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ABSTRACT Streptococcus suis is a zoonotic pathogen that causes disease in humans af-
ter exposure to infected pigs or pig-derived food products. In this study, we examined
the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative
and conjugative elements (ICEs), and associated genomic environments of S. suis isolates
from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes,
predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1
(6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates pos-
sessed 36 different sequence types (STs), and ST242 and ST117 were the most preva-
lent. Phylogenetic analysis revealed possible animal and human clonal transmission,
while antimicrobial susceptibility testing indicated high-level resistance to macrolides,
tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes
(ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance geno-
types were directly correlated with the observed phenotypes. We also identified ICEs
in 10 isolates, which were present in 4 different genetic environments and possessed
differing ARG combinations. We also predicted and confirmed by PCR analysis the ex-
istence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA
was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be
mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying
transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain
could not be eliminated with tetracycline treatment. S. suis therefore poses a signifi-
cant challenge to global public health and requires continuous monitoring, especially
for the presence of ICEs and associated ARGs that can be transferred via conjugation.

IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the
epidemiological and molecular characteristics of 96 S. suis isolates from 10 different prov-
inces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were
able to be horizontally transferred among isolates of different S. suis serotypes. A mouse
thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance de-
velopment. S. suis requires continuous monitoring, especially for the presence of ICEs
and associated ARGs that can be transferred via conjugation.

KEYWORDS S. suis, serotype, WGS, integrative and conjugative elements, ICEs,
transferability

S treptococcus suis is a serious zoonotic pathogen of swine that causes significant
economic losses to the pig industry, posing a threat to human public health (1, 2).

The clinical diseases of S. suis infection include meningitis, sepsis, endocarditis, arthritis,
hearing loss, and skin lesions. Moreover, S. suis can cause opportunistic lower respira-
tory tract infections, i.e., pneumonia (3). Severe infections in humans result in high
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levels of mortality, while survival can be accompanied by lifelong sequelae such as
deafness (4). The numbers of human cases of S. suis infection were low (1,600) and
were concentrated primarily in Asia and Europe (4, 5). Two notable large-scale human
infections occurred in China in 1998 and 2005, resulting in 14 and 35 deaths, respectively
(6–8). Infection sources for humans have been pork and pork-derived food products, and
these are considered high-risk factors (9). Since S. suis is a major swine pathogen, the
monitoring of S. suis isolates on farms is necessary for animal as well as human health
protection (10).

There are currently 29 serotypes of S. suis, and serotype 2 is the most common for both
human and pig clinical isolates (4, 11). Clinical treatment relies on antibiotics since there is
no available commercial vaccine (12, 13). The primary treatment modalities are penicillins
alone or in combination with aminoglycosides, macrolides and lincosamides, fluoroquino-
lones, and tetracyclines (14). However, unreasonable antibiotic therapy has resulted in the
increasing antibiotic resistance of S. suis (14–16). Thus, monitoring resistance in clinical iso-
lates is strongly recommended.

Globally, the frequency of the acquisition of antibiotic resistance in S. suis has been
lower than for common Gram-negative Enterobacteriaceae members, possibly due to
the more limited horizontal transmission of antibiotic resistance genes (ARGs) in Gram-
positive bacteria that rely on integrative and conjugative elements (ICEs) located in the
chromosome (14). These elements are mobilized via circularization and can be horizon-
tally self-transferred via conjugation (17). The primary functions of ICEs are in host bac-
terial evolution, and ICEs can transfer favorable fitness genes that enhance virulence,
promote resistance to antibiotics and heavy metals, regulate biofilm formation, and
encode toxin-antitoxin systems (18). S. suis isolates are also important antimicrobial re-
sistance reservoirs that facilitate the spread of ARGs to major streptococcal pathogens,
including Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalac-
tiae, and between isolates of different S. suis serotypes (19–21). Therefore, ICEs are pri-
mary mediators of ARG transfer, and a more complete understanding of their function
is necessary to understand resistance development in S. suis.

RESULTS
Phylogenetic analysis of S. suis and typing of isolates. We examined all 96 of the

S. suis isolates by whole-genome sequencing (WGS), and 79/96 (77.5%) included 13 known
serotypes, including serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/
96; 6.3%). The remaining 10 serotypes involved fewer than 5% of the isolates. These 96 iso-
lates contained a total of 36 sequence types (STs), and ST242 and ST117 predominated;
interestingly, most ST242 isolates were of serotype 2, and all ST117 isolates were of serotype
3, while ST1714 to -1719 and ST1892 to -1908 were newly assigned STs (Fig. 1). A phyloge-
netic tree indicated the presence of 4 clades, and the major lineage I included 55 (57.3%) of
the isolates. Further analysis revealed that lineage I included the 3 human isolates and
possessed the broadest distributions by year and location, suggesting clonal spread. In par-
ticular, human isolate SS18-7 and porcine isolate 110 from Guangdong shared only 9 single
nucleotide polymorphisms (SNPs), indicating a high probability of clonal transmission
between pigs and humans (Fig. 1; see also Fig. S1 in the supplemental material). The phylo-
genetic tree demonstrated the molecular evolutionary relationship between the 40 S. suis
serotype 2 (SS2) isolates in this study and the other 232 SS2 isolates in the NCBI database.
The population structure analysis showed four distinct sequence lineages (named lineages I
to IV), ranging in size from 22 to 152 isolates (Fig. 2). The majority of the 40 isolates in this
study were assigned to lineage II. With the exception of 113 undetermined isolates, SS2 was
the most abundant in eastern China but not in the northeastern and northwest regions.
From 2013 to 2017, SS2 was the most abundant and was distributed across 4 lineages.

Antimicrobial resistance profiles of S. suis isolates. The MICs were determined for
12 classes of antimicrobial agents, which included 22 antibiotics. All 96 isolates were resist-
ant to amikacin and tetracycline, and high frequencies of resistance to erythromycin
(91.7%), tilmicosin (90.6%), azithromycin (91.7%), clindamycin (91.7%), lincomycin (96.9%),
trimethoprim-sulfanilamide (78.1%), tigecycline (76%), and gentamicin (75%) were observed.
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FIG 1 Analysis of 96 S. suis isolates identified in this study. The relationship between isolates is expressed as a maximum likelihood number, and
yellow and green indicate different hosts. Red filling indicates the presence of ARGs, as indicated. MLST, multilocus sequence typing; NA, not
applicable.
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The rates of resistance to tiamulin, penicillin, florfenicol, danofloxacin, and levofloxacin were
19.8, 15.6, 13.5, 11.5, and 11.5%, respectively. Low frequencies of resistance to chloramphen-
icol (8.3%), linezolid (8.3%), valnemulin (8.3%), ceftiofur (5.2%), ampicillin (5.2%), rifampicin
(5.2%), and vancomycin (1%) were observed (Fig. 3 and Fig. S2). These results corroborate
the results of previous studies showing that S. suis was highly resistant to macrolides, tetra-
cyclines, lincosamides, and aminoglycosides in China (15, 22, 23).

Analysis of resistance profiles. The group of 96 S. suis isolates possessed a total of
24 ARG types that conferred resistance to 7 classes of antibiotics, including macrolide-
lincosamide-streptogramin B (MLSB), tetracycline, aminoglycosides, lincosamides, pleu-

FIG 3 Summary of antibiotic resistance profiles of the 96 S. suis isolates used in this study.

FIG 2 Phylogenetic structures of Chinese S. suis serotype 2 isolates from this study and the GenBank database.
The maximum likelihood tree outlines the phylogenetic structures of 40 S. suis serotype 2 isolates unique to
this study (highlighted by red points) combined with 232 Chinese S. suis serotype 2 isolates. The year of
isolation and the location from which the isolates were obtained are indicated in the inner ring and the outer
ring, respectively.
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romutilin-lincosamide-streptogramin A, chloramphenicol, and oxazolidinone. These re-
sistance genotypes were consistent with the resistance phenotypes, and the MLS
genes erm(B) and tet(O) were the most prevalent, at .80% (Fig. 1). These results sug-
gest that this resistance profile might have been acquired by horizontal ARG transfer
and could potentially mediate the development of multidrug resistance (MDR).

ICE identification. ICEs and multidrug resistance have been previously reported for
S. suis (20, 21, 24). In our group of 96 S. suis isolates, 10 were confirmed to be ICE carriers
using WGS. These elements ranged in size from 64 to 124 kb, with GC contents of 35 to
38%. Each ICE was flanked by the 15-bp repeat 59-TTATTTAAGAGTAAC-39, indicative of
attL and attR sites. The sites of integration for these 10 strains were located between the
intergenic region extending from hyd (hydrolase, predicted) and rplL (50S large ribosomal
protein subunit) (Table 1). A total of 4 genetic environments (types I to IV) were identified
(Fig. 4). Type I (n = 3) carried tet(M) and ant(6)-Ia, and type II (n = 5) carried erm(B) and tet
(O/W/32/O)-tet(M). Type III (n = 1) carried the gene cluster aph(39)-III–ant(69)-Ia–lnu(B)–lsa
(E)–ant(6)-Ia. Type IV (n = 1) carried the truncated erm (A) gene [Derm (A)] and optrA genes,
which were flanked by two copies of IS1216E in the same orientation, as well as some other
genes (Fig. 5). These two copies of IS1216E could recombine and loop out a translocatable
unit (TU) that consisted of one IS1216E copy along with the sequence located between the
two IS1216E elements. A 4,845-bp TU was formed in ICESsuS71-1 and contained one
IS1216E copy and the ARGs Derm(A) and optrA, along with several other genes (Fig. 5).

Detection of the transferability of ICEs and difficult elimination of the recipient
in vitro and vivo. Conjugation experiments were employed to assess the transferability
of the ICEs in 10 S. suis isolates, and 5 were successfully transferred to the recipient
S. suis P1/7 at frequencies ranging from 1.31 � 1028 to 5.14 � 1028. MIC testing indi-
cated that the transconjugants possessed resistance phenotypes consistent with that of
the donor (Table 2). Time-kill curves indicated that bacterial reductions of ;3 to 4 log
CFU were observed for treatment with tetracycline or erythromycin against P1/7.
However, the same treatment failed to inhibit P1/7-ICESsuS82 (Fig. 6A and B). A transcon-
jugant carrying tet(O) and erm(B) on ICESsuS82 and unmodified recipient strain P1/7
were examined for pathogenicity using a mouse thigh infection model. Tetracycline or
erythromycin treatment of mice infected with control strain P1/7 resulted in a significant
10-fold or 100-fold decrease in the CFU per gram of tissue, respectively (P , 0.05).
Conversely, tetracycline did not alter (P . 0.05) the levels of the transconjugant P1/7-
ICESsuS82, and the CFU were higher than those of the parental strain P1/7 (Fig. 6C).
These results indicated that the ICE-carrying transconjugant possessed drug resistance
that was difficult to eliminate in vivo.

DISCUSSION

S. suis isolates are increasingly being recognized as the causes of preventable and emerg-
ing zoonotic infections in humans, with global distributions that are tracked using serotyping
(25, 26). The S. suis serotypes identified in this study revealed substantial diversity, and for

TABLE 1 ICE-carrying S. suis isolates identified in this study

Strain Serotypea Multilocus ST ICE size (bp) GC content (%) Insertions Putative att sequence Genotype
S20 1 ST1 80,799 37 hyd and rplL TTATTTAAGAGTAAC ant(6)-Ia tet(M)
S102-4 1 ST1 124,425 35 hyd and rplL TTATTTAAGAGTAAC aph(39)-III ant(6)-Ia erm(B)

lnu(B) lsa(E) tet(O)
S101-1 1 ST1 64,515 38 hyd and rplL TTATTTAAGAGTAAC erm(B) tet(O)
SS18-6 2 ST1 78,352 38 hyd and rplL TTATTTAAGAGTAAC ant(6)-Ia tet(M)
S4 3 ST117 103,002 38 hyd and rplL TTATTTAAGAGTAAC erm(B) tet(O)
S82 7 ST1907 69,887 38 hyd and rplL TTATTTAAGAGTAAC erm(B) tet(O)
S113 7 ST1908 69,806 38 hyd and rplL TTATTTAAGAGTAAC erm(B) tet(O)
56 NA ST1 78,344 38 hyd and rplL TTATTTAAGAGTAAC ant(6)-Ia tet(M)
S71-1 NA ST1899 80,342 37 hyd and rplL TTATTTAAGAGTAAC aph(39)-III ant(6)-Ia erm(A)

erm(B) lnu(B) lsaE optrA tet(O/W/32/O)
S47 NA ST1901 66,984 37 hyd and rplL TTATTTAAGAGTAAC tet(O/W/32/O)
aNA, not applicable, indicating that the isolates were untypeable.
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83/96 isolates tested, we found 13 different capsular serotypes and 13.5% that were non-
typeable. The nontypeable isolates may represent new serotypes of S. suis isolates, or they
may be mutant variants of known serotypes with deletions and insertions in genes of the
capsular polysaccharide locus (27). The Chinese isolates of highly pathogenic S. suis sero-
type 2 caused two large-scale human epidemics and massive pig deaths in China (28–30).
Serotype 2 is also the most virulent serotype of S. suis isolates (31) and constitutes the bulk
of published genomic sequences for S. suis (32). We also found that serotype 2 predomi-
nated in our isolates (40/96). We also identified ST1714 to -1719 and ST1892 to -1908 as
newly assigned STs. However, the serotypes and STs did not exactly correspond, and a

FIG 4 Identification of genetic environments (types I to IV) for ICEs in the S. suis isolates used in the study.
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particular serotype could correspond to multiple STs and vice versa. However, all ST117
isolates were of serotype 3, and the majority of the ST242 isolates were of serotype 2. All
isolates were classified into a 4-clade lineage, with lineage I covering the majority of the
members across 7 years and 7 regions, suggesting clonal spread. In pigs, S. suis is trans-
mitted primarily via aerosol, and airborne transmission between pigs has been clearly
demonstrated (33). Human S. suis infections were almost always related to pig handling,
pig slaughtering, or pork consumption (34) and might account for the presence of the 3
human isolates and the majority of the swine isolates in lineage I. Interestingly, a human
isolate from Guangdong and a porcine isolate from Guangdong shared only 9 SNPs, and
this was indicative of clonal transmission between animals and humans. Notably,
Guangdong human isolate SS18-6, isolated in 2019, and 05ZYH33 (35), which caused
the second large-scale outbreak of S. suis infection in China, were both part of line-
age I. The harm of S. suis to humans should not be underestimated, and the spread
of S. suis should not be ignored.

Antibiotics have long been used in the swine industry for disease treatment and
prevention (14). However, antibiotics should be used with caution to reduce the selec-
tion of resistant S. suis isolates. MIC testing of our isolates indicated that the level of
resistance of S. suis to commonly used antibiotics was relatively high. All isolates were re-
sistant to at least one class of antibiotics, and high frequencies of resistance to amikacin,
tetracycline, erythromycin, tilmicosin, azithromycin, clindamycin, and lincomycin were
observed, consistent with the results of previous studies (15, 22). The resistance pheno-
types of most of the isolates perfectly correlated with the presence of a corresponding
acquired ARG. We found high rates of carriage of MLSB, tetracycline, and aminoglycoside
resistance genes in our isolates. In veterinary medicine, macrolides and lincosamides can
be used as feed and injection preparations for treating swine respiratory tract infections
(14, 36). In addition, tetracycline, florfenicol, and penicillins are frequently applied sepa-
rately or in combination for treating S. suis infections (37–39). Notably, we found linezolid

FIG 5 Location of the optrA gene in S. suis isolate S71-1. A TU carrying optrA was located on ICESsuS71-1 in S. suis and identified using PCR analysis.
Detection primers for the circularizable forms of the ICE (TU) are indicated by arrows. The Derm (A) indicates a truncated erm (A) gene.
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and vancomycin resistance (LVR), and these are last-resort antimicrobial agents for
the treatment of multidrug-resistant Gram-positive bacterial infections, which poses
a severe threat to public health. LVR S. suis isolates have been previously described
(40, 41). Therefore, close surveillance is urgently needed to monitor the antibiotic resist-
ance of S. suis.

WGS analysis of our isolates further revealed that the macrolide resistance gene erm
and the tetracycline resistance gene tet were carried at high frequencies, and this pattern
was previously reported for S. suis (42, 43). Notably, resistance to the last-resort agent line-
zolid was carried by 11 of our isolates, indicated by the presence of optrA, which may have
occurred under florfenicol selection on farms (40). Previous studies have established corre-
lations between the presence of an ICE and multidrug resistance in S. suis (20, 24). We
found 10 isolates that fit this pattern, and the type I and II resistance genes and the genetic
environment were similar to those reported previously (20, 21, 44, 45); that is, the integra-
tion site was located in the intergenic region between hyd and rplL, similar to most reported
ICE integration sites in S. suis (24, 46, 47). ICEs were inserted at the rplL locus, which is one
of the common insertion hot spots for mobile genetic elements (MGEs) in S. suis, forming
perfect 15-bp target site duplications at both termini (59-TTATTTAAGAGTAAC-39). In addi-
tion to the rplL locus, rpsI (S9 ribosomal protein), lysS (lysyl-tRNA), rpmG (L33 ribosomal
protein), and guaA (GMP synthetase) have also been reported in Streptococcus spp. (46).
We also identified additional resistance gene clusters for type III (ICESsuS102-4) and type
IV (ICESsuS71-1). The lsa(E) gene has been found primarily as a part of a large MDR gene
cluster often associated with lnu(B) (48). IS26-containing transposes have been shown to
move via an excised circular element called a translocatable unit (TU) (49). The IS26
mechanism also explains the properties of IS1216, which belongs to the same insertion
sequence (IS) family and mobilizes resistance genes in Gram-positive bacteria (50, 51).
Importantly, we found optrA, encoding lincosamide resistance, associated with the TU.
This location will potentially aid in horizontal transfer among S. suis isolates and to other
Gram-positive bacteria. We were able to successfully transfer the ICEs of isolates of 5 dif-
ferent serotypes to S. suis serotype 2 strain P1/7 by conjugation. Multiple attempts were
unsuccessful for the remaining 5 isolates, and this failure was most likely associated with
a lack of transfer elements in the donor strains, as previously reported (20, 45). Our
in vitro and in vivo experiments further confirmed that ICEs carrying ARGs were difficult
to eliminate with antibiotic treatment. As movable genetic elements, the ICEs in S. suis
can be horizontally transferred to isolates of the same serotype and different serotypes
of S. suis by conjugation. This can greatly accelerate ARG spread between different spe-
cies and genera and could bring great difficulties and challenges for clinical treatment
protocols.

TABLE 2 Characteristics of the strains included in the filter-mating conjugation experiments
performed in this study

Strain Serotype Genotype

MIC (mg/mL)c
Transfer
frequencyRIF TET ERY

P1/7a 2 .256 2 #0.25
S20 1 ant(6)-Ia tet(M) #0.0625 64 #0.25 3.61� 1028

P1/7-ICESsuS20b 2 .256 64 #0.25
SS18-6 2 ant(6)-Ia tet(M) #0.0625 32 #0.25 2.67� 1028

P1/7-ICESsuSS18-6b 2 .256 32 #0.25
S4 3 erm(B) tet(O) #0.0625 64 .256 3.72� 1028

P1/7-ICESsuS4b 2 .256 64 .256
S82 7 erm(B) tet(O) 0.125 32 .256 5.14� 1028

P1/7-ICESsuS82b 2 .256 32 .256
S113 7 erm(B) tet(O) #0.0625 32 .256 1.31� 1028

P1/7-ICESsuS113b 2 .256 32 .256
aRecipient strain for transconjugant experiments.
bTransconjugant of the corresponding strain.
cRIF, rifampicin; TET, tetracycline; ERY, erythromycin.
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Conclusions.We isolated 96 S. suis strains from humans and swine in China from 2008
to 2019, and serotype 2 predominated. WGS analysis verified that ST242 and ST117 were
the most prevalent STs. Phylogenetic analysis of the core genomes of these isolates
showed that S. suis most likely clonally spread between pigs and humans in China. WGS
further revealed that the erm(B) and tet(O) genes were detected in more than 80% of the
isolates. ICEs were detected in 10 S. suis isolates, which were divided into 4 types based on
the genomic environment. ICEs can horizontally transfer ARGs between S. suis isolates of
different serotypes. Our in vivo experiments further confirmed that an ICE strain possessing
ARGs was difficult to eliminate clinically. Therefore, monitoring for ICEs as well as ARGs is
necessary to ensure continued treatment efficacy for S. suis isolates.

MATERIALS ANDMETHODS
S. suis isolates and growth conditions.We collected 96 S. suis isolates for the current study, including

3 human isolates, from the Guangdong Provincial Center for Disease Control and Prevention, and 93 isolates
from swine farms in 10 provinces of China from 2008 to 2019 (see Table S1 in the supplemental material).
Suspected S. suis isolates were grown, subcultured, and quantified using tryptic soy broth (TSB) and agar
containing 5% newborn calf serum. All isolates were identified to the species level using matrix-assisted laser
desorption ionization–time of flight (MALDI-TOF) mass spectrometry and 16S rRNA gene sequencing.

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing was performed using the
broth microdilution method according to 2022 European Committee on Antimicrobial Susceptibility Testing
(EUCAST) (https://www.eucast.org/) guidelines. All S. suis isolates were tested for susceptibility to ceftiofur,
penicillin, ampicillin, amikacin, gentamicin, erythromycin, tilmicosin, azithromycin, clindamycin, lincomycin,
florfenicol, chloramphenicol, tetracycline, tigecycline, tiamulin, valnemulin, linezolid, vancomycin, rifampicin,
danofloxacin, levofloxacin, and trimethoprim-sulfanilamide. The MIC results for ampicillin, rifampicin, and
tigecycline were interpreted according to EUCAST breakpoints (52), and the MIC cutoffs for tilmicosin, linco-
mycin, amikacin, gentamicin, florfenicol, tiamulin, and valnemulin were reported based on a previous study
(16), CLSI criteria were applied for the interpretation of the resistance profiles for the remaining antibiotics
(53). Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 were used as quality control strains.

Whole-genome sequencing and analysis. DNA was extracted from S. suis isolates using a commercial
genomic DNA purification kit according to the manufacturer’s instructions (Tiangen, Beijing, China). Whole-

FIG 6 In vitro activities and in vivo therapeutic efficacies of tetracycline (TET) and erythromycin (ERY) against
S. suis P1/7 and its transconjugant P1/7-ICESsuS82. (A and B) In vitro time-kill curves of tetracycline (A) and
erythromycin (B) against S. suis strains. (C) In vivo therapeutic efficacy of tetracycline or erythromycin in the
murine thigh infection model against S. suis strains.
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genome sequencing (WGS) was performed with the Illumina HiSeq 2500 system (Novogene, Guangzhou,
China) using the paired-end 2� 150-bp sequencing protocol. A total of 272 genomes of S. suis serotype 2 iso-
lates that were originally isolated from China were used for phylogenetic and evolutionary analyses. The
genomes of these isolates included 232 sequences retrieved from the NCBI database (https://www.ncbi.nlm
.nih.gov/pathogens) (as of 10 March 2023) and 40 sequences generated during the present study. Assemblies
from all isolates were mapped to the strain 05ZYH33 reference sequence (NCBI assembly accession number
GCA_000014325.1) using Snippy v4.6.0 (https://github.com/tseemann/snippy). Recombinogenic SNPs were
identified using Gubbins v2.4.1 (54). The phylogenetic tree was built with RAxML using the GTRGAMMA substi-
tution model and 100 bootstraps and visualized using the iTOL online platform (55, 56). ARG homologs were
identified using the ResFinder server (http://www.genomicepidemiology.org/) (57). Sequence types (STs) were
identified using the PubMLST database (https://pubmlst.org/) (58). ICEs were predicted using ICEfinder (https://
bioinfo-mml.sjtu.edu.cn/ICEberg2/index.php) (17), and complete ICE sequences on different contigs were
determined using Sanger sequencing following PCR amplification (Table S2). Genomes were annotated using
the Rapid Annotation of Microbial Genomes Using Subsystems Technology (RAST) annotation server (https://
rast.nmpdr.org/rast.cgi). ICEs were identified by comparison with other MGEs from GenBank and were visual-
ized using Easyfig 2.2.2 (59).

Conjugation transfer experiment. ARG transferability was assessed by conjugation using the rifam-
picin-resistant tetracycline-sensitive S. suis serotype 2 strain P1/7 as the recipient. Transconjugants were
selected on tryptic soy agar (TSA) plates containing 10 mg/mL each of erythromycin and tetracycline
and 30 mg/mL of rifampicin. The transconjugants were further examined for MIC phenotypes and by
specific PCR amplification of ARGs and the unique serotype 2 gene sequences (Table S2) (60).

Time-dependent killing. P1/7 or P1/7-ICESsuS82 bacterial cells at a final concentration of 1 � 106

CFU/mL were treated with tetracycline (4 mg/mL) or erythromycin (4 mg/mL) for 0, 3, 6, 9, 12, and 24 h.
At the indicated times, samples of each group were collected, diluted, and plated onto agar plates. After
incubation at 37°C overnight, the CFU were calculated.

Murine thigh infection model. Six-week-old specific-pathogen-free ICR mice (23 to 29 g) were used for
the in vivo studies (Guangdong Medical Lab Animal Center, Guangzhou, China). Mice were rendered neutro-
penic by the injection of cyclophosphamide intraperitoneally 4 days (150 mg/kg of body weight) and 1 day
(100 mg/kg) prior to infection (61). Thigh infections were produced by the intramuscular injection of 0.10 mL
of the inoculum (108 CFU/mL of exponential-phase cells) into the thighs of isoflurane-anesthetized neutropenic
mice. Two hours after thigh infection, the mice were randomized to receive (i) control treatment with the vehi-
cle, (ii) tetracycline at 10 mg/kg by oral gavage twice a day, or (iii) erythromycin at 20 mg/kg by oral gavage
twice a day. The dose of tetracycline was chosen according to a previous study with a standard oral dose in
nursery pigs (62). The erythromycin dose was chosen to obtain pharmacokinetic values similar to those
achieved with the clinical dose of 500 mg in humans (63–65). After 24 h of therapy, the thighs (six per group)
were aseptically removed, homogenized, and processed for bacterial CFU determination.

Ethics statement. Animals were maintained according to national standards for laboratory animals
in China (GB 14925-2010) (66). The Animal Research Committee (IACUC) of the South China Agricultural
University (SCAU) approved these studies (approval number 2022C014).
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