance (AMR) fac-
tors (both sample wide and agent specific) are described in downstream tabs, as detailed in File S1A.

Data sets used for analysis. Several data sets were used during this study, as described below.
(i) In silico data set. The complete reference genomes of 21 different organisms across the tree of life were

downloaded from the NCBI RefSeq database using the open-source bioinformatic tool ncbi-genome-download
v0.3.1 (https://github.com/kblin/ncbi-genome-download) with the commands described in its user manual. The
downloaded genomes were combined, and a few sequences from the human genome were added to it to test
the host removal process. The combined genomes were used to computationally generate a metagenomic
sample using the open-source tool InSilicoSeq v1.5.4 (36) based on the Illumina HiSeq error model.

(ii) Mock microbial community data sets. To further test UltraSEQ’s taxonomic profiling capability,
we analyzed data sets derived from mixed microbial communities as reported previously by Nicholls et
al. (37). Specifically, the data sets under SRA accession numbers ERR3152364 (Nanopore data set) and
ERR2984773 (Illumina data set) were run.

(iii) Clinical data sets. Clinical data sets are summarized in Table 3. The data sets represent a range
of disease types, sample types, and sequence types. The final data sets (saliva respiratory data sets) were
produced as part of this study, as described below (IRB no. 0782-100123699, Battelle Memorial Institute
COVID-19 Biorepository).
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Processing of saliva samples for the Battelle data set. Approximately 1- to 5-mL specimens were
self-collected in RNase-free 50-mL Falcon tubes. Briefly, subjects were instructed to swallow a couple of
times prior to the collection of normal saliva that naturally pools in the mouth without coughing or sniff-
ing. After collection, the sample tubes were screwed shut and sterilized with a disinfecting alcohol wipe.
Samples were submitted to a collection site within 30 min of collection, where they were immediately
placed on ice. Samples were shipped to the laboratory and stored at 2°C to 8°C until diagnostic testing
could be conducted. All samples were tested within 72 h of collection, and leftover saliva was stored at
270°C or lower for subjects who enrolled in the Battelle Biorepository.

SARS-CoV-2 qPCR for Battelle samples. Self-collected saliva samples were analyzed the same day
using SalivaDirect DualPlex RT-qPCR targeting the N1 gene of SARS-CoV-2 and human RNase P. Briefly,
samples were vortexed until they were homogeneous, and 50 mL of saliva was then mixed with 2.5 mL
of MagMAX viral/pathogen proteinase K (Thermo Fisher) and vortexed at room temperature at 3,000 to
5,000 rpm for 1 min. Proteinase K was then heat inactivated for 5 min at 95°C prior to RT-PCR. RT-PCR
was conducted using TaqPath one-step RT-qPCR master mix according to the SalivaDirect protocol on
5 mL of extraction-free saliva lysate. For each 96-well sample plate tested, a negative template control
(NTC) and two positive controls (Twist synthetic SARS-CoV-2 RNA controls at 100 copies/mL) were
assessed. Test results were valid only when the NTC returned a negative result and the positive controls
returned the expected positive results for SARS-CoV-2 N1 and negative results for the RNase P gene. The
detection criteria for clinical samples were as follows: if the SARS-CoV-2 N1 gene had a CT value of ,37
and the RNase P gene had any value; it was a positive reportable result; if the RNase P gene had a CT

value of ,35 and the SARS-CoV-2 N1 gene had a CT value of $40, it was a reportable negative result;
and if the RNase P gene had a CT value of $35 and the SARS-CoV-2 N1 gene had a CT value of $40, the
test was considered invalid, and the test was repeated for that sample.

Metatranscriptome sequencing for Battelle samples. Saliva samples from each enrolled subject
that returned a positive SARS-CoV-2 qPCR result underwent RNA extraction using the QIAamp viral RNA
kit for QIAcube (Qiagen) according to the manufacturer’s instructions. RNA extracts were then treated
using Kapa Hyper prep with RiboErase according to the manufacturer’s instructions. Library quantifica-
tion was conducted using a Kapa library quant kit (Illumina) with universal qPCR mix (catalog number
KK4824), and the libraries were normalized to 4 nM and pooled for sequencing with the Illumina
NextSeq 500/550 high-output kit v2.5 (300 cycles, 150 by 150 bp). FASTQ data were processed through
UltraSEQ as described above.

Positive predictive agreement, negative predictive agreement, and accuracy. The agreement of
the metagenomic results with the pipeline was compared to reported molecular results (culture, qPCR,
and antigen testing, etc.) in terms of positive predictive agreement (PPA) [PPA = TP/(TP 1 FN)], negative
predictive agreement (NPA) [NPA = TN/(TN1 FP)], and accuracy (ACC) [ACC = (TP1 TN)/(TP1 FN1 FP1

FN)]. In cases where negative samples were not available (e.g., de Vries et al.’s data set [24]), an additional
metric, the positive predictive value (PPV), was used for comparisons, where PPV = TP/(TP 1 FP).
Specifically, TPs are defined as instances where the bioinformatic pipeline identifies the same pathogen
species as that reported by the molecular test, FNs are defined as instances where the molecular test iden-
tifies a pathogen but the bioinformatic pipeline does not, FPs are defined as instances where the bioinfor-
matic pipeline identified a pathogen that was tested for but not identified by the molecular test, and TNs
are defined as instances where the bioinformatic pipeline does not identify a pathogen and the molecular
test also does not identify the pathogen. If no truth molecular result was available, the bioinformatic pipe-
line result was not scored.

For each published data set and corresponding pipeline, positive and negative calls were documented
as reported in the publications, and the detailed results are described in File S3. In addition to the pipelines
described in the studies in Table 3, for some respiratory data sets, the results were compared to Explify
results using the Basespace app (21). For UltraSEQ, positive calls were made if an organism was identified in
bin 1A, 1B, 2, or 3 according to the logic rules table described in File S1E, with the following exceptions. For
all data sets, pathogens that rarely cause disease as annotated in Battelle’s SoC database were reported in
the raw results but were not considered positive detections. For the data sets under BioProject accession
numbers PRJNA554461, PRJNA516289, and PRJNA516582, additional filters were applied due to obvious E.
coli contamination. Specifically, for the data set under BioProject accession number PRJNA554461, E. coli was
considered a positive detection only if it was identified with a .5% relative abundance and .7 SoCs were
identified; for the data set under BioProject accession number PRJNA516582, filters of a.50% relative abun-
dance and.21 SoCs were applied; and for the data set under BioProject accession number PRJNA516289, E.
coli-positive results were not reported under any condition.

Data availability. Metagenomic reads for the saliva samples from this study have been submitted
to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject) under accession number
PRJNA856680. The UltraSEQ platform is available for trial account use by contacting the authors.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.9 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.
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