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ABSTRACT To adapt and proliferate, bacteria must sense and respond to the ever-
changing environment. Transmembrane transcription regulators (TTRs) are a family
of one-component transcription regulators that respond to extracellular information
and influence gene expression from the cytoplasmic membrane. How TTRs function
to modulate expression of their target genes while localized to the cytoplasmic
membrane remains poorly understood. In part, this is due to a lack of knowledge
regarding the prevalence of TTRs among prokaryotes. Here, we show that TTRs are
highly diverse and prevalent throughout bacteria and archaea. Our work demon-
strates that TTRs are more common than previously appreciated and are enriched
within specific bacterial and archaeal phyla and that many TTRs have unique trans-
membrane region properties that can facilitate association with detergent-resistant
membranes.

IMPORTANCE One-component signal transduction systems are the major class of signal
transduction systems among bacteria and are commonly cytoplasmic. TTRs are a group
of unique one-component signal transduction systems that influence transcription from
the cytoplasmic membrane. TTRs have been implicated in a wide array of biological
pathways critical for both pathogens and human commensal organisms but were con-
sidered to be rare. Here, we demonstrate that TTRs are in fact highly diverse and broadly
distributed in bacteria and archaea. Our findings suggest that transcription factors can
access the chromosome and influence transcription from the membrane in both archaea
and bacteria. This study challenges thus the commonly held notion that signal transduc-
tion systems require a cytoplasmic transcription factor and highlights the importance of
the cytoplasmic membrane in directly influencing signal transduction.
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Signal transduction is the process through which microorganisms regulate their cellular
programs according to their extracellular environment. Microorganisms are known to

transduce information from outside the cell to the cytoplasm via two-component and one-
component signal transduction systems (1, 2). Two-component signal transduction cas-
cades are typically composed of a membrane localized sensor histidine kinase that, when
stimulated, transfers a phosphate to a soluble response regulator, resulting in a cellular
response (1–3). In contrast, one-component signal transduction systems are composed of a
single protein that both directly detects a stimulus and modulates a cellular response (1–
3). The vast majority of signal transduction systems in bacteria are one-component systems
with most harboring DNA-binding domains and thereby controlling gene expression (2). A
majority of one-component regulators are predicted to be localized within the cytoplasm,
presumably to have unimpeded access to their DNA target(s) (2). Nonetheless, there are
known examples of one-component regulators that are localized to the cytoplasmic
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membrane (Table 1). Here, we define these one-component regulators and those with sim-
ilar features (i.e., the presence of a predicted transmembrane [TM] region and a predicted
DNA-binding domain) as TM transcription regulators (TTRs). Functional TTRs are found in
bacteria and archaea, but not in eukaryotes, due to the separation of the cytoplasmic
membrane and their genomes by the nucleus (2, 4, 5). Within archaea, TTRs are known to
regulate motility and pilin gene expression in response to dangerous temperatures and nu-
trient-limiting conditions (6, 7). TTRs are better studied in bacteria, where they have been
shown to regulate bile salt resistance (8, 9), toxin production (10, 11), antibiotic resistance
(12, 13), acid resistance (14–16), natural competence (17), pilin/fimbria expression (18–24),
type 3 secretion systems (25, 26), biofilm formation (27, 28), and metabolism (29–31), and
have been implicated in modulation of the human immune system (32) (see Table 1 for
additional details).

Localization to the cytoplasmic membrane has been shown to be critical for some TTRs
to influence expression of their target genes (33). TTRs are counterintuitive as their subcel-
lular localization reduces their diffusion and thereby their ability to bind target promoter(s).
However, there is a possibility that TTRs evolved from two-component systems. It is known
that in Pseudomonas aeruginosa, a two-component system consisting of PilS, the mem-
brane localized histidine kinase, and PilR, the response regulator, regulates activity of RpoN
(24). The Neisseria gonorrhoeae genome encodes a chimeric protein called Rsp, which
includes the membrane localized receptor of PilS at its N terminus and the PilR DNA-bind-
ing domain at its C termini and represses pilA expression (34). Bacteroides thetaiotaomicron,
a constituent of the human microbiota, contains 32 hybrid histidine kinases, each with a
DNA-binding domain within its genome (35). To gain a deeper understanding of TTRs, we
performed a large-scale genomic analysis of TTRs across archaeal and bacterial species.

TABLE 1 Characterized TTRs, along with their known cellular responses and associated proteins

TTR Organism(s) Cellular response(s)
Associated
protein Reference(s)

ToxR Vibrio spp., Photobacterium spp. Bile salt resistance, cationic antimicrobial peptides,
pressure response, biofilm formation, and
virulence factor expression

ToxS 8, 9, 11, 19, 27, 77–88

TcpP Vibrio cholerae and Vibrio fischeri Virulence factor (toxT expression), motility,
chemotaxis, and reduction of extracellular
polysaccharides

TcpH 18, 89–92

CadC Vibrio spp., Escherichia spp., Salmonella
spp., Yersinia spp.

Acid resistance LysP 14, 93–102

TfoS Vibrio spp. Natural competence Na 17, 103
VtrA/VttrA Vibrio spp. Type 3 secretion systems VtrC 25, 26, 72, 104, 105
VtrB/VttrB Vibrio spp., Salmonella spp. Type 3 secretion systems Na 25, 26, 106
MarT Salmonella spp., Yersinia ruckeri Fibronectin binding –a 107–110
GvrA Escherichia coli Promotes expression of LEE in response to

bicarbonate
Na 111, 112

YqeI Escherichia coli Serum resistance, flagellum synthesis, and host cell
adhesion

YqeJ 113

PsaE Yersinia pestis Fimbria expression PsaF 20–22
MyfE Yersinia enterocolitica Fimbria expression MyfF 23, 114, 115
PypB Yersinia enterocolitica and Yersinia ruckeri Flp type IVb pilin expression –a 116
BcrR Enterococcus spp., Lactobacillus spp. Bacitracin resistance Na 12, 13, 117, 118
BreG Lactobacillus spp., Enterococcus spp. Bacteriocin synthesis Na 119, 120
AguR Enterococcus spp. Acid tolerance Na 121–124
LP_2991 Enterococcus spp., Lactobacillus spp. Immune modulation Na 32, 125
HcrR Lactobacillus plantarum Hydroxycinnamic acid metabolism Na 29, 126
MmsR Lactobacillus bifermentans Isobutyryl-CoA metabolism Na 30
MtbS Staphylococcus spp., Enterococcus spp.,

Lactobacillus spp.
Virulence factors, phosphate transport, tRNAs, etc. Na 127

NanR Staphylococcus spp. Sialic acid metabolism Na 31
WmpR Pseudomonas tunicata Type IV pilin, pigmentation, iron uptake, amino

acidmetabolism, biofilm formation, and antifouling
Na 28, 128

ArnR Sulfolobus acidocaldarius Motility and pilin expression Na 6, 7
Rsp Neisseria gonorrhoeae Pilin expression Na 34
a–, There are possible TcpH/ToxS-like genes that are uncharacterized immediately upstream or downstream of the indicated TTR.
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RESULTS
Transmembrane transcription regulators are prevalent in bacteria and archaea

and display lineage-specific expansion. To gain a deeper understanding of the prev-
alence and distribution of TTRs in prokaryotes, we mined the genomes of 10,933 bacte-
rial and 404 archaeal species for genes that encoded (i) a DNA-binding domain and (ii)
at least one transmembrane region. We found that 9,306 bacterial and 367 archaeal
species encoded at least one TTR (see File S1 in the supplemental material). In total, we
identified 50,302 TTRs (48,918 bacterial and 1,384 archaeal) across 9,673 genomes (see
File S1). On average, bacterial genomes contain 5 TTRs (67) and archaeal genomes
contain 4 TTRs (62) containing one or more TM regions (Fig. 1; see also File S1).
Species within the Coriobacteriia, Bacteroidota, Bacteroidia, Spirochaetota, Leptospirae,
Acidobacteriae, and Methanomicrobia (here and throughout the manuscript: bacterial
and archaeal taxonomy is according to Genome Taxonomy Database [36]), on average,
contain more TTRs per genome compared to other prokaryotes (Fig. 1A and B; see also
File S1). However, the number of TTRs per genome varies dramatically among phyla, with
some species encoding only 1 TTR and others encoding up to 158 TTRs (e.g., Raoultibacter
timonensis) (see File S1). Given that the genome size also varies dramatically between spe-
cies (see File S1), we next explored whether the number of TTRs per genome was due to dif-
ferences in genome size. To address this question, we normalized the number of TTRs to
the total number of protein-coding sequences per genome. Across all species, we found
that on average 0.15% and 0.13% of bacterial and archaeal coding sequences were com-
posed of TTRs (Fig. 2). This normalization still indicated that species within the Coriobacteriia,
Bacteroidota, Bacteroidia, Spirochaetota, Leptospirae, and Methanomicrobia were enriched
with TTRs in their genomes. In addition, the Acidobacteriae, Clostridia, Thermoanaerobacteria,
Bacilli, Methanobacteriota, and Thermoproteota have a slightly higher abundances of TTRs
compared to other bacteria and archaea (Fig. 2). Since TTRs are a distinct type of signal
transduction system, we next analyzed what portion of known signal transduction systems
within both the bacterial and the archaeal domains were composed of TTRs. Across all
species, we found that, on average, 1.5 to 2% of all signal transduction genes were TTRs
across bacterial and archaeal species, respectively (Fig. 3). However, these data demonstrate

FIG 1 (A and B) Abundance of TTRs among bacterial (A) and archaeal (B) genomes. The dashed line indicates the average
number of TTRs per genome across all phyla. Bacterial and archaeal phylum are listed below their respective groups, with
the class following a semicolon. To view the supporting data, see File S7 in the supplemental material. (C) Typical
membrane topology and domain composition of one-component TTRs identified in this study.
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that a high percentage of signal transduction genes are comprised of TTRs within the
Coriobacteriia, Bacteroidota, Bacteroidia, Spirochaetota, Leptospirae, Methanomicrobia, Meth-
anobacteriota, Thermococci, Thermoproteota, and Thermoproteia (Fig. 3). In addition, the
Acidobacteriae, Aquificota, Chlorobia, Rhodothermia, Firmicutes, Thermoanaerobacteria, Bacilli,
and Methanosarcina have a slightly higher percentages of TTRs relative to signal transduc-
tion genes (Fig. 3). Given these data, we considered the possibility that the overall abun-
dance of signal transduction genes within bacterial and archaeal phyla and classes could
skew our results. To test this, we compared the total numbers of signal transduction genes
to the total numbers of protein-coding genes within each bacterial and archaeal species;
these values were, on average, 9% for bacterial species and 6% for archaeal species (Fig. 4).
Interestingly, we did not observe an increased ratio of signal transduction genes to total pro-
tein-coding sequences within the Coriobacteriia, Bacteroidota, Bacteroidia, Spirochaetota,
Leptospirae, Methanomicrobia, Methanobacteriota, Thermococci, Thermoproteota, and Thermo-
proteia (Fig. 4). Taken together, these data indicate that the aforementioned bacterial and
archaeal clades are indeed enriched with TTRs.

Transmembrane transcription regulators employ a few common DNA-binding
domains. Over a hundred different DNA-binding domains were found across the identi-
fied TTRs and only a small number (19 DNA-binding domains) were not found among

FIG 2 (A and B) Ratio of TTRs to all protein-coding genes among bacterial (A) and archaeal (B) genomes. The dashed line
indicates the average ratio of TTRs to protein-coding genes across all phyla. Bacterial and archaeal phyla are listed below their
respective groups, with the class following a semicolon. To view the supporting data, see File S7 in the supplemental material.

FIG 3 (A and B) Abundance of TTRs relative to signal transduction genes among bacterial (A) and archaeal
(B) genomes. The dashed line indicates the average ratio of TTRs to signal transduction genes across all
phyla. Bacterial and archaeal phyla are listed below their respective groups, with class following a semicolon.
To view the supporting data, see File S7 in the supplemental material.
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TTRs (see Table S1A and B in the supplemental material). However, DNA-binding domains
of approximately 91% of all TTRs are represented by 11 most common domains, with the
helix-turn-helix DNA-binding domain being the most predominant across all TTRs (Fig. 5A;
see also Table S1A). A similar distribution of DNA-binding domains has also been reported
for other one-component systems (2).

Hybrid TTRs are unique to bacteria. Of the domains identified within TTRs, the
most common non-DNA-binding domain is the response regulator domain (found in
9.2% of TTRs), which is a part of two-component signal transduction systems (Fig. 5B;
see also Table S2) (37, 38). Response regulators catalyze the transfer of a phosphate
from a histidine kinase donor and have intrinsic dephosphorylation activity (39).
Response regulators are multidomain proteins typically containing a N-terminal re-
ceiver domain and a C-terminal effector domain that is commonly a DNA-binding do-
main (39). Phosphorylation of the receiver domain stabilizes a conformation that allows
for activity of the effector domain (39). In addition, among the top five most common
non-DNA-binding domains in TTRs are the HATPase_c (a histidine kinase catalytic domain
[found in 8.6% of TTRs]), HisKA (a histidine kinase dimerization domain [found in 8.4% of
TTRs]), and the Y_Y_Y domains (an extracellular domain found in two-component systems
[found in 7.7% of TTRs]) (Fig. 5B; see also Table S2). These domains are typical for two-com-
ponent signal transduction pathways (37, 38, 40, 41). In fact, approximately 8.2% of all TTRs
identified by our analysis contain one or more core domain of two-component systems
(response regulator, HATPase_c, and HisKA domains), which we refer to as hybrid TTRs
(Fig. 5B and C; see also Table S2). Hybrid TTRs appear to be a bacterial phenomenon, since
we found no archaeal TTRs containing a response_reg domain and very few containing a
HisKA domain (17 TTRs) or HATPase_c domain (1 TTR).

Bacteroides thetaiotaomicron was reported to contain 32 hybrid histidine kinases with
DNA-binding domains (i.e., hybrid TTRs) (35). Our data indicate that a majority of the TTRs
within the Bacteroides genus are hybrid TTRs (approximately 72%) (see File S3). Furthermore,
in addition to the Bacteroides genus, many other species within Bacteroidota, Bacteroidia,
Rhodothermia, and Chloroflexota contain a high fraction of hybrid TTRs (Fig. 5D). Our data indi-
cate that hybrid TTRs may have evolved from canonical two-component regulatory systems,
similar to hybrid two-component regulatory systems, that evolved from canonical two-com-
ponent systems (42). Our data suggest that hybrid TTRs are the product of recent evolutionary
events since they are not conserved at the genus, class, or phylum level.

FIG 4 (A and B) Ratio of non-TTR signal transduction genes to total protein-coding genes among bacterial (A) and archaeal (B) genomes.
The dashed line indicates the average ratio of signal transduction genes to protein-coding genes across all phyla. Bacterial and archaeal
phylum are listed below their respective groups, with the class following a semicolon. To view the supporting data, see File S7 in the
supplemental material.
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Single pass transmembrane regulators are the most prevalent TTRs. We found
that approximately 56% of TTRs are single-pass transmembrane (TM) proteins, while TTRs
containing two or more TM regions comprise 17 and 27% of TTRs, respectively (Fig. 6A; see
also Files S4 to S6). We next questioned whether TM content of TTRs was homogenous
across bacterial and archaeal phyla. Since some TTRs contain up to 22 TM regions, the aver-
age number of TM regions per TTRs, approximately 2 TM regions, is elevated within bacte-
rial and archaeal phyla despite that the majority of TTRs are single-pass TM proteins
(Fig. 6B and C; see also Files S4 to S6). The average number of TM regions per TTRs is

FIG 5 Domain composition of TTRs. (A) Most common DNA-binding domains among bacterial and
archaeal TTRs. (B) Most abundant non-DNA-binding domains among bacterial and archaeal TTRs. (C)
Typical membrane topology and domain composition of hybrid TTRs and two-component systems.
(D) Distribution and ratio of hybrid TTR to TTR across bacterial phyla.
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consistent across archaeal phyla and classes while there is greater diversity among bacterial
phyla. In bacteria, Coriobacteriia, Planctomycetota, Leptospirae, and Verrucomicrobiota con-
tain TTRs with three or more TM domains on average (Fig. 6B and C).

TTRs have a propensity to associate with liquid-ordered membrane domains.
We hypothesized that TTRs may respond to their local membrane environment which
can be influenced by extracellular conditions. A common phenomenon across bacteria
and eukaryotes is the formation of small (i.e., nanometer) lipid regions, referred to here
as lipid rafts (43–45). Lipid rafts and non-lipid-raft membrane regions have been shown
to influence various cellular processes, including signal transduction, in part due to
their ability to promote interaction between membrane localized proteins (46–55).
Association with lipid raft and non-lipid-raft membrane regions is determined by the
properties of the transmembrane region with length and overall surface area of the
transmembrane helix being the most critical factors (56). Given that lipid rafts were
found in bacteria, we asked a question whether TTR TM regions supported their associ-
ation with lipid raft or non-lipid-raft membrane regions. Since the overall length and
surface area of transmembrane helices controls the association of membrane proteins
within lipid raft membrane regions, we calculated the overall length and surface area

FIG 6 TM region analysis of TTRs. (A) Number of TM regions across all bacterial and archaeal TTRs. (B) Average number of
TM regions per TTR within the bacterial phyla. (C) Average number of TM regions per TTR within the archaeal phyla. (D)
Average TM region length for TTRs across all bacterial and archaeal species. (E) Average surface area of TTR TM region
among bacterial and archaeal species. (F) Average number of non-DNA-binding domains per TTR based on the average
surface area of the TM region. Error bars represent the standard deviations. **, P , 0.01; ****, P , 0.0001. A two-tailed
unpaired Student t test was used to determine statistical significance.
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of all predicted transmembrane regions for TTRs analyzed here (see Files S4 to S6).
Overall, we found that the TM region length and surface area remain similar across sin-
gle TM or multi-TM region TTRs (Fig. 6D and E; see also Files S4 to S6). We found that a
substantial number of TTR TM regions (approximately 43%) have a surface area equal
to or below 172 Å per amino acid (Fig. 6E; see also Files S4 to S6). Prior studies have
demonstrated that TcpP, a TTR that positively modulates virulence in Vibrio cholerae,
increases its association with detergent-resistant membranes (i.e., liquid-ordered mem-
brane domains) in the presence of A-linolenic acid, a dietary fatty acid (57). The surface
area of the TcpP transmembrane region is 172 Å per amino acid. These data suggest
that many TTRs might have the capacity to associate with liquid-ordered membrane
domains. Furthermore, this suggests that TTRs might be directly modulated by the
cytoplasmic membrane. We reasoned that if the cytoplasmic membrane is a major sig-
nal for TTRs with low TM surface area that they would also contain fewer sensory
domains (i.e., non-DNA-binding domains). Indeed, we found that TTRs with a surface
area equal to or below 172 Å per amino acid contained fewer sensory domains com-
pared to TTRs with a higher TM surface area (Fig. 6F).

DISCUSSION

Our analysis revealed that TTRs are widespread in bacteria and archaea and in some
genomes, for example Raoultibacter timonensis, they are a major type of transcription regu-
lators (41% of all DNA-binding transcription factors). We found that TTRs are abundant in
species from the gut microbiota. For example, species within the Eggerthella genus (the
Coriobacteriales order), contain a high number of TTRs per genome (;117 TTRs) (see File
S1 in the supplemental material). The Eggerthellaceae family are common members of
mammalian gastrointestinal tracts (58–62). Members of the Bacteroidia, commonly associ-
ated within the human gastrointestinal tract, were also found to contain a high number of
TTRs and hybrid TTRs within their genomes (Fig. 1–4). There is evidence that hybrid TTRs
within Bacteroides genus function to sense and respond to disaccharides (63). It remains to
be seen whether TTRs within the Coriobacteriales and Bacteroidota contribute to their abil-
ity to colonize mammalian gastrointestinal environments, but our data have revealed this
correlation.

The advantage of TTRs versus classical one- and two-component systems is not
obvious: why bring the response regulator and DNA-binding domain to the cytoplas-
mic membrane? One possibility is that the membrane itself serves as a signal to further
fine tune these signal transduction pathways. It is generally recognized that the mem-
brane environment is not a homogenous. For example, a vast majority of integral
membrane proteins are heterogeneously distributed in Bacillus subtilis cells, indicating
that their diffusion within the cytoplasmic membrane is limited (64, 65).

Both bacterial and eukaryotic cells support the formation of small-lipid-raft membrane
regions (43–45). Generally speaking, lipid raft and non-lipid-raft membrane regions differ
by their overall fluidity and thickness, with lipid rafts having a lower fluidity and increased
thickness, as a consequence of the phospholipid species that occupy these membrane
environments (45, 46, 66–69). These membrane regions have been shown to influence
many signaling pathways in eukaryotic cells, in particular T cells (46–55). There is also evi-
dence that dietary polyunsaturated fatty acids can influence formation and stability of
lipid ordered membrane domains thereby influencing signal transduction (48, 49). Here,
we demonstrate that a large fraction of TTRs (approximately 43%) can associate with lipid
raft membrane regions. These data support our hypothesis that the membrane environ-
ment may serve to influence TTR function; however, additional studies are required to fur-
ther test this hypothesis.

In addition to the potential influence of the cytoplasmic membrane, it is also feasi-
ble that localization of TTRs to the cytoplasmic membrane facilitates tighter regulatory
controls on TTR regulons. That is, not only do TTRs require a signal to impact gene
expression, but that the target promoter sequence(s) must be in close proximity to the
cytoplasmic membrane. This would imply that the structure of the chromosome (which
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is influenced by nucleoid associated proteins, transcription, translation, DNA supercoil-
ing, and condensins) also contributes to TTR gene regulation. This would indicate that
TTRs could contribute to regulation of complex lifestyles among microorganisms.
Within the Alphaproteobacteria, a family of LytTR response regulators, not exclusively
TTRs, were identified (70). Curiously, within Caulobacter cresentus all instances of the
LytTR response regulator domain contain one or more TM regions (70). This could
explain the high degree of variation of TTRs across the bacterial and archaeal domains.

Some TTRs (such as ToxR, VtrA, VtrrA, PsaE, MyfE, TcpP, and YqeI) have an associ-
ated protein that contributes to TTR mediated signal transduction by inhibiting prote-
olysis of the TTR or by stimulating heterodimer formation (Table 1). These TTRs are also
referred to as cocomponent systems (71). Curiously, many of these associated proteins
contain a lipocalin-like domain, which has been shown to be important for VtrC bind-
ing to bile, but generally are known to bind to small hydrophobic molecules (71, 72).
Rather than responding to the cytoplasmic membrane itself, localization of TTRs to the
cytoplasmic membrane may facilitate function of cocomponent systems.

Our data suggest that TTRs play a much larger role in signal transduction than previ-
ously thought, implying that transcription initiation also occurs at the membrane-DNA
interface across bacterial and archaeal species. However, compared to the number of TTRs
identified by our analysis the number of experimentally validated TTRs is extremely low
indicating that a large fraction of TTRs function remains to be understood (Table 1). In sup-
port of this, a substantial fraction of TTRs identified here (;57%) contains only a DNA-bind-
ing domain and no additional recognizable domains of known function (Fig. 5B). Thus, this
work provides new insights into the prevalence and distribution of TTRs within bacteria
and archaea reveals unique features of these regulators.

MATERIALS ANDMETHODS
Identification and transmembrane domain analysis of TTRs within the MiST database. TTRs for a

representative set of genomes were collected from the MiST database by running a custom Python script
on the local computer cluster (73). The script, which is available in the GitHub repository (https://github
.com/bioliners/TTRs), sends requests through the database API and processes the results. For each genome,
all DNA-binding signal transduction proteins that contain transmembrane regions were retrieved (see File
S2 in the supplemental material). The Pfam Profile hidden Markov models of DNA-binding domains listed
on the help page of the MiST database were used to identify DNA-binding domains in the proteins. All
DNA-binding domains identified in TTRs and those that were checked but not identified are listed in Table
S1. TM regions of the protein sequences were identified by running TMHMM, domains were verified using
TREND and Pfam profile hidden Markov models (74–76). Sequences corresponding to transmembrane
regions were extracted using a custom Python script. The average length, number of amino acids, and sur-
face area for each TTR transmembrane region were calculated from data in Files S4 to S6 using a Python
script. Taxonomy information for the genomes was retrieved from GTDB database (36; see File S1 for data).
All used scripts are available in a GitHub repository (https://github.com/bioliners/TTRs).

Calculating statistical parameters of TTRs. The total number of all signal transduction (ST) proteins
encoded in each analyzed genome was obtained from MiST database (73). The genome size and the number
of all encoded proteins were obtained from the metadata tables of GTDB (36; see Files S1 and S7 in the sup-
plemental material). These data were cross-referenced with the number of encoded TTRs in each genome
using Excel. For statistical analysis, we considered phyla or classes that contained at least 10 sequenced
genomes. By running Shapiro-Wilk test and exploring quantile-quantile plots, we have established that TTR
counts are not normally distributed. Therefore, we used two nonparametric tests, Spearman and Kendall cor-
relation tests, to explore correlations. Prior to performing correlation tests, we subtracted TTR counts from
the overall counts of ST proteins and ST protein counts from the sum of all proteins encoded in each ge-
nome. This was done to remove the contribution of correlation of TTR and ST proteins with themselves.
Statistical analysis was carried out in the R environment.

Data availability. The data presented here are available from the corresponding authors upon
request.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.8 MB.
SUPPLEMENTAL FILE 2, XLSX file, 1.9 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.2 MB.
SUPPLEMENTAL FILE 4, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 5, XLSX file, 0.03 MB.
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SUPPLEMENTAL FILE 6, XLSX file, 1.1 MB.
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