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Abstract

Administration of individual chemicals and mixtures during sexual differentiation that disrupt
the androgen signaling pathway can induce reproductive abnormalities in male rats. In the
current study, we co-administered the heptafluoroisopropyl pesticide pyrifluquinazon (PFQ), and
dibutyl phthalate (DBP) to pregnant rats during sexual differentiation of the reproductive tract.
Both chemicals have been shown to disrupt reproductive tract differentiation in a dose-related
manner reducing male anogenital distance (AGD), permanently reducing androgen-dependent
tissue weights and sperm counts, and inducing reproductive malformations in male offspring,
albeit by different mechanisms of action that converge downstream in the androgen signaling
pathway on a common key event. Rats were orally dosed from gestation days 14-18 with dilutions
of PFQ and DBP at 0, 12.5, 25, 50, 75 and 100% of the top dose (100 mg/kg PFQ and 750
mg/kg DBP). The mixture ratio was selected such that each chemical would contribute equally
to multiple effects on the male offspring reproductive tract and the dose range was designed

to determine if the mixture produced additive effects predicted by dose addition or response
addition models, or whether significant interactions occurred. Observed data were compared to
dose and response addition model predictions. As hypothesized, the mixture reduced F1 male
AGD, reproductive organ weights and sperm counts and induced hypospadias with dose addition
consistently providing a better prediction of the observed effects than response addition. These
results support our hypothesis that chemicals that disrupt the androgen signaling pathway induce
dose-additive male reproductive abnormalities regardless of the specific mechanism of action.
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Introduction

Per- and polyfluoroalkyl substances (PFAS) vary greatly in structure, and depending

on the definition (e.g., OECD, US EPA, etc.), the term “PFAS” may refer to as few

as a couple hundred individual chemicals to more than 9,000. The Organization of
Economic Cooperation and development (OECD) and the EPA are currently reviewing
their definition of PFAS (Wang et a/. 2021), but currently pyrifluguinazon (PFQ) has

been identified as a PFAS by the OECD as well as the USEPA CompTox PFAS Master
List (https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster) and is one of several
registered pesticides with a heptafluoroisopropyl group (Qacemi et al. 2019). The structure
of this subclass of PFAS is quite different from legacy/straight-chain structures like
perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), showing the
diversity in structure and bioactivity among the PFAS. PFQ is currently registered under
the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) for use on a variety of
food crops and ornamental plants and aerial application in the United States (US EPA 2018,
2020).

PFQ and dibutyl phthalate (DBP) have been shown individually to disrupt male reproductive
tract differentiation of many of the same tissues in a dose-dependent manner, including
reduction of anogenital distance (AGD), androgen-dependent tissue weights and sperm
counts (Gray et al. 2019a), (Hotchkiss et al. 2010; Mylchreest et al. 1998; Mylchreest et al.
1999; Mylchreest et al. 2000). In EPA’s human health assessment of PFQ, the Health Effects
Division of the Office of Pesticide Programs selected reduced male rat AGD as the endpoint
of concern for females of childbearing age and fetuses. An Acute Population Adjusted Dose
(aPAD) of 0.05 mg/kg/day was derived from a developmental NOAEL of 5mg/kg day and a
100-fold UF (10X for inter-species extrapolation, and 10X for intra-species variation).

The current study is similar in design to our fixed ratio binary mixture dilution study with
DBP and the androgen receptor (AR) antagonist procymidone (Hotchkiss ef a/. 2010) (Table
1). Herein, we conducted a fixed ratio binary mixture study with PFQ, a perfluoroalkyl-
isopropy| pesticide (PFAP), and DBP. To our knowledge, this is the first study showing

that a mixture of a PFAS with another chemical produces cumulative, dose additive adverse
effects on reproductive development in male rats. There are few, if any, published studies on
the effects of PFAS mixed with other chemicals on reproductive development after in utero
exposure. A few /n vivo mixture studies with PFAS have been published, but these did not
compare dose- and response addition models so it is not possible to determine if the mixture
effects were additive, synergistic or antagonistic (Marques et al. 2021; Roth et al. 2021).

One advantage of binary mixture studies, like the current study, is that interpretation of
the nature of the mixture effects is clear. In contrast, it is possible, albeit unlikely, that the
effects in a more complex mixture study could appear dose additive, when in reality, some
interactions in the mixture were antagonistic while others were synergistic. An emerging
body of information supports the hypothesis that when chemicals that disrupt androgen
signaling via different mechanisms of action are administered as a mixture to pregnant
female rats during the critical window of sexual differentiation, permanent adverse effects

Toxicol Sci. Author manuscript; available in PMC 2023 July 28.


https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster

1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Gray et al.

Methods

Page 3

occur in the offspring at doses lower than those at which the individual chemicals produce
effects, and the mixture effects are best predicted by dose addition modeling.

Over the last 20 years, we have conducted several component-based mixture studies with
chemicals that disrupt the androgen signaling pathway in utero via a variety of mechanisms
(reviewed by (Howdeshell et al. 2017). These studies demonstrate that chemicals with
diverse mechanisms of toxicity and modes of action, with different structures, from different
chemical classes produce cumulative effects that are more accurately predicted by dose
addition than response addition. Studies have included binary mixture designs including
mixtures of benzyl butyl phthalate and the pesticide linuron (Hotchkiss et al. 2004), DBP
and the pesticide procymidone (Hotchkiss ef a/. 2010), and dipentyl phthalate and the drug
simvastatin (Beverly et al. 2014) (Table 1), and multichemical mixture studies with 7 (Rider
et al. 2008), 10 (Rider et al. 2010), 15 (Conley et al. 2021a) and 18 chemicals (Conley et al.
2018). Two of the multichemical studies (Conley et al. 2018; Conley et al. 2021b) reported
effects at mixture dose levels well below the individual chemical no-observed effect level

on the developing reproductive system. Taken together, these studies, along with similar
studies from other researchers (Christiansen et al. 2008; Hass et al. 2007; Kortenkamp 2007,
Metzdorff et al. 2007), all indicate that when considering cumulative assessment chemicals
should be grouped based upon their ability to disrupt common toxicological targets as
opposed to grouping them by chemical structure or class, molecular mechanism, or mode of
action.

In the current study, pregnant rats were exposed by oral gavage to a mixture of PFQ and
DBP from gestational days (GD) 14-18, the stage of pregnancy in rat during the critical
window of rat sexual differentiation (Wolf et a/. 2000) (Gray et al. 1999) (Carruthers and
Foster 2005). The study was a fixed-ratio dilution design and included doses of 0, 12.5, 25,
50, 75 and 100% of the top dose which contained 100 mg/kg for PFQ and 750 mg/kg for
DBP. The dose range was designed to determine if the mixture acted in a dose additive,
response additive, synergistic (at low doses) or antagonistic (at high doses) manner. Based
upon the results of our previous studies, we hypothesized that these two chemicals would
act in a dose additive manner because they both disrupt the androgen signaling pathway
during sexual differentiation and induce common effects even though they act via different
mechanisms of action.

The study consisted of 6 treatment groups administered at 0, 12.5, 25, 50, 75 and 100%

of the top dose corresponding to 0, 12.5mg PFQ + 93.75mg DBP, 25mg PFQ + 187.5 mg
DBP, 50mg PFQ + 375mg DBP, 75mg PFQ + 562mg DBP, and a top dose of 100mg PFQ

+ 750mg DBP) with 5 pregnant dams in each group. The top dose of each chemical has
been shown to produce a high rate of reproductive tract malformations when administered
from GD 14-18 (Gray et al. 2019a) (Hotchkiss et al. 2010). An examination of the EDggs
for each chemical indicates that the relative potency factors for PFQ to DBP varies from
androgen-dependent endpoint to endpoint. For this reason, PFQ and DBP contribute equally
to the development of some abnormalities in the current study, whereas one chemical or the
other is primarily responsible for the induction of other effects.
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Animals and administration of chemicals

Timed-pregnant Sprague Dawley (SD) rats, approximately 90 days old, were purchased
from Charles River Laboratories (Raleigh, NC, USA) and shipped to EPA on GD 2

(date of sperm plug positive = GD 1). Animals were housed individually in clear,
polycarbonate cages (20 x 25 x 47 cm) lined with laboratory-grade heat treated pine
shavings (Northeastern Products, Warrensburg, NY), with a 12:12 light: dark photoperiod
(lights off at 18:00) at 20-22 °C and 45-55% humidity. Dams and offspring were provided
with NIHO7 rat chow during gestation and lactation and offspring were provided NTP 2000
rodent diet after weaning. Rats had access to filtered (5 micron) municipal tap water ad
libitumwhich is tested every 4 months for a subset of heavy metals, pesticides, and other
chemical contaminants and tested monthly for Pseudomonas. These studies were conducted
under protocols approved by the National Health and Environmental Effects Research
Laboratory Institutional Animal Care and Use Committee at a facility accredited by the
Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Pregnant rat dams were randomly assigned to treatment groups on GD 14 in a manner

that provided each group with similar means and variances in body weight (randomized
complete block design). Dams were weighed and dosed daily by oral gavage at
approximately 0730 hr. (EST) from GD 14-18 with the vehicle (laboratory-grade corn

oil [CAS #8001-30-7] or the test substance mixture at 0.25 ml corn oil kg bodyweight.
PFQ was purchased from Chem Services, Inc. (CAS 337458-27-2, Lot # 2110000, Cat #
RPN-13158-5G, purity = 99%) and DBP was obtained from Research Triangle -Chemical
Services for the National Toxicology Program (Sample Date 12/15/09, RTI Log #: 031609-
A-17, Chem ID 116, CAS 84-74-2, Lot # 91997PJ).

Endpoints modeled in the F1 offspring include:

Anogenital distance (AGD) was measured in 2 day old offspring using a dissecting
microscope with an ocular micrometer with the observer blind to treatment (as previously
described (Ostby and Gray Jr 2004). AGD represents the distance between the base of the
genital papilla and the rostral end of the anal opening. Female-like nipple/areola retention
was evaluated when the pups were 13 days old and the position of the areolae on the milk
lines and the number of areole/nipples were recorded. The age at puberty (as indicated

by full preputial separation- PPS) was examined from 40 days of age, when it was first
detected in this study, until 47 days of age and the age and weight at puberty were recorded.
PPS is considered complete when the glans penis is completely separated from the prepuce
(Korenbrot et al. 1977).

Male offspring (total n=120 males) were necropsied as adults and androgen dependent
organ weight changes were measured (glans penis, ventral prostate, seminal vesicles, testes,
epididymis, levator ani/bulbocavernosus muscle, Cowper’s glands, kidneys, and liver) and
males were examined for the presence of hypospadias. Other malformations were noted

in the higher dose levels of the mixture, but these were not modeled because we could

not determine EDsgg and slope values with any confidence due to the low effect range (0

to 15%) observed. For example, a sensitivity analysis indicated that adding or removing a
single affected male from one of the two higher dose groups in the PFQ dose response study
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changed the actual EDsg value of 532 mg/kg to 262 mg/kg or 1360 mg/kg, all of which were
well above the PFQ content of 100 mg/kg/d in the top dose of the mixture. In addition, these
malformations often display very steep slopes with ambiguous logistic regression parameter
estimates.

Epididymal sperm counts were also measured. When present, the right epididymis was used
to determine caput/corpus and caudal sperm counts as previously described (Gray et al.
1989; Gray et al. 1995). The right epididymis was cut 13 mm from the tip of the cauda,

and the cauda and caput and corpus were placed in separate 20 mL glass scintillation vials
containing 2 mL modified M199 media (pre-warmed to 37 °C in an incubator) and minced
uniformly with iris scissors. An additional 3 mL of modified M199 were added to each

vial after mincing, and the vial was then incubated for approximately 1 hour at 37 °C.

At the end of 1 hour, 15 mL of 10% buffered formalin acetate was added to each vial,
bringing the total volume to 20 mL (considered to be a 1:20 dilution). The vials are then
vortexed for approximately 30 seconds. An aliquot of the diluted sample was then brought
to a final dilution of 1:8000 by pipetting 50 pl of the dilution containing minced epididymal
tissue and adding 20 mL of 10% buffered formalin acetate to form a second dilution. A
homogenous sample of 0.5 mL of the final dilution was counted three independent times
using a Beckmann-Coulter cell counter and the average of the three independent counts was
used for statistical analyses. The total number of sperm per sample was determined as [(the
average of 3 counts) x (16,000)]. This method yields accurate total sperm counts within

the normal range of numbers for adult and pubertal male rats (Robb et a/. 1978) and a low
intra-sample coefficient of variation (less than 5%) and low coefficients of variation among
control adult male rats (CV control males; PFQ study =19%, DBP study=17%, Mix study =
21%).

Statistical Methods

Maternal and litter data were analyzed using PROC GLM in SAS 9.4 and each dose

group was compared to control using the LSMEANS option. Data collected on multiple

F1 offspring per litter were analyzed using litter means values with PROC GLM. Males
displaying complete agenesis of an organ were assigned a weight of 0 mg. In addition, males
with complete agenesis of the epididymis were assigned a sperm count value of zero.

Dose response data were analyzed using a four-parameter logistic regression (4PL) model in
GraphPad Prism 8.4.3 to identify the EDsg and slope parameters for each variable.

1

R=——"#8#—— .
P Equation 1
1+ (EDSO) q

D

where R is the response, D is the chemical dose, p is the power or Hill slope of the curve,
and ED50 is the exposure dose eliciting a 50 % response. The ED50s and slopes generated
in the individual chemical analyses were used in equations to predict the overall mixture
response.

Data were normalized to percent of control in Prism and logistic regression models for most
variables were run with the top constrained to 100% and 0% at the bottom, except for AGD
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at PND2 and testis weights collected at necropsy. The logistic regression model for AGD
was constrained to 100% at the top using the mean F1 control male value and the female

rat AGD value at the bottom (representing the maximum biologically plausible degree of
demasculinization). Since the effect on testis weight is due to the absence or reduction in
spermatogenesis due to fluid pressure atrophy that results from epididymal lesions rather
than agenesis of the testis, the bottom of the model for paired testes weight was set to the
value for paired testis weight typically seen with bilateral testis hypospermatogenesis which
was 2.0 g in the PFQ and mixture studies and 1.47 g in the DBP dose response study.

Data from published /in utero DBP and PFQ studies in our laboratory with GD 14-18 dosing
were used to calculate EDgg and slope parameters for use in dose- (DA) and response- (RA)
addition mixture models to predict the effects of the mixture of DBP and PFQ observed

in the current study (Hotchkiss et al. 2010) (Gray et al. 2019a). DA was calculated using
two different statistical models. The first model, our laboratory has traditionally used (Rider
and LeBlanc 2005) (Olmstead and LeBlanc 2005) (Rider et a/. 2008), uses an average

slope value to calculate DA and assumes that the slopes for each chemical in the mixture
are similar to one another for a specific endpoint (referred to herein as DA;). The joint
toxicity of these binary mixtures of like-acting chemicals was computed using the following
equation (Olmstead and LeBlanc, 2005):

1

1
1+ — Equation 2
n D, \P
(Zi =1 EDSO,)

R =

where R is the response to the mixture, D, is the concentration of chemical i in the mixture,
ED50; is the concentration of chemical i that causes a 50% response, and p is the power
(Hillslope) associated with the chemicals.

Since this assumption is not always met, we also calculated DA using the model described
by several authors [for example (Altenburger ef a/. 2000) (Kortenkamp et a/. 2007)
(Metzdorff et al. 2007)] and by the NAS (NAS 2008) which does not require parallel
slopes for the chemicals in the mixture (referred to as DA;). For DA; the dose-additivity
predictions were estimated using Equation 3. These are defined by the effect dose of

the mixture of DBP plus PFQ for the effect doses of the two chemicals where pi is the
proportion of chemical i in the mixture, EDx; denotes the fractional effect (in %) of the i
chemical at EDx,u.

EDx,ure = (p./ EDx, + pz/Esz)_1 Equation 3

Response addition (RA) was estimated using Equation 4 where Ex,,..... i5the predicted
effect of the mixture and Ex, and Ex, are the individual effects of DBP and PFQ at a given
dose levels.

Exprwe =1 = [(1 = Ex)) X (1 — Ex,)] Equation 4
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The objective of using two DA models was to determine if they provided similar predictions
and, if not, to what degree differences in slopes of the dose response curves resulted in
differences in DA mixture predictions. We also predicted mixture effects using independent
action with a “response addition” (RA) model as described in (Rider et al. 2008).

Following these analyses, the “better” mixture model among the two DA models and the
RA model was determined by fitting the data with the each 4PL model, constrained to
100% at the top, 0% at the bottom, and to the ED50 and Hillslope value of each model.
Following this the Akaike information criterion (AIC) values among the DA;, DA, and
RA models were compared by calculating the probability that one model was more or less
informative than another using the equation [exp((AIC,, — AIC,)/2)] which is known as the
relative likelihood of model i (Burnham and Anderson 2004).

Maternal and F1 Effects

Maternal body weight on GD 18 was not significantly reduced at any dose level, being
reduced by about 5% in the top dose group, but maternal weight gain was significantly
reduced by about 20 g as compared to control dams in the high dose group (Table 2).
Postnatal litter sizes were reduced in the top dose group on PND13 and PND23 and the
percent of pup mortality was significantly increased in the top dose group by PND23 (Table
2). In addition, pup body weight was significantly reduced on PND 2 in the top dose group
by about 1.25 g, approximately 15% of control, but there was no significant effect on male
body weight on PND 13 or at weaning.

AGD was not affected in female pups on PND2, whereas AGD in male rat pups was reduced
in all dose groups being significant at 25% of the top dose level and above (p < 0.0001).

The magnitude of the reduction in AGD in males ranged from 10 to 75% of control, being
reduced by 45% of control in the 25% of top dose group (control female AGD = 0% of
control) (Table 2).

At 13 days of age, control males did not display female-like retained nipples/areolae but
treated males displayed nipples/areolae in all dose groups ranging from 0.65 to 12 nipples-
areolae/per male, being significant at dose levels of 25% of the top dose and above. The
percentage of males displaying any nipples-areolae was significant at all dose levels ranging
from 30% affected at 12.5% to 100% in the top two dose groups (Table 2).

The age at puberty could not be evaluated in F1 males in the top two dose groups due
to genital malformations and was not significantly affected in males with normal genital
morphology (data not shown).

When adult F1 male rat offspring were necropsied, all reproductive organ weights were
significantly reduced in the 50, 75% and the top dose group (100%) (Table 3). In the 25%
mixture group, males displayed a significant increase in permanently retained female-like
nipples, and reduced epididymal sperm. Testicular histopathological results confirmed the
observations of gross testicular abnormalities noted at necropsy (Table 4).
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Mixture model analyses

We determined the EDsgq and slope values for 12 endpoints for each chemical and used
these values to calculate the DA1, DA, and RA model predictions of joint action of PFQ
and DBP binary mixtures (Table 5). These endpoints included AGD, percent of males with
any retained female-like nipples/areclae at 13 days of age, number of nipples per males,
six androgen-dependent organ weights (ventral prostate, seminal vesicle plus coagulating
glands and fluid, levator ani-bulbocavernsus muscles (LABC), testis, Cowper’s glands

and epididymal weights), epididymal sperm counts and percent incidence of hypospadias
(Figures 1a,b).

When we compared DA and RA models to the observed “best-fit” models using AIC values,
we found that DA, models produced the most accurate predictions and RA models were

the least accurate model for all 11 endpoints (Figure 1 a, b). DA, model AIC values also
were significantly better than RA predictions for 10 of 11 endpoints (Table 6). DA, models
were as good as the best fit model for 3 of 11 endpoints. A secondary objective was to
compare the fit of two different DA models to the observed mixture data. We found that DA;
models were equivalent to DA, models for 7 of 11 endpoints (Table 6). The EDsg values
with 95% confidence intervals of the observed effects (Table 5) show that the RA models
underpredicted the toxicity of the mixture.

Several effects could not be modeled with DA equations due to a lack of significant response
from one or both individual chemicals, but the mixture effect exceeded the value predicted
by the RA model. For example, the 27% increase in pup mortality versus control (45%
versus 18% in the control group) up to weaning in the high dose mixture group exceed the
RA prediction of no increase in pup mortality (0% above control) so it is unclear if this
represents an additive or a synergistic outcome.

DISCUSSION

Results of the current mixture study demonstrate that /n utero exposure to a PFQ (a
perfluoroalkyl pesticide) and DBP (a diortho-phthalate ester) mixture, induces reproductive
tract abnormalities in male rat offspring in a dose- rather than response additive manner,
even though they act via different molecular mechanisms. These results are consistent

with numerous mixture studies our group has conducted over the last 20 years with
combined exposure to chemicals that disrupt the androgen signaling pathway during sexual
differentiation via different mechanisms of action (reviewed by (Howdeshell et a/. 2017)) as
well as the work of others (Kortenkamp 2020).

The validity of using DA models to predict the /n utero effects of diverse mixtures

of chemicals, including PFQ and DBP, that disrupt androgen signaling and male rat
development is supported by an examination of the bioactivity of these chemicals at the
pathway level. These chemicals act via adverse outcome pathways (AOPS) with diverse
molecular initiating events (MIEs) that converge on a common key event (KE) in an

AOP network that regulates development of androgen-dependent tissues (Figure 2). The
common KE is dysregulation and reduction of androgen-dependent gene expression in male
reproductive tissues. AR antagonists, like vinclozolin or procymidone, accomplish this by
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blocking androgens from binding to ARs, whereas PFQ has been hypothesized to act as a
selective androgen receptor degrader (SARD) (Yasunaga et al. 2013), which enhances AR
degradation. The phthalates (e.g., di-n-butyl phthalate, di(2-ethylhexyl) phthalate, dipentyl
phthalate, butyl benzyl phthalate, di-isobutyl phthalate) reduce fetal testis testosterone
production reducing the levels of androgens available to the cell/receptor. Chemicals

like finasteride inhibit type Il and 111 5a reductase, the enzyme in tissues that converts
testosterone to dihydrotestosterone (a more active androgen that has higher affinity for the
AR). All these molecular perturbations reduce AR/AR homodimer levels, androgen response
element (ARE) DNA activation, androgen-dependent mRNA and protein synthesis levels
and growth and differentiation of androgen-dependent tissues in the fetus. As a result, male
offspring display agenesis or hypoplasia or malformations of androgen-dependent tissues. In
addition, we have found that a mixture of DBP and 2,3,7,8-TCDD (dioxin), an AhR agonist,
disrupted differentiation of several reproductive tissues in a manner that exceeded response
addition (Rider et a/. 2010). In summary, an examination of the events disrupted in the
androgen signaling pathway by DBP and PFQ at the cellular-molecular level explains why
they behave in a dose additive manner. Overall, it is not important to an androgen-dependent
cell what MIE reduced the androgen signal to the receptor, it is only important that the
signal is reduced.

As stated above, PFQ has been hypothesized to disrupt AR function by enhancing receptor
degradation (Yasunaga et a/. 2013) as opposed to acting as a competitive inhibitor of
androgen binding to AR. Although the focus on the development of drugs to treat prostate
cancer has been on competitive antagonists like flutamide that compete with androgens for
binding to the AR ligand binding domain (LBD), many efforts have shifted to developing
drugs that target the N-terminal domain (NTD) rather than the LBD. These include
chemicals that function as SARDs or inhibit nuclear AR localization by interacting with
specific sites on the NTD (Mohler ef al. 2021; Narayanan et al. 2008). While PFQ may
function as a SARD, PFQ also does antagonize the effects of dihydrotestosterone /n

vitro, albeit at high concentrations (Gray et al. 2019a). Furthermore, PFQ is extensively
metabolized, so it is possible that one of the more than a dozen metabolites acts as a
competitive AR antagonist rather than PFQ acting as a SARD.

In contrast to PFQ, DBP and MBP, the active metabolite of DBP, do not interact with the
AR in vitro (Parks et al. 2000) or in vivo (Lee and Koo 2007). DBP is one of several diortho-
phthalate esters that act as reproductive toxicants /n7 uteroin the rat by disrupting fetal testis
gene expression (Gray et al. 2021; Hannas et al. 2011) and hormone production (Furr et al.
2014) sufficiently to induce permanent reproductive tract abnormalities in F1 male offspring
known as the “Phthalate Syndrome” (Foster 2006). Since most people including pregnant
women, are exposed to one or more phthalates like DBP (Adibi et al. 2008) (Zota et al.
2014), any human exposure to PFQ would also very likely be concurrent with exposure to
phthalates and other ubiquitous contaminants.

PFQ is classified by several agencies, including the OECD and USEPA, as a PFAS because
PFQ is one of a number of perfluoroalkyl pesticides that contain a heptafluoroisopropyl
group. However, PFQ has a notably different structure from legacy/straight-chain PFAS
like PFOS and PFOA or perfluoroalkyl ether PFAS like HFPO-DA (GenX) (Figure 3).
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Similar to other pesticides, and unlike many PFAS, there is an extensive data base on PFQ
toxicity, fate, and transport. In the last few years, the numbers of PFQ-like hepta- and
hexa-fluoroisopropyl PFAPs registered or under development have been increasing because
addition of this functional group has been reported to provide many traits considered

to be beneficial for pesticides, including increased uptake, enhanced insecticidal toxicity
and persistence (Qacemi et al. 2019). Examples include other heptafluoroisopropyl PFAPs
include brofranilide [(registered by EPA early in 2021) (https://www.regulations.gov/docket/
EPA-HQ-OPP-2018-0053/document)], and pyflubumide [(residue levels established by EPA
in late 2021) (https://www.regulations.gov/search?filter=pyflubumide%20)]. In 2016 EPA
stated that it intended to cancel the registration of four pesticides containing flubendiamide,
concluding that the continued use would result in unreasonable adverse effects

on the environment, particularly benthic invertebrates (https://www.epa.gov/ingredients-
used-pesticide-products/flubendiamide-notice-intent-cancel-and-other-supporting, accessed
12/30/2021). In addition, the fungicide ZJ5337 (used to control rice blast in China (Hu et
al. 2014) also contains a heptafluoroisopropyl group. Taken together, the literature indicates
that there are a number of PFAP pesticides in use or under development indicating that

PFQ is not unique in this regard. However, for those PFAP pesticides with available
summary assessments (regulations.gov), the data suggest that the presence of a hepta-

or hexa-fluoroisopropy! side chain does not necessarily confer PFQ-like antiandrogenic
bioactivity /n vivo.

In addition to the above PFAPSs, there are PFAPs and inert ingredients in pesticides with
structures that are similar to PFOA and PFOS that have been used in the US and in

other countries including sulfuramid, flusulamid, LPOS, and SIOC-1-013. Examination of
the risk assessment summaries provided in EPA documents (in Regulations.gov) for the
four aforementioned PFAPs does not indicate that any of these have reproductivity toxicity
profiles like PFQ.

Although PFQ is the only PFAS that we are aware of that target development of the

male reproductive tract via AR disruption /n vivo, a number of /n silicoand in vitro

studies provide a different perspective. These studies have reported that a considerable
number of PFAS interact with the ligand binding domain of AR (Di Nisio et a/. 2019; Yu

et al. 2022). Interestingly, a number of these PFAS also contain perfluoroisopropyl side
chains, like PFQ (Azhagiya Singam et al. 2020; Tachachartvanich et a/. 2022). Furthermore,
Kjeldsen et al. (Kjeldsen and Bonefeld-Jorgensen 2013) reported that a mixture of five PFAS
displayed antiandrogenic activity /n vitro that was additive at the 95% and 90 % levels but
appeared synergistic at the 85% of control level. Because /in silicoand in vitro assays of AR
bioactivity have a high false positive rates (Gray et al. 2020) (Charles et al. 2005; Fabian

et al. 2018; Sonneveld et al. 2006) these observations would need to be confirmed /n vivo
in (anti)androgen screening assays (EPA 2009; Gray et al. 2005) and/or in utero (Ostby

and Gray Jr 2004) to determine if any of these PFAS have the potential to cause adverse
reproductive effects via disruption of the androgen signaling pathway.

As discussed above, the validity of using DA models rather than RA models to predict the
in utero effects of diverse mixtures of chemicals that disrupt androgen signaling and male
rat development is supported by an examination of the bioactivity of these chemicals at
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the cellular-molecular level. All these chemicals act via adverse outcome pathways (AOPS)
that converge on a common key event (KE) in an AOP network that regulates the sequence
of molecular events in cells that participate in the development of the androgen-dependent
tissues.

In summary, a DBP and PFQ mixture behaved in a dose additive manner because these
two chemicals target common reproductive tissues via disruption of overlapping AOPs
that converge on a common KE in a fetal androgen signaling AOP network (Figure 2).
They act via different MIEs and MOAs but they both reduce the hormone signal at the
AR, thus reducing androgen-dependent mRNA, and protein synthesis during fetal life,
which in turn induces permanent reproductive abnormalities. Overall, an examination of
our mixture studies and similar studies in the literature on the effects of antiandrogens

on male reproductive tract development consistently indicate: 1) Dose addition should be
considered as the default model for assessing the effects of mixture composed of chemicals
with different mechanisms that disrupt common effects regardless of whether or not they
share a common MIE, 2) RA models can grossly underestimate the hazard of a mixtures
of chemicals, and 3) Failure to account for the effects of mixtures during development and
other life stages is not fully protective and could potentially lead to adverse consequences
for human and ecosystem health.
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Figure 1.

a,b. A comparison of the two dose addition (DA; and DA,) and the response addition
(RA) models with the observed effects of in utero administration of the mixture of dibutyl
phthalate (DBP) and the PFAS pesticide pyrifluguinazon (PFQ) on androgen-dependent
tissues in the male rat offspring. The major difference between DA; and DA is that DA;
assumes that the two chemicals have similar dose response slope parameters whereas DA,
does not. DA, was generally the better model among the three models.
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ADVERSE OUTCOME NETWORK OF TWO AOPS THAT DISRUPT A COMMON KEY EVENT IN FETAL RAT ANDROGEN SIGNALING.

The phthalate ester Dibutyl Phthalate (DBP) inhibits fetal Leydig cell f i d irogen and insulin-like hormone 3 (INSL3) levels,
whereas the PFAS pesticide Pyrifluquinazon (PFQ) disrupts Androgen Receptor function during sexual differentiation in rats.
Abbreviations: AR, androgen receptor; PPAR, p: { proliferator acti d receptor; and T,
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Figure 2.
An adverse outcome pathway (AOP) network showing the two AOPs disrupted via different

molecular initiating events and different AOPs that converge on a common key event in the
AOP network.
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