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ABSTRACT The gut microbiome is associated with survival in colorectal cancer. Single
organisms have been identified as markers of poor prognosis. However, in situ imaging of
tumors demonstrate a polymicrobial tumor-associated community. To understand the role
of these polymicrobial communities in survival, we conducted a nested case-control study
in late-stage cancer patients undergoing resection for primary adenocarcinoma. The micro-
biome of paired tumor and adjacent normal tissue samples was profiled using 16S rRNA
sequencing. We found a consistent difference in the microbiome between paired tumor and
adjacent tissue, despite strong individual microbial identities. Furthermore, a larger difference
between normal and tumor tissue was associated with prognosis: patients with shorter sur-
vival had a larger difference between normal and tumor tissue. Within the tumor tissue, we
identified a 39-member community statistic associated with survival; for every log2-fold
increase in this value, an individual’s odds of survival increased by 20% (odds ratio survival
1.20; 95% confidence interval = 1.04 to 1.33). Our results suggest that a polymicrobial tu-
mor-specific microbiome is associated with survival in late-stage colorectal cancer patients.

IMPORTANCE Microbiome studies in colorectal cancer (CRC) have primarily focused
on the role of single organisms in cancer progression. Recent work has identified spe-
cific organisms throughout the intestinal tract, which may affect survival; however, the
results are inconsistent. We found differences between the tumor microbiome and the
microbiome of the rest of the intestine in patients, and the magnitude of this differ-
ence was associated with survival, or, the more like a healthy gut a tumor looked, the
better a patient’s prognosis. Our results suggest that future microbiome-based inter-
ventions to affect survival in CRC will need to target the tumor community.

KEYWORDS 16S rRNA sequening, colorectal cancer, microbiome, cancer survival,
tumor microbiome

Globally, colorectal cancer (CRC) is the second most common cause of cancer-
related death and CRC-related mortality has been increasing since 2000 (1, 2). One

potential area of research in CRC survival is the gut microbiome. In a healthy gut, the
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intestinal microbiome contributes to homeostasis through epithelial cell renewal, main-
taining gut barrier integrity, and immune modulation (3, 4). However, CRC patients have
demonstrated a consistently altered gut microbiome compared to healthy controls, includ-
ing a higher relative abundance of organisms more commonly found in the oral cavity (5,
6). Meta-analyses using targeted analyses show high levels of Fusobacterium nucleatum in
tumor tissue are detrimental to survival (7, 8).

Fewer studies have explored the relationship between the gut microbiome and
CRC prognosis using untargeted sequencing. Untargeted techniques can better char-
acterize the bacterial community, and the ways in which potentially pathogenic organ-
isms might interact with a host’s unique, stable microbiome (9–11). In situ microscopy
shows that tumor tissue is colonized by a polymicrobial biofilm, including Fusobacteria,
Proteobacteria, Bacteroidetes, and Lachnospriaceae; monoculture biofilms have not
been observed (12). Biofilms are also frequently localized to tumors, and paired normal
tissue samples are rarely colonized, suggesting a localized effect and potential differ-
ence between tumor and adjacent tissue (12).

Previous untargeted studies of the gut microbiome and colorectal cancer survival
have either focused exclusively on the tumor tissue (13) or have treated the tumor
and adjacent normal tissue as identical (14). Paired biopsy studies provide clues
about whether local or global regulation of the microbiome drives tumorigenesis,
although many paired studies have failed to account for survival (12, 15–19) and, in
some cases, struggled to characterize the microbiome due to technical (19) or analyt-
ical (13–17) issues.

To address the gaps in knowledge, we monitored 101 late-stage CRC patients recruited
from a hospital in southern Sweden who underwent surgical resections of primary adeno-
carcinoma between 1997 and 2017. Patients were categorized into short- or long-term
survivors based on their relapse-free survival (,2 years or$5 years, respectively). We exam-
ined the relationship between the microbiome of colorectal tumors and adjacent normal
tissue and survival, accounting for clinical covariates.

RESULTS

In our nested case-control study of late-stage colorectal cancer patients, the 51
long-term survivors were more likely to be younger, male, and healthier compared to
the 50 short-term survivors (see Table S1 in the supplemental material). The short-term
survivors presented with metastatic tumors and lower differentiation than long-term
survivors, and fewer received radical surgery. We found that age, tumor-node-metasta-
sis (TNM) stage, and tumor differentiation were strong predictors of long-term survival
(Table 1). Individuals aged between 70 and 74 years were 14 times more likely to be
short-term survivors (odds ratio [OR] = 14.24; 95% confidence interval [CI] = 1.21 to
167.40) than those younger than 60. TNM stage IV was associated with an almost 50
times higher risk of being a short-term survivor (OR = 49.32; 95% CI = 5.86 to 415.12)
compared to TNM stage III (Table 1).

After sequencing, quality filtering, and denoising to amplicon sequence variants
(ASVs), we retained 202 paired tumor and adjacent normal tissue samples. The broad
patterns in the overserved microbiome reflect those seen in a previous study of
Swedish adults (see Fig. S1) (20). We found the patient was the strongest predictor of
microbiome composition and that an individual’s paired samples were more similar to
each other than the same type of tissue from patients matched for cancer stage and
anatomical location (see Fig. S2), reflecting what appears to be a common pattern in
CRC patients and beyond (10, 18, 21).

The microbiomes of tumor and normal tissue differ. To address individual micro-
bial identities, we applied a subject-aware compositional tensor factorization (CTF)
ordination technique (22). This analysis projects high dimensional microbiome data
into a three-dimensional ordination space, relating samples and their component fea-
tures (22). We did not find a statistically significant association between a subject’s
position in CTF space and survival (unadjusted permanova R2 = 0.012; P = 0.296, 999

CRC Tumor Microbiome Is Associated with Survival Microbiology Spectrum

May/June 2023 Volume 11 Issue 3 10.1128/spectrum.05066-22 2

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.05066-22


permutation; see also Fig. S3 and Table S2). However, we found differences between
normal and tumor tissue in CTF space. Paired samples from the same individual
showed consistent, directional differences, primarily along principal component (PC) 2
and PC 3 (Fig. 1A to D; permutative paired sample t test, P = 0.001, with 999 permuta-
tions for all PCs).

Given evidence of consistent, community-level changes in the microbiome between the
tissue types, we looked for features, which might be driving these differences. We used an
individual-aware differential ranking technique (DR), which first ranked the features with
the greatest differences associated with tissue type, and then we selected a subset of these
features to build an additive log ratio (ALR), a summary of taxa which likely describe the
difference (Fig. 1E; see also Table S3) (23–25). We found that tumor tissue was associated
with a higher relative abundance of Fusobacteria, Porphyromonas, Granulicatella, and
Campylobacter at the expense of members of genus Blautia and Ruminococcus. Tumor

TABLE 1 Risk factors for short-term survival

Characteristics

OR (95% CI)a

Crude risk

Adjusted risk

Model 1 Model 2
Patient characteristics at surgery
Age, yrs
,60 1.00 (ref) 1.00 (ref) 1.00 (ref)
60–69 0.87 (0.24–3.09) 2.45 (0.26–22.72) 2.59 (0.28–24.38)
70274 2.40 (0.65–8.81) 12.55 (1.06–149.26) 14.24 (1.21–167.40)
$75 1.96 (0.56–6.91) 8.68 (0.79–95.19) 10.55 (0.99–112.75)

Sex
Female 1.00 (ref) 1.00 (ref) 1.00 (ref)
Male 0.76 (0.35–1.67) 0.47 (0.14–1.56) 0.44 (0.13–1.41)

ASA score
I (healthy) 1.00 (ref) 1.00 (ref) 1.00 (ref)
II (mild) 0.80 (0.32–2.02) 2.29 (0.45–11.78) 2.69 (0.56–12.96)
III-IV (severe or worse) 2.01 (0.65–6.19) 4.10 (0.60–27.92) 4.99 (0.79–31.45)

Preoperative treatment
None 1.00 (ref) 1.00 (ref)
Radiotherapy 1.17 (0.74–1.84) 0.71 (0.12–4.15)

Tumor characteristics
Localization
Colon right 1.00 (ref) 1.00 (ref) 1.00 (ref)
Colon left 0.47 (0.16–1.32) 0.78 (0.16–3.82) 0.76 (0.16–3.63)
Rectum 0.72 (0.28–1.84) 2.03 (0.33–12.63) 1.61 (0.36–7.21)

Mucinous cancer
No 1.00 (ref) 1.00 (ref)
Yes 0.83 (0.24–2.93) 0.50 (0.05–5.39)

TNM stage
III 1.00 (ref) 1.00 (ref) 1.00 (ref)
IV 10.8 (3.68–31.72) 44.67 (5.53–360.63) 49.32 (5.86–415.12)

Grade of differentiation
Low 1.00 (ref) 1.00 (ref) 1.00 (ref)
Medium 0.20 (0.07–0.54) 0.23 (0.05–0.98) 0.24 (0.06–1.00)
High 0.21 (0.05–0.97) 0.09 (0.01–1.24) 0.10 (0.01–1.27)

Surgical characteristics
Period of surgery
199722005 1.00 (ref) 1.00 (ref) 1.00 (ref)
200622010 0.54 (0.21–1.37) 0.44 (0.10–1.92) 0.44 (0.10–1.89)
201122017 0.59 (0.21–1.65) 1.19 (0.22–6.47) 1.08 (0.22–5.36)

Radical operation
No 1.00 (ref) 1.00 (ref) 1.00 (ref)
Yes 0.05 (0.01–0.41) 0.13 (0.01–1.51) 0.12 (0.01–1.34)

aModel 1 values are adjusted for all variables. Model 2 values are adjusted for all variables except for
preoperative treatment and mucinous cancer. ref, reference.
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tissue had a 1.78 (95% CI = 1.50 to 2.18, P , 1 � 10212) log2-fold increase in the features
selected by DR compared to normal tissue, suggesting a tissue-specific signature (Fig. 1F).

Since these observations conflict with the existing literature, we reanalyzed previously
published data to confirm our findings (21). We first determined the paired samples from
a single individual were more similar to each other than any other samples in the replica-
tion cohort (see Fig. S4A and B; P = 0.001, 999 permutations). We then applied the global
test used in the previously published paper to both our cohort and the replication cohort,
which interrogated whether there was a statistically significant, global separation between
the two tissue types (see Table S3 and Fig. S4C). In line with previous work (21), we did not
find a statistically significant, global separation, measured by a permanova in either data
set. However, when we applied the sample subject-aware CTF technique on the replication
set, we found a clear, statistically significant difference along all three PCs (permutation
P = 0.001, 999 permutations; see also Fig. S4D to G). We then tried replicating the tissue
associated ALR in the validation cohort (see Fig. S4F). Tumor tissue in the validation cohort
had a 1.70 (95% CI = 0.66, 3.00; P = 0.003) log2-fold increase in the features selected by DR
compared to normal tissue (see Fig. S4H).

Our results therefore suggest that while an individual’s microbial identity plays a strong
role in shaping the microbiome, subject-aware comparisons are associated with a consist-
ent, reproducible difference in the microbiome on and off tumors in colorectal cancer.

FIG 1 There is a difference in the microbiome between tumor and normal tissues. We found a global
pattern separating tumor and normal tissue, which can be seen in CTF ordination space. (A) Plotting
the change between normal and tumor tissue in PC 2 and PC 3 as a vector with normal tissue as the
center demonstrates a clear directional pattern. The difference between normal and tumor tissue can
also be observed along individual components: PC 1 (B), PC 2 (C), and PC 3 (D). Ticks and dashed
zero-lines along PC 2 (C) and PC 3 (D) match the two-dimensional axes in panel A. All boxplots are
shown with a Cohen’s d effect size statistic for a one-sided t test and P values from a permutative
one sample t test, with 999 permutations. (E) Differential ranking of 300 abundant features identified
normal tissue-associated features (light pink) and tumor tissue-associated features (dark pink). The
inset shows selected features in each group, colored by family; colors are defined in the legend. (F)
Change in the ALR between normal and tumor tissue. The coefficient from a linear mixed-effect
model comparing the change based on tissue type was determined.
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Differences between normal and tumor associated microbiome are associated
with survival. Since we saw consistent differences between tumor and normal tissue, we
wondered whether there might be a relationship between the magnitude of the differ-
ence between tissue types and survival. Using traditional dissimilarity-based beta diversity,
we found that tumor and normal tissue were more similar in long-term survivors than
short-term, a difference primarily driven by greater change in abundant features (see
Table S5). In addition, long-term survivors showed a greater change along PC 2 in our CTF
ordination compared to short-term survivors (Cohen’s d = 0.40, P = 0.016, 999 permuta-
tions; Fig. 2). This suggested enough of a community-level change in the microbiome to
motivate looking for features which might explain the differences.

Therefore, we applied a subject-aware differential ranking technique looking at the
interaction between tissue type and survival to further refine the features (Fig. 2E to G).
We used an interaction model to identify features that changed in tumor tissue based
on survival group. Based on the tissue associated taxa associated with long-term sur-
vival, we defined an ALR where tumor tissue was associated with a higher relative
abundance of ASVs from genus Fusobacterium, Campylobacter, and Escherichia/Shigella
compared to ASVs from families Lachnospiraceae and Rumminococeae (see Table S6)
(25). We found members of genus Butyricicoccus, Roseburia, and Streptococcus associ-
ated with both normal and tumor tissue. There was a higher relative ratio of the tumor
associated organisms in tumor tissues from both short- and long-term survivors, and
the overall ratio was significantly higher in short-term survivors (Fig. 2F). However, the
magnitude of the difference between normal and tumor tissue did not differ between
the short- and long-term survivors.

In contrast, the interaction term identified a set of taxa, which were significantly
different between the tissue types in short-term survivors but not among long-term
survivors (Fig. 2G; see also Table S7) (25). Once again, we found tumor tissue in short-
term survivors to be strongly associated with an ASV from Fusobacteria and as well as
a few members of family Veillonellaceae, although again, there were not clear taxo-
nomic patterns observed in the rest of the ASVs used to construct our taxonomic ra-
tio. These results indicate the survival-associated changes in the microbiome may be
largest in tumor tissue and help to identify a specific set of organisms responsible for
these changes.

The tumor microbiome is associated with survival. Based on our observation that
differences in tissue types were more pronounced in short-term survivors, and since past
work focused on tumor tissues, we chose to further interrogate the tumor-specific micro-
biome. We applied robust principal component analysis (rPCA), an ordination technique
designed for microbiome data which combines sample and ASV information into the
same plot (22). Our ordination showed separation in the microbiomes between short- and
long-term survivors (Fig. 3A and D). After adjustment for confounders and both PCs,
patients with larger values for PC 1 had 3.5 lower odds (OR = 0.29; 95% CI = 0.08 to 0.97)
of short-term survival, while those with higher values for PC 2 were five times less likely to
be short-term survivors (OR = 0.19; 95% CI = 0.05 to 0.80). Individuals in the quadrant
defined by these two extremes in the data were at least 7.5 times more likely to survive
than any other group in the ordination (see Fig. S5).

We found 37 features associated with separation along PC 1. To the left of PC 1, we
found members of the genera Fusobacterium, Parvimonas, and Porphyromonas, as well
as other common oral genera such as Gemella and Dialster (Fig. 3B). In contrast, higher
values along PC 1 (to the right) were correlated with more common gut taxa, including
members of families Lachnospiraceae and Rumminococceae. We defined the log2-fold
ratio between the organisms separating PC 1 as a tumor survival index (see Table S8)
(25). For every 2-fold increase in this index in tumor tissue, the odds of survival
increased by 20% (adjusted OR = 0.80; 95% CI = 0.67 to 0.96). There were no clear pat-
terns in the taxa separating along PC 2, beyond the association between Escherichia/
Shigella and short-term survival, although there was a significant relationship between
these selected taxa and survival (OR = 0.64; 95% CI = 0.41 to 0.98 for every log2

increase).
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DISCUSSION

Our results show a clear and consistent difference between normal and tumor tis-
sue once we had accounted for individual microbiome effects. Across all patients,
tumors carried a higher proportion of ASVs mapped to genus Fusobacterium, Gemella,
Dialster, and Campylobacter at the expense of genera such as Blautia and Allistipes. The
tumor associated microbiome features reflect organisms found more commonly in
CRC patients compared to healthy controls, whereas the organisms associated with
normal tissue belong to clades commonly associated with short-chain fatty acids and
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FIG 2 The magnitude of the difference between tumor and normal tissue is associated with survival. (A) In two
dimensions, the change along PC 2 and PC 3 is visualized as a vector from normal to tumor tissue. Short-term
survivors (,2 year) are indicated in light blue. Long-term survivors ($5 years) are indicated in dark blue. (B to
D) The corresponding relationships can be visualized along the individual components: PC 1 (B), PC 2 (C), and
PC 3 (D). Ticks along PC 2 (C) and PC 3 (D) match the two-dimensional axes in panel A. All boxplots are shown
with a Cohen’s d effect size and a P value from a permutative Welch’s t test with 999 permutations, comparing
the two survival groups. (E to H) A differential ranking model was fit to consider the interaction between
survival and tissue. The ranks associated with tumor tissue in long-term survivors (E and F) and tumor tissue in
short-term survivors (G and H) (interaction) are shown. (E and F) Relative ranks associated with the model.
Insets highlight the ASVs associated with the extremes of each group. Taxonomic assignments are provided in
the legend. (F and H) Additive log2 ratio associated with the ranks. Paired differences are connected by a line
between normal (N) and tumor (T) tissues. The effect was modeled using a linear mixed-effects model, treating
the individual as random (*, P , 0.05; **, P # 0.01; ***, P # 0.001).

CRC Tumor Microbiome Is Associated with Survival Microbiology Spectrum

May/June 2023 Volume 11 Issue 3 10.1128/spectrum.05066-22 6

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.05066-22


widely believed to be beneficial (5, 6, 26–28). Further, we are among the first to show
that the magnitude of the difference between the normal and matched cancer tissue
can be associated with prognosis. Our differential ranking analysis identified a set of 38
ASVs, which changed between the tumor and normal tissue in short-term survivors,
but not long-term survivors. This suggests that survival may be associated with local-
ized changes in the microbiome.

We are among the first to report differences between tumor and normal tissues in
paired samples, let alone an association between the degree of dissimilarity and sur-
vival. Drewes et al. (12) demonstrated clear difference between paired tumor and nor-
mal tissue samples using microscopy, although their 16S analysis did not explicitly test
paired samples. These results seemingly conflict with much of the existing literature
(15–18, 21). Several previous studies reported no difference in the microbiome
between the two tissue types, let alone an intraindividual difference associated with
survival. As in past studies, we observed and described a strong intraindividual similarity:
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a personal microbial signature is a normal feature of the microbiome seen in a variety of
settings, including population-based studies (10), dietary interventions (29), and among
CRC patients (15–18, 21). However, unlike prior work, the statistical models we selected
accounted for this strong intraindividual similarity. Our work suggests that model selec-
tion is critical: the difference is not observed with methods that do not account for the
subject-specific variation and instead look for global changes. We demonstrate that rean-
alysis of prior publications using subject-aware methods replicates the patterns we found:
a difference between the tissue types, despite strong individual microbiome signatures.
Our results indicate that the tumor-specific microenvironment, rather than the overall
microbiome, is important for understanding CRC pathology. At a minimum, future
sequencing survey studies will need to account for tissue-specific effects in their analysis,
and studies treating tumor and nontumor biopsy samples as identical may need to check
for biases.

Based on the difference in the microbiome between tissue types, we specifically focused
on the relationship between the tumor microbiome and survival. Two previous studies have
explored the relationship between the tumor microbiome and survival using untargeted
sequencing. In that study of 67 Irish patients, Flemer et al. defined microbiome groups using
a noncompositional abundance-based clustering approach (14). These researchers found a
higher relative abundance of a cluster defined by members of the genera Bacteriodetes,
Blautia, Roseburia, and Rumminococus, as well as an unclassified member of the family
Lachnospiracae, was associated with shorter survival, while a higher abundance of a cluster
characterized by Streptococcus, Fusobacterium, and unclassified family Enterobacteraceae
was associated with longer survival. These groupings are contradictory to the features asso-
ciated with survival in our tumor tissue results. In contrast, our tumor survival index, defined
by an ALR of features along PC 1, showed a decrease in the relative abundance in
Fusobacterium compared to the relative abundance of genera like Blautia and Roseburia.
It is likely that this disagreement is due, at least in part, to differences in methods
used for differential abundance (23, 30). Our results are more in line with results
from a Chinese cohort (13). In that study, a higher untransformed relative abun-
dance of genus Fusobacterium or a higher relative abundance of reads mapped to
“Bacteriodetes fragilis” was associated with an increased hazard of death, while a
higher relative abundance of genus Faecalibacterium was protective. We find similar
trends in our tumor survival index, where short-term survival was associated with
ASVs mapped to genus Fusobacterium and a Bacteriodetes ASV, while longer survival
was associated with Faecalibacterium. Our results and those of the Chinese cohort
suggest that a more normal (gut-like) microbiome is associated with long-term sur-
vival, while a more disrupted (oral) microbiome led to a poor prognosis.

Our conclusions are supported by our nested case-control design, which helps
establishing temporality: changes in the local tumor microbiome at the time of surgery
are associated with future outcomes, increasing the probability that the observation is
a real phenomenon, rather than a change in the microbiome in response to disease
state. Our analysis used statistically appropriate methods, which accounted for analyti-
cal challenges in describing the microbiome, decreasing the possibility of false posi-
tives, especially among the identified taxa (23, 31). Our analysis has also addressed
confounders, which may affect the microbiome and survival, including the strong indi-
vidual microbiome signature.

However, our study has some limitations. First, our results focus on late-stage can-
cer patients in northern Europe and therefore may not be broadly generalizable. There
are reports of differences in the tumor microbiome between early- and late-stage CRC
patients (32) and differences in healthy microbiomes between countries (33). However,
past work has suggested that CRC is characterized by a set of organisms similar to the
ones we identified, and our work overlaps with the results of a Chinese cohort, despite
methodological differences (5, 6, 13). We were unable to find a suitable publicly avail-
able cohort with sufficient metadata to validate our tumor survival index; the features
we identified may be specific to our cohort rather than able to predict survival in a
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broader population of late-stage CRC patients. Finally, we profiled the microbiome
using 16S rRNA sequencing, with all the assumptions, benefits, and limitations of the
technique. Our work is predicated on the assumption that phylogenetic similarity cor-
relates to genetic and niche similarity. Without robust functional prediction and the
ability to assemble genome units, we are limited in our mechanistic insight. However,
our 16S sequencing is, in many cases, able to capture species- or subspecies-level reso-
lution as the amplicon sequence variant ID, even if the name cannot be inferred accu-
rately (34, 35).

In conclusion, we performed a nested case-control of the role of the microbiome in
relapse-free survival following primary resection in late-stage CRC patients. We identified
clear differences in the microbiome between normal and tumor tissue and that a larger
difference between tissue types was associated with poor prognosis. We found the tumor
microbiome was associated with survival. This suggests a need to focus microbiome-based
interventions at the tumor-specific community rather trying to modify prognosis by
changing the gut microbiome overall.

MATERIALS ANDMETHODS
Study population. Patients were recruited from all consecutive CRC patients (n = 540) who under-

went surgical resection for primary colorectal adenocarcinoma at the Department of Surgery, Ryhov
County Hospital, Jönköping Region County, Jönköping, Sweden, between 1997 and 2017. Patients with
tumor-node-metastasis (TNM) stage III and IV cancer at the time of surgery who had matched biopsy
specimens from normal and tumor tissue (n = 116) were selected. Patient details, including demo-
graphic, surgical, pathological information, and survival outcomes were determined from a review of
medical records.

The final study cohort included patients with paired, high quality microbiome samples (n = 101).
Fifteen individuals were excluded due to insufficient sequencing depth in the tumor (n = 8) or normal
(n = 7) tissue sample. There was no difference in the survival status in the samples with insufficient
sequencing depth. Included patients had matched tumor and normal tissue samples ($10 cm apart
from tumor tissue). Our analysis included samples from 51 long-term ($5-year survival) and 50 short-
term (#2-year survival) survivors.

The study was approved by the Regional Ethical Review Board in Linköping, Linköping, Sweden
(98113, 2013/271-31). A written informed consent was obtained from each patient.

Statistical analysis of patient characteristics. A multivariable logistic regression was used to assess
the predictive impact of the following patient-, cancer-, and treatment-related characteristics: age (cate-
gorized as,60, 60 to 69, 70 to 74, and$75 years), sex (female or male), American Society of Anesthesiologists
physical status (ASA) score (I, healthy; II, mild; III and IV, severe [patients with V and VI scores were not eligible
for surgery]), localization of the tumor (right colon, left colon, rectum), TNM stage (III or IV), grade of differentia-
tion (from low differentiation to high differentiation, with the latter more closely resembling noncancer histol-
ogy), radical surgery (yes or no); and period of surgery (1997 to 2005, 2006 to 2010, and 2011 to 2017). All
results are expressed as odds ratios (ORs) and 95% confidence intervals (CIs), and the calculations were con-
ducted with Stata MP14 (Stata Corp., College Station, TX).

Microbiome sequencing. Paired tumor and normal tissue samples were collected were collected
during colorectal resection surgery. Tissue samples were frozen directly and stored at 280°C until use.
Samples were processed as previously described (36). Briefly, DNA was extracted from tissue samples
using physical and chemical lysis for extraction. The 16S rRNA amplicon library was amplified with 341F/
805R primers (CCTACGGGNGGCWGCAG/GGACTACHVGGGTATCTAAT) using a program with 20 cycles
(37). The samples were sequenced with a 2 � 300 approach using an Illumina MiSeq (San Diego, CA).

The demultiplexed reads were denoised using the DADA2 algorithm (v1.13.1) in R (38). After reads
were demultiplexed and primers were trimmed, forward reads were trimmed to 265 nucleotides (nt)
and reverse reads were trimmed to 225 nt; the error rate model was trained on 15% of the reads. Reads
were joined with an at least 30-nt overlap, and anything shorter than 380 nt after joining was discarded.
Taxonomic assignment was performed using the naive Bayesian classifier implemented in DADA2
against the Silva 128 database (39, 40). The ASV table from DADA2, taxonomy, and representative
sequences were imported into QIIME 2 (v2020.11) for further processing (41). A phylogenetic tree was
built using fragment insertion using the SEPP algorithm into the Silva 128 backbone with q2-fragment
insertion (40–42). The table and sequences were filtered to exclude any ASV without phylum-level anno-
tation or which could not be inserted into the phylogenetic tree.

Microbiome community characterization. (i) Between-sample (beta) diversity. For paired-sam-
ple analysis, we calculated unweighted UniFrac (43), weighted UniFrac (44), and binary Jaccard (45) dis-
tances and Bray-Curtis dissimilarity (46) on a feature table rarified to 2,500 sequences/sample (47).
Aitchison distance was calculated on unrarefied data with a pseudocount of 1 (31, 48). Beta-diversity
metrics were calculated using the q2-diversity plugin in QIIME 2 (41).

(ii) Compositional tensor factorization ordination. To account for subject-specific effects on ordi-
nations, we used compositional tensor fraction (CTF) for paired samples using the Gemelli qiime2 plugin
(0.7.0) (22). Features were filtered to exclude those present in fewer than 20 samples or with ,100 total
counts. The distance in CTF subject space was calculated as the Euclidean distance between subject
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coordinates. The difference in intraindividual CTF space between normal and tumor tissue (DPC) were
compared using the subject-state coordinates.

(iii) Robust principal component analysis. For each tissue type, we examined beta-diversity using
a robust principal component analysis (rPCA) using the DEICODE algorithm (v0.2.4) (49). For a given sam-
ple set, we filtered filtering features present in ,10% of tumor samples (n = 10) or with fewer than 10
total counts. The auto-rPCA function was used to select the appropriate number of principle compo-
nents (PCs) for the data. The PCs were divided into quartiles and dichotomized along the median value.

Within tumor tissue, which showed a significant association between microbiome and our outcome,
we selected features that might be associated with survival. Communality was calculated as the square
root of the sum of squares across all PCs. Features with a communality value of at least 0.01 were
selected as candidates for the additive log ratio (ALR) calculation (n = 130). A pseudocount of 1 was
added before the ALR calculation. The ALR was calculated as the log2 ratio of features more extreme
than the fourth quartile of samples over features more extreme than the first quartile. Continuous ALR
values or ALR divided into tertials were used for regression.

(iv) Differential ranking. We performed hypothesis generating differential abundance testing between
tumor and normal tissue using a modified differential ranking (DR) technique (23, 24). We first filtered the ta-
ble to remove any feature with a relative abundance of ,1/1,000 in fewer than 10% of samples, leaving 243
features for testing. We then used a modified Bayesian method for DR testing. ASV counts were modeled
through a negative binomial process. We started with naive priors of between a 0-fold and a 5-fold
change in a ASV and fit the model using 4,000 iterations. The data were fit to a linear mixed effects
model using subject as a random intercept, modeling either for tissue or for the intersection between
tissue and survival. Modeling was done with pystan (v3.4.0) within the QIIME 2 2021.11 conda environ-
ment (50, 51).

We used the ranks to identify “extreme” features. Starting from the feature with the strongest signal
associated with each possible value for a variable (e.g., normal versus tumor tissue and short- versus
long-term survival), we added features until every tissue sample contained at least one of the extreme
features. A pooled ALR was calculated as the sum of all normal tissue associated features over the tu-
mor-associated features.

Replication cohort. We performed replication analysis on previously published data (21). Paired-
end reads were downloaded from the European Nucleotide Archive (accession PRJEB47197); metadata
was extracted from Table S1 from a study by Cronin et al. (52) (sheet name “Flemer et al., 2017 meta-
data”). Paired-end reads were imported into QIIME 2 for processing using a manifest format (41). The
data were denoised using the q2-dada DADA2 implementation with default parameters aside from trim
lengths (38). We trimmed the first 15 nt off the forward and reverse reads and then trimmed the forward
reads to 240 nt and the reverse reads to 225 nt before denoising.

We identified 25 participants with paired tumor and normal tissue samples, six of whom had more
than two samples. In those cases, we randomly selected the second sample for analysis, since no addi-
tional information was available. We calculated Bray-Curtis dissimilarity and Jaccard distance on a fea-
ture table rarefied to 1,000 sequences per sample using the qiime2 diversity plugin (41, 45, 46). We also
performed CTF ordination on the replication data (22). The table was filtered to exclude features present
in fewer than five samples or with fewer than 100 total counts. The changes along PCs 1, 2, and 3 were
calculated, as described for the main cohort.

We also worked to validate the additive log ratio between tissue types. We clustered the representa-
tive sequences from the validation cohort against the representative ALR sequences (see Table S4) at
98% identity using the closed reference approach implemented in vsearch (q2-vsearch; vserach v2.7.0)
(25, 53). We added a pseudocount of 1 and calculated the additive log ratio based on the groups from
Table S4.

Statistical analysis. Paired distances were extracted as the distance between an individual’s tumor
and adjacent normal tissue. Interindividual distance was compared to the interindividual distance to
samples of the same tissue type, anatomical location, and survival group with a permutative two sample
t test with 999 permutations.

The global difference in centroid between normal and tumor tissue, we applied a permutational multi-
variate analysis of variance (PERMANOVA) with 999 permutations in scikit-bio (v0.5.6) (54). Associations with
per-subject CTF coordinates were checked by calculating the Euclidean distance between tissue samples
and applying a PERMANOVA test with 999 permutations in scikit-bio (v0.5.6) (54). The change between tis-
sue types in CTF coordinate space were modeled with a paired sample t test was used to determine
whether there was a global difference between tumor and normal tissue along either PC; the effect of
change on survival was compared using a permutative Welch’s t test looking at the difference between
groups with 999 permutations. ALR interactions were evaluated using a linear mixed effects model with
individual as the grouping factor.

Survival was modeled using logistic regression. Models were fit using a crude (unadjusted) model
and a model adjusted for age, sex, ASA score, tumor location, surgery period, TNM stage, radical surgery,
and differentiation grade. Modeling was performed using statsmodels (v0.11.1), scipy (v1.4.1), and
numpy (v1.18.5) in python (v3.6) (55–57).

For all analyses performed, a P value of 0.05 was considered statistically significant.
Figures were plotted using with matplotlib (v3.2.2) and seaborn (v0.10.1) The dendrogram was plot-

ted using Empress (q2-empress v0.0.1-dev, commit b705358) (58); three dimensional ordinations were
rendered using Emperor (v1.0.3) (59). Taxonomic colors come from the microshades colorblind friendly
palette (60). Figures were assembled in Illustrator 2021 (Adobe, Inc., San Jose, CA).
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Data availability. Raw sequencing data and corresponding metadata are deposited in ENA under
accession number PRJEB57580. Precalculated feature tables and metadata are also available through GitHub
on at https://github.com/ctmrbio/crc-survival (v2.0 https://doi.org/10.5281/zenodo.7690117). Representative
sequences and index tables for each of the ALR sets are deposited on Zenodo (https://zenodo.org/record/
7696883) (25).

Tables were generated with code from https://github.com/ctmrbio/Amplicon_workflows.
Analysis notebooks for these data can be found on Github at https://github.com/ctmrbio/crc-survival;

the revised manuscript is based on version 2.0 (https://doi.org/10.5281/zenodo.7690117) (61).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.5 MB.
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