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Abstract

Objective: Neurodegenerative conditions often manifest radiologically with the

appearance of premature aging. Multiple sclerosis (MS) biomarkers related to

lesion burden are well developed, but measures of neurodegeneration are less

well-developed. The appearance of premature aging quantified by machine

learning applied to structural MRI assesses neurodegenerative pathology. We

assess the explanatory and predictive power of “brain age” analysis on disability

in MS using a large, real-world dataset. Methods: Brain age analysis is predi-

cated on the over-estimation of predicted brain age in patients with more

advanced pathology. We compared the performance of three brain age algo-

rithms in a large, longitudinal dataset (>13,000 imaging sessions from >6,000
individual MS patients). Effects of MS, MS disease course, disability, lesion bur-

den, and DMT efficacy were assessed using linear mixed effects models. Results:

MS was associated with advanced predicted brain age cross-sectionally and

accelerated brain aging longitudinally in all techniques. While MS disease

course (relapsing vs. progressive) did contribute to advanced brain age, disabil-

ity was the primary correlate of advanced brain age. We found that advanced

brain age at study enrollment predicted more disability accumulation longitudi-

nally. Lastly, a more youthful appearing brain (predicted brain age less than

actual age) was associated with decreased disability. Interpretation: Brain age is

a technically tractable and clinically relevant biomarker of disease pathology

that correlates with and predicts increasing disability in MS. Advanced brain

age predicts future disability accumulation.

Introduction

Neuroimaging is critical in the diagnosis of neurological ill-

ness, including multiple sclerosis (MS).1 Clinicians use

neuroimaging to understand disability,2 monitor response

to therapy,3 or predict future disease severity.4 Data reduc-

tion strategies attempt to summarize images based on fea-

tures (e.g., atrophy patterns) but rely on prior anatomical

or physiological assumptions which may bias outcomes. In

many neurological diseases, the appearance of imaging fea-

tures consistent with premature or accelerated aging (e.g.,

atrophy) is appreciated on radiological assessment of

individual patients. Machine learning (ML) algorithms can

effectively predict age in healthy people from routine neu-

roimaging datasets.5,6 Advanced predicted “brain age”

compared to chronologic age has emerged as a (non-

specific) biomarker of brain pathology.6 This “brain age

gap” has been proposed as a biomarker of MS,7,8 as well as

Alzheimer disease,9 physical fitness,10 psychosis,11 and neu-

rological effects of human immunodeficiency virus infec-

tion.12 However, methodological problems related to

derived quantities (e.g., brain age gap) have been identified

which complicate the interpretation and application of

brain age to the study of human disease.13
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Brain age analysis identifies pathological changes mani-

festing as increased brain age in patients with MS.6-8

Machine learning assessments of brain age are driven by

volume changes (i.e., atrophy) and other structural fea-

tures which may be measured independently. Brain age

analysis confers the advantage of an implicit normative

comparison value (i.e., the chronological age of the par-

ticipant) and reduces a topographically complex process

(regional atrophy) into a single scalar value which sim-

plifies statistical and clinical inference. In this study, we

utilize neuroimaging data from a multi-site, international

collaboration collecting longitudinal, standardized imag-

ing in MS patients. The Multiple Sclerosis Partners

Advancing Technology and Health Solutions (MS

PATHS) study is an observational study collecting clinical

assessments and standardized, high-resolution T1 and

FLAIR images in MS patients as part of their standard of

care.14,15 Images from 6,732 individual MS patients, con-

tributing 13,852 imaging studies, were examined using

brain age analysis to understand and make predictions

about MS trajectory. We implemented and compared

three brain age algorithms to examine the effect of MS,

MS disease course (e.g., relapsing vs. progressive), and

disability on predicted brain age in cross-sectional and

longitudinal cohorts. Additionally, we examined the

power of brain age to predict future disability

accumulation.

Methods

The Multiple Sclerosis Partners Advancing
Technology and Health Solutions (MS
PATHS) dataset

Clinical and imaging data were obtained from the MS

PATHS14 network which comprises multiple sites in the

United States and Europe. MS PATHS collects clinical,

performance, and imaging data from a large, heteroge-

neous MS population as part of routine clinical care.

Images from healthy control participants were also col-

lected using identical imaging protocols. MS PATHS par-

ticipants consent to share pseudo-randomized data with

the research sponsor (Biogen) and the network investiga-

tors under the supervision of local Institutional Review

Boards. Written informed consent was provided. This

study was approved by the IRB at Washington University

in St. Louis. A total of 13,852 sessions from 6,734 partici-

pants were included in these analyses (also see Table S1).

MS PATHS data consist of clinical information includ-

ing demographics, performance on standardized testing,

and standardized 3D T1-weighted and 3D T2-FLAIR

images (both 1 mm isotropic voxels).16 These data are

described in more detail below.

Clinical characterization of MS PATHS
participants

Clinical measurements closest to each imaging session were

associated with the imaging data and used for statistical

analysis. The following clinical variables were utilized:

MS disease course

Patients characterized themselves as having one of the fol-

lowing courses of MS: relapsing–remitting (RR), second-

ary progressive (SP), primary progressive (PP), or

progressive relapsing (PR). Patients could also identify as

clinically isolated syndrome (CIS).

Patient Determined Disease Steps (PDDS)

The PDDS is a self-reported disability score with a strong

correlation (r = 0.78) with the Expanded Disability Status

Scale.17 Patients rate their disability from 0 to 8, with 0

corresponding to normal, 1—mild disability, 2—moderate

disability, 3—gait disability, 4—early use of a cane, 5—
late use of a cane, 6—bilateral support, 7—wheelchair or

scooter dependent, and 8—bedridden.

Disease Modifying Therapy (DMT)

As part of MS PATHS, patients self-report DMT use. Patients

were categorized based on their DMT exposure as none, low,

or high efficacy. When a patient had been on multiple DMTs,

their most efficacious category was used. Low efficacy medica-

tions included glatiramer acetate, interferons, teriflunomide,

fumarate class, and non-MS-specific immunosuppression (e.g.,

azathioprine). High efficacy medications included the S1P-

modulators, B-cell depletion, natalizumab, and cladribine.

Imaging parameters

Imaging parameters have been previously described.16 In

brief, each subject and visit contribute a 3D T1-weighted

MP-RAGE and a 3D T2-weighted FLAIR image. Both

sequences were acquired with 1 mm3 isotropic voxels the

same field of view. To increase homogeneity, only 3T Sie-

mens scanners were included. However, the model of scan-

ner varied across sites. White matter lesion volume was

derived from the MS PATHS dataset using the MSPie pro-

prietary algorithm which has been previously validated.

Image preprocessing and brain age
calculation

A growing number of brain age algorithms exist in the

literature with no consensus on a superior algorithm.
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Thus, it is unclear if divergent findings between studies

are related to algorithm choice, sample selection, sam-

pling error, statistical analysis, or a combination of these.

To address this, we implemented three different brain age

algorithms which utilize different preprocessing strategies

and differ with respect to their assumptions and numeri-

cal properties. The three algorithms used in this report

are BrainAgeR,18,19 Amyloid Negative Brain Age

(ANBA),20 and DeepBrainNet.21 Each algorithm is dis-

cussed in detail in its respective publications and only

described briefly for the present report.

BrainAgeR18

The raw T1-weighted MP-RAGE was processed through a

customized pipeline implemented in DARTEL22 in SPM12

which includes bias field correction, template normaliza-

tion, and smoothing and ultimately generates a gray matter,

white matter, and cerebrospinal fluid segmentation. These

segmented images were then nonlinearly registered to a

template in MNI152 space. Volumetric estimates were sub-

jected to Gaussian process regression using coefficients that

were trained in a previous, publicly available dataset.

ANBA20

The image preprocessing is identical to BrainAgeR. How-

ever, only gray matter segmentations are analyzed by the

pretrained algorithm. The key innovation of this algo-

rithm was training on an aging sample known to be free

of Alzheimer disease.

DeepBrainNet21

The raw T1-weighted MP-RAGE underwent skull stripping

via HD-BET,23 bias field correction using the N4 tools,24

and linear registration to the target template space using

FLIRT.25 This image was then subjected to the

DeepBrainNet algorithm pretrained on the University of

Pennsylvania LifeSpanCN dataset. This convolutional neu-

ral network does not depend on a priori segmentation.

To assess the predictive performance of the three differ-

ent brain age algorithms, thalamic volume, cortical gray

matter volume, and deep gray matter volume were mea-

sured using the MS Pie tool provided by MS PATHS.

Statistical analysis

A commonly reported statistic in the brain age literature

is the “brain age gap” defined as the difference between

predicted brain age and measured chronological age. Sig-

nificant statistical challenges are associated with this

quantity.13 In this work, we avoid explicit calculation of

the brain age gap to avoid this confound for reasons

detailed in the Supplemental Methods.

All statistical analyses were performed in R v3.6.3. Cross-

sectional models were constructed as linear models. Post

hoc contrasts were extracted for purposes of reporting sta-

tistical significance. Missing data were excluded, not inter-

polated. Predicted brain age from each algorithm separately

were modeled as a function of sex, actual age, MS disease

course, disability measured by PDDS, DMT category, and

lesion volume. Interactions were allowed between actual

age, MS-disease course, disability, DMT category, and

lesion volume. Longitudinal models were constructed using

linear mixed models. To account for the longitudinal

nature of the analysis, a dummy-variable indexing time

since baseline was created and this was nested within the

random effect of subject. The rate of change in brain age

attributable to specific variables (i.e., PDDS, MS disease

course, DMT efficacy) was calculated by summing the

patient specific beta values corresponding to 2nd or higher

order interactions including the variable of interest and

Time. In this way, the marginal increase (or decrease) in

brain age accumulation related to the variable of interest

was captured. Values greater than 0 indicate accelerated

brain age accumulation related to the variable of interest;

values less than 0 indicate relatively slowed brain age accu-

mulation. All models included a random effect of site to

account for differences in patient characteristics or scanner

differences across the enrolling sites. Of note, the effect of

site was small and statistical results did not vary with the

inclusion vs. exclusion of this parameter.

Survival models were fit using Cox Proportional Haz-

ard models with time to sustained disability accumulation

as the outcome of interest. Sustained disability accumula-

tion was defined as an increase of PDDS by 1 that

remained increased until the end of the available data. By

definition, increased PDDS at the last data sample could

not represent sustained disability accumulation. Risk fac-

tors in the model included predicted brain age, actual

age, MS disease course, and baseline disability measured

with the PDDS. Predicted brain age was modeled two

ways. The first approach was as a continuous variable.

The second approach was dichotomized based on a pre-

dicted brain age gap greater than or less than the median

for the group. Hazard ratios were extracted from these

models, and reconstructed survival curves are shown.

Results

Brain age algorithms accurately predict
actual age from structural MRI data

We first compared the ability of the candidate brain age

algorithms to predict the actual age of healthy control
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participants. The initial imaging sessions from N = 207

controls (Table 1) were subjected to the BrainAgeR,

ANBA, and DeepBrainNet brain age analysis. Each algo-

rithm resulted in a high correlation between predicted age

and actual age, but the correlation was higher in the Brai-

nAgeR (Fig. 1A; r = 0.82) and DeepBrainNet (Fig. 1C;

r = 0.80) prediction compared to ANBA (Fig. 1B;

r = 0.68). Figure 1D shows the distribution of the differ-

ences between predicted age and actual age for each

model with BrainAgeR and DeepBrainNet demonstrating

numerical superiority in cross-sectional analysis.

We subjected the predicted brain age to a linear mixed

effects model with the participants baseline actual age

(age) and a dummy longitudinal variable (time) indexing

years since baseline image as factors. The fitted regression

bs are shown in Fig. 1E–G as insets. Beta values close to

1 indicate an additional brain age year for each year of

age or year of longitudinal follow-up. Figure 1H shows

the distribution of the estimated slope across participants.

BrainAgeR had the median values closest to 1 demon-

strating that BrainAgeR is the algorithm with features

closest to the numerically ideal behavior. Thus, for the

remainder of this report, BrainAgeR results are shown in

the main text and parallel results derived from ANBA and

DeepBrainNet will be presented as supplemental material.

MS and MS-related disability associate with
increased brain age

We examined the effect of MS on cross-sectionally esti-

mated brain age of N = 6,732 participants (Table 1). We

fit linear models with age, sex, disability (quantified by

the PDDS), MS disease course, lesion volume, and DMT

category as factors. ANOVA and individual coefficients

are shown in Tables S3 and S4, respectively. Male sex was

associated with greater brain age (F = 84.93, p < 10�16,

Fig. S4) which has previously been observed in other

imaging modalities.26 The third order interactions of MS

disease course 9 PDDS 9 lesion volume (F = 2.68,

p = 0.020) and PDDS 9 DMT category 9 lesion volume

(F = 3.31, p = 0.037) were observed and investigated fur-

ther. Greater disability was associated with increased brain

age in the RRMS (Fig. 2A), SPMS (Fig. 2B) and PPMS

(Fig. 2C) groups. The effect gradient was most evident in

the progressive groups where greater disability level was

associated with larger over-estimation of brain age. The

effect of MS disease course was modest at PDDS = 0

(Fig. 2D), PDDS = 3 (Fig. 2E), and PDDS = 6 (Fig. 2F).

The effect of lesion volume in an RRMS patient with

PDDS = 0 (Fig. 2G) and PDDS = 3 (Fig. 2H) demon-

strated larger overestimation of brain age with greater

lesion burden. Similar results were seen in progressive

MS. The effect of none vs. low vs. high efficacy DMT was

modest in RRMS (Fig. 2I) but more pronounced in SPMS

(Fig. 2J). Similar results were observed using the other

brain age estimation algorithms (Figs. S5 and S6). Brain

age was correlated with disability and increasing lesion

burden. The effects of greater disability and lesion burden

were larger than the effect of MS disease course.

Longitudinal rate of change in predicted
brain age is associated with MS-related
disability

We next examined the longitudinal behavior of predicted

brain age using all available longitudinal data. Spaghetti

Table 1. Demographics.

Controls CIS RRMS SPMS PPMS PRMS

Cross-Sectional Cohort

N 207 813 3784 1110 353 465

Age 44.1 (13.0) 46.0 (13.1) 45.7 (12.1) 49.2 (11.4) 49.7 (12.5) 48.2 (12.5)

F/M 131/47 225/561 2804/880 783/295 238/107 308/144

PDDS N/A 1.1 (1.8) 1.4 (1.7) 3.3 (2.1) 3.3 (2.3) 2.9 (2.3)

DMT None/Low/High Efficacy N/A 63/317/433 327/1357/2100 107/339/664 76/80/197 48/141/276

Education (years) 15.6 (2.8) 15.0 (2.7) 14.9 (2.6) 14.4 (2.7) 14.2 (2.9) 13.9 (2.5)

Race White/Black/Asian 137/22/7 581/109/11 2914/463/19 868/128/2 271/40/2 318/79/4

Longitudinal Cohort

2 Visits 75 198 1127 301 100 142

3 Visits 22 198 586 194 56 62

4 Visits 2 91 248 90 20 24

5 Visits 2 28 117 38 4 14

6+ Visits 1 17 74 20 4 6

Mean Follow-up (years) 0.68 (0.8) 1.2 (1.2) 1.1 (1.2) 1.1 (1.3) 1.0 (1.2) 1.0 (1.2)

Demographic factors for each group. Top panel shows cross-sectional characteristics. Bottom panel shows the number of subjects with exactly M

visits and the mean follow-up time. Means (SD) are reported as applicable. Patient derived disease steps (PDDS) indicates mild disability for CIS/

RRMS, and gait disability for SPMS/PPMS/PRMS. There is a large number of missing self-reported race in these data.
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plots are shown for a random sample of CIS (Fig. 3A),

RRMS (Fig. 3B), SPMS (Fig. 3C), and PPMS (Fig. 3D)

patients. For each MS disease course, predicted brain age

was higher than actual age. To these data, we fit linear

mixed effects models with sex, age at baseline, MS-disease

course, disability (PDDS), lesion burden, and DMT cate-

gory as factors. A dummy-variable indexing time since

baseline scan was nested within the random effect of sub-

ject. ANOVA and regression tables for each brain age

algorithm are shown in Tables S5 and S6. On the basis of

these linear models, we estimated the marginal change in

the rate of increasing brain age (DBrainAge/year) attribut-
able to PDDS, MS disease course, and DMT efficacy com-

pared to a reference of PDDS = 0, healthy controls, and

no DMT, respectively. Increasing disability was associated

with an increased rate of brain age accumulation (up to

~1 brain age year/calendar year) beyond what would have

been measured in a non-disabled (PDDS 0) individual

(Fig. 3E). CIS and RRMS did not increase the rate of

brain age accumulation whereas progressive MS was asso-

ciated with more rapid brain aging (Fig. 3F). Neither low

nor high efficacy DMT significantly modulated the rate of

brain aging compared to no DMT (Fig. 3G). Together,

these results suggest that the effect of accelerated brain

aging is related to disability accumulation and progressive

disease and is not modulated by DMT efficacy category.

We next assessed the extent to which brain age pro-

vided additional statistical information compared to more

conventional measures of atrophy. Identical statistical

models were fit with thalamic, cortical gray matter, and

deep gray matter volume as dependent variables. The var-

iance explained (R2) was compared between these models

and each of the three brain age models. In each case, the

brain age models outperformed the direct volume mea-

surement models (Table S7) demonstrating the added

value of the brain age analysis procedure.

Figure 1. Brain age algorithms accurately predict actual age in healthy controls. The predicted age as a function of actual age is shown for the

baseline visit of the healthy control group for the BrainAgeR (A), ANBA (B), and DeepBrainNet (C) algorithm. Regression line with 95% confidence

interval is shown in blue. For each algorithm, the slope of the fitted line is less than 1 indicating regression towards the mean. Practically, young

ages are over-estimated and older ages are under-estimated. The quality of the fit was assessed by correlation of predicted and actual age (r,

inset) and by mean absolute error between predicted and actual age (MAE, inset). The distribution of predicted age � actual age for each

method is shown (D). Absent any pathology, a difference of 0 indicates ideal performance. Thus, BrainAgeR and DeepBrainNet performed best.

Longitudinal scatter plots (i.e., spaghetti plots) show each longitudinally studies subject as a line segment (E–G). Predicted age was fit to a mode

including baseline age and a longitudinal nested variable time. Values close to 1 indicate ideal performance and are shown as inset. The calculated

rate of change of brain age is shown in H. For healthy controls, as one calendar year passes the brain age should increase by 1. This behavior is

best approximated by BrainAgeR.
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Advanced brain age predicts disability
accumulation

We next examined if advanced brain age predicts future

MS-related disability accumulation. We fit Cox Propor-

tional Hazard models with time to sustained disability

(PDDS) accumulation as the outcome of interest. Brain

age calculated from the subject’s first imaging session was

the predictor variable. Additional included factors were

actual age, MS disease course, baseline disability, and

DMT category. Hazard ratios and summary statistics are

shown in Fig. 4A. Advanced brain age was associated with

a shorter time to disability accumulation. For display pur-

poses only, we dichotomized the difference between brain
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Figure 3. Longitudinal changes in brain age are related to disability. Longitudinally predicted brain age by BrainAgeR is shown as spaghetti plots

for CIS (A), RRMS (B), SPMS (C), and PPMS (D) participants. In each case, predicted age over-estimates actual age and single subjects demonstrate

increasing predicted brain age with increasing actual age. To facilitate visualization, only a randomly selected fraction of the total data are shown

for purpose of illustration; all subjects are considered statistically. Next, the longitudinal marginal rate of change in predicted brain age was calcu-

lated for each subject and expressed as change in predicted brain age (DBrainAge) per actual year attributable to PDDS (E), MS disease course (F),

and DMT efficacy (G). Higher disability was associated with accelerated brain aging.

Figure 2. MS and MS-related disability is associated with increased predicted brain age. Brain age was modeled as a function of actual age, sex,

MS disease course, disability, lesion burden, and DMT efficacy. Statistical results are shown in Tables S3 and S4. Using these models, predicted

values were generated to visualize the effects across the age span. (A) The effect of increasing disability is estimated in the RRMS group. Each

increase in disability is associated with an increased estimate of brain age relative to chronological age. (B and C) The effect of disability on SPMS

and PPMS in the same style as A. The effect of disability is most evident in the progressive groups. (D) To facilitate comparisons across MS disease

courses, the estimates for the different MS disease courses are shown for PDDS 0. This shows that brain age is not dramatically difference in

SPMS or PPMS compared to CIS and RRMS. (E and F) The effect of MS disease course in PDDS 3 and 6 in the style of D. Note, CIS is not included

in the PDDS 6 plot since no patients met these criteria. The salient feature of D–F is that MS disease course is less distinct at higher disability

levels. The effect of increasing lesion burden is shown for an RRMS PDDS 0 (G) and RRMS PDDS 3 (H) patient demonstrating the impact of

increasing lesion burden. In RRMS PDDS 3 patients, the effect of DMT efficacy is minimal (I). In a similarly disabled SPMS patient, higher efficacy

DMT is associated with decreased brain age at young ages (J). Black line represents where predicted age = actual age.

996 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Brain Age in MS M. R. Brier et al.



age vs. actual age into higher than the median and lower

than the median (Fig. S5) and demonstrated that higher

brain age gap at baseline predicts more rapid disability

accumulation (Fig. 4B). Higher levels of baseline disability

were also predictive of future disability accumulation

(Fig. 4C) but were less predictive than brain age. MS dis-

ease course and DMT efficacy did not significantly modu-

late ability of brain age to predict time to disability

accumulation over the span of this study. These results

suggest that higher brain age as calculated by imaging is a

biomarker of future disability accumulation.

Demographic and clinical correlates of brain
youthfulness

Most MS patients exhibited brain ages exceeding their

actual chronological age. However, a subset of patients

demonstrated brain ages less than their chronological age

(appearing below the predicted age = actual age identity

line in e.g. Fig. 2). We sought to determine what demo-

graphic or clinical factors were associated with this calcu-

lated brain youthfulness. A logistic regression was

performed with sex, MS disease course, race, age of

Disability
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PRMS

PPMS

SPMS
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RRMS
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reference

0.069
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reference
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1.146

(1.01504 −   1.1)

(0.03714 −   2.6)

(0.06162 −   5.5)

(0.00014 −  34.6)

(0.26629 − 282.0)

(0.11852 − 160.3)

(0.00031 −  96.5)

(0.60971 −   1.3)

(1.04233 −   1.3)

0.008 **

0.281

0.636

0.399

0.224

0.423

0.587

0.5

0.005 **

# Events: 588; Global p−value (Log−Rank): 3.6013e−05 
AIC: 9191.76; Concordance Index: 0.6 0.0001 0.001 0.01 0.1 1 10 100
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Figure 4. Advanced brain age predicts future disability accumulation. Cox proportional hazard models were fit with the outcome of sustained

increase in PDDS and brain age, actual age, MS disease course, baseline disability (PDDS), and DMT efficacy as covariates. Brain age was indexed

two ways. First, brain age was modeled as a continuous variable (A) with time units of decades. Second, two groups were defined on the basis

of brain age—actual age above or below the median for the group (B). Hazard ratios and summary statistics are shown for each model

separately. Survival curves are constructed from the dichotomized model which show more rapid disability accumulation in patients with large

brain age gaps and higher levels of pre-existing disability.
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symptom onset, education level, medical comorbidities,

and DMT efficacy as predictors (Table 2). The presence

of brain age less than chronological age was associated

with being female, being less disabled, having a higher age

of symptom onset, being highly educated and free from

diabetes were associated with chronologic age greater than

brain age. Importantly, presence of a high efficacy DMT

was associated with brain age less than chronological age.

Discussion

We applied machine learning-based brain age analysis to

a large, real-world sample of images from patients with

MS across the disease spectrum. We found that brain age

was greater in patients with MS compared to healthy con-

trols, particularly those with high levels of disability.

Advanced brain age correlated with disability and, impor-

tantly, predicted time to further disability accumulation.

Previous work by Cole and colleagues has established the

power of brain age for predicting future disability in MS.8

This work confirms and extends that work in a larger

dataset and using a statistical analysis that avoids poten-

tial issues with calculations of brain age gaps. Thus, we

propose that an increased predicted brain age is a parsi-

monious and potentially useful biomarker of pathology in

MS which indicates a higher risk of accumulating disabil-

ity in the future.

Brain age prediction algorithms provide
robust and interpretable biomarkers

We compared the performance and results of three dis-

tinct brain age prediction algorithms 18-21 and examined

statistical issues surrounding brain age analysis. The three

selected algorithms are based on different machine learn-

ing principles, numerical assumptions, and preprocessing

strategies. Importantly, these algorithms differed in input

data. Algorithms which incorporated WM information

(i.e., BrainAgeR and DeepBrainNet) statistically per-

formed better than ANBA which incorporated only GM

information, suggesting that pathology in both GM and

WM contribute to MS-related disability. Our results sug-

gest that the prediction of age on the basis of structural

MRI is an application well suited to machine learning

and is not strongly dependent on algorithm choice. More-

over, we found that each brain age algorithm provided

increased explanatory power compared to more tradi-

tional volumetric measurements. Therefore, brain age pre-

diction and the biological conclusions drawn therefrom

appear to be robust to algorithmic choice which facilitates

comparison across diseases and methodologies.

The brain age gap, the difference between predicted

and actual age, has a well-established negative dependence

on actual age.27 A common approach in the brain age

prediction literature is to orthogonalize the brain age gap

with respect to actual age (i.e., regress out the negative

slope). However, this approach inflates common measures

of prediction performance and could artifactually inflate

correlation with age-dependent covariates.13 To avoid this

confound, our primary statistical analysis does not rely

on the calculation of the brain age gap. Rather, age is

included in the statistical model as a covariate. Our

results demonstrate that brain age, handled in this way,

remains a robust biomarker.

Advanced and accelerated brain aging is
primarily related to disability

Previous applications of predicted brain age analyses have

found increased predicted brain age in MS patients6,7 and

correlations with future disability accumulation.8 Cole

and colleagues8 demonstrated a larger brain age gap in

MS patients compared to controls with no difference

between relapsing and progressive MS patients. The mod-

ified brain age gap correlated with disability as measured

by the expanded disability status scale (EDSS) and pre-

dicted longitudinally increasing EDSS. Hogestol and col-

leagues7 found a larger brain age gap in MS patients

Table 2. Clinical variables associated with brain youthfulness.

OR 2.5% 97.5% p value

Male 0.634 0.547 0.733 <0.001

RRMS 0.996 0.824 1.207 0.967

SPMS 0.987 0.774 1.260 0.916

PPMS 0.897 0.646 1.239 0.514

PRMS 0.979 0.722 1.322 0.892

PDDS 0.951 0.919 0.985 0.005

Am. Indian/Alaska Nat. 0.558 0.084 2.248 0.464

Asian 0.543 0.214 1.204 0.160

Black 0.749 0.618 0.905 0.003

Nat. HI/Pac. Islander 1.495 0.210 7.127 0.636

Other 0.684 0.476 0.960 0.033

Age at Symptom Onset 1.035 1.029 1.042 <0.001

Education 1.081 1.055 1.107 <0.001

No Cardiac Disease 1.562 0.228 31.248 0.695

No Diabetes 1.329 1.052 1.692 0.019

No Dyslipidemia 1.115 0.954 1.304 0.173

Low Efficacy DMT 0.935 0.752 1.165 0.546

High Efficacy DMT 1.263 1.086 1.404 0.005

A logistic regression was performed to determine variables associated

with brain youth (brain age < actual age). MS disease course refer-

ence group was CIS; race reference group was white. Youthful brain

age was associated with being female, having low disability, not hav-

ing diabetes, a greater age of symptom onset, higher education, and

being on a high efficacy DMT. Identifying as black was negatively

associated with brain youthfulness.

998 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Brain Age in MS M. R. Brier et al.



compared to controls that increased over time, but no

association with clinical status. Importantly, both studies

used a modified brain age gap. Kaufmann and colleagues6

found that MS patients had increased brain age compared

to controls across the brain, but with the frontal and tem-

poral lobes relatively spared. The present study extends

these previous findings by studying a larger number of

MS patients and demonstrates that these findings are not

specific to a single brain age algorithm. We found that

advanced brain age was correlated with lesion burden but

not because lesions themselves impacted brain age calcu-

lation (See Supplemental Results). The methodological

innovations of the present study coupled with the large

sample size demonstrate that predicted brain age is a reli-

able biomarker of MS-related pathology.

MS disease course and disability level contributed inde-

pendently to increasing brain age. On the basis of the

longitudinal imaging results, disability measured by PDDS

was a more powerful contributor to accelerated brain

aging than MS clinical course. This suggests that brain

age is most sensitive to damage resulting in disability and

not to the inflammatory profile on which MS clinical dis-

ease courses are based (e.g., relapsing vs non-relapsing).

This result is concordant with recent work demonstrating

that clinically defined disease courses capture only a small

fraction of the variance in clinical outcomes.28 Clinical

MS characterizations are imprecise clinical constructs and

SPMS is by definition a retrospective designation. Our

results and those of Cole8 emphasize the potential for

using brain age determined by imaging as a biomarker in

prognostication in MS patients beyond characterization of

clinical disease course.

Advanced brain age predicts more rapid
disability accumulation

We found that predicted brain age and current disability

were strong prognosticators of future disability accumula-

tion. Importantly, this analysis drew on the first image

available for each subject and thus demonstrates feasibility

as a useful biomarker even when the brain age determina-

tion was not calculated using the MRI at disease onset.

Thus, these results provide further support for brain age

as a clinically tractable biomarker of future MS disability.

Several imaging biomarkers are used in MS but typi-

cally focus on the relapsing or inflammatory component

of the disease. Quantities such as new or expanding white

matter lesions,29 contrast enhancing lesions, and black

hole formation30 are widely used clinically, in research,

and as secondary endpoints in clinical trials. The most

common biomarker of progressive or degenerative pathol-

ogy is atrophy.31 The use of brain age is computationally

straightforward and provides a single quantitative

measure that can predict disability over time.32 MS

PATHS provides a large dataset which supports the utility

of brain age as a potentially useful clinical tool. However,

many measures in the MS PATHS dataset are subjective

(e.g., PDDS). Future studies with objective measures are

needed to validate this tool as useful in predicting disease

course thereby informing treatment decisions. Demon-

stration of robust, within-subject reliability would support

future clinical applications.

Strengths and weakness of the present
results

The presented results were drawn from a large, multina-

tional observational study of MS. Strengths of the study

include the harmonized imaging protocol, large sample

size, and standardized evaluations. The use of three brain

age algorithms that provided similar results supports the

generalizability of the findings. Weaknesses include the

observational nature of the data collection. The brain age

algorithms themselves are generic, applying to several dis-

ease processes. More specifically, many demographic and

pathologic processes result in advanced brain age making

the finding of advanced brain age non-specific. The pre-

dictive power of brain age in the present, real-world data-

set likely reflects the impacts of comorbidities on brain

age and disability accumulation. Future studies with more

specific MS tools may provide more precise predictions,

but the present results demonstrate the utility of this

approach in real-world data. In particular, a MS-specific

brain age algorithm may benefit from incorporating both

T1 and T2 information. Imaging and clinical assessment

frequency were not standardized, with varied sampling

frequency across sites and patients. Also, disability was

self-reported by patients using the PDDS. Nevertheless,

the large numbers and robust statistical estimates indicate

that predicted brain age is a strong marker of MS-related

pathology with the power to predict future disability.

Lastly, we were unable to quantify DMT course and

indexed patients by the most effective DMT they reported

being exposed to.

Conclusion

Brain age is a non-specific but easily estimated imaging

biomarker that has demonstrated utility in predicting

MS-related disability. The results of this analysis establish

that brain age is reliably and consistently estimated via a

variety of techniques and can be analyzed successfully

while avoiding statistically confounded procedures. We

found the primary correlate of advanced brain age to be

disability, both in cross-sectional and longitudinal esti-

mates. Finally, we expanded, in a large cohort, previous
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demonstrations8 that advanced brain age predicts more

rapid disability accumulation. These results support the

use of brain age as a biomarker of MS-related disability

accumulation.
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