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Abstract

LRRK2 variants are implicated in both familial and sporadic PD. LRRK2-PD

has a generally benign clinical presentation and variable pathology, with incon-

sistent presence of Lewy bodies and marked Alzheimer’s disease pathology. The

mechanisms underlying LRRK2-PD are still unclear, but inflammation, vesicle

trafficking, lysosomal homeostasis, and ciliogenesis have been suggested, among

others. As novel therapies targeting LRRK2 are under development, understand-

ing the role and function of LRRK2 in PD is becoming increasingly important.

Here, we outline the epidemiological, pathophysiological, and clinical features

of LRRK2-PD, and discuss the arising therapeutic approaches targeting LRRK2

and possible future directions for research.

Introduction

Parkinson’s disease (PD) is the fastest-growing neurologi-

cal condition worldwide, with 12–17 million PD patients

projected by 2040.1 Despite these alarming data, no

disease-modifying therapy is currently available for this

devastating disease. Most clinical trials on potential

disease-modifying drugs so far have treated PD as a single

entity, which may have contributed to their failure. With

our evolving understanding of the genetic and pathophys-

iological basis of PD, new approaches targeting specific

genetic subtypes of PD are emerging.2,3

One of the most common genetic risk factors in PD is

variants in leucine-rich repeat protein kinase-2 (encoded by

LRRK2).4 In 1978, autosomal dominant PD patients were

observed over five generations in a Japanese family,5 and in

2002 linkage analyses in this family identified the disease-

associated locus, PARK8.6 A mutation in the LRRK2 gene,

p.I2020T, was identified in this locus, and other variants

associated with PD have been identified in the same gene in

2004.7,8 LRRK2 variants account for ~4% of familial PD up

to 36% in some ancestries and ~1% up to 39% of sporadic

PD.9,10 One of the most frequent LRRK2 mutations in PD

is p.G2019S,9 albeit uncommon in certain populations. In

Asians, for example, p.G2019S is rare whereas p.G2385R

and p.R1628P are most frequently associated with PD.11 A

common LRRK2 haplotype, p.N551K-p.R1398H-

p.K1423K, is associated with decreased risk for PD across

different populations.4,12–14

In this review, we describe the current knowledge about

genetic variants, structure, suggested mechanisms, pathol-

ogy, and phenotype. We finally discuss the therapeutic

approaches under development targeting LRRK2 and pos-

sible future directions for research.

LRRK2 Protein Structure, LRRK2
Variants, and Ethnic Distribution

The LRRK2 protein is a multi-domain enzyme including

catalytic kinase, armadillo, ankyrin, leucine-rich repeats,

C-terminal WD40, and GTPase domains (Fig. 1).15,16 The

latter consists of a Ras-like GTPase called ROC (Ras

of complex) and a dimerization domain called COR

(C-terminal of ROC).17,18

p.G2019S and p.I2020T are located within the kinase

domain, and they seem to directly increase LRRK2 kinase
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activity. p.G2019S is a dominantly inherited variant with

reduced penetrance, very common among Ashkenazi Jew-

ish and North African Berbers, reported respectively in

up to 28% and 39% of PD patients in these groups.9

However, it is rarely observed in other groups such as

East Asians.11 Other confirmed pathogenic, dominant var-

iants in PD are p.N1437H and p.R1441G/C/H/S, located

in the ROC domain, and p.Y1699C in the COR

domain.19,20 These variants seem to also increase LRRK2

kinase activity, albeit indirectly by compromising the

GTPase function.18,21

Additional LRRK2 variants have been reported as risk

factors for PD. For example, p.R1628P and p.G2385R,

located respectively in the COR and WD40 LRRK2

domains, are the most frequent risk variants in the East

Asian PD population,22,23 increasing PD risk by about

twofold,4,24 Another population-specific variant is

p.M1646T, a common variant associated with a mild

increase in PD risk in Europeans, but not in Asians or

Arab-Berbers,4,14,25 This variant is located in the COR

domain of LRRK2, and it was reported to be associated

with an increased GCase activity,4,25 Finally, an intergenic

variant, rs76904798, located at the 50 end of the LRRK2

region, is associated with increased expression of LRRK2

and with a higher hazard ratio in PD patients for progres-

sion to stage three of the Hoehn and Yahr scale

(H&Y).26–28

In contrast, LRRK2 p.N551K-p.R1398H-p.K1423K is a

common haplotype associated with a reduced risk for

developing PD.4,12–14 It has been observed across popula-

tions (Europeans, Asians, and Berbers) and is associated

with reduced LRRK2 kinase activity,13 opposite to the

LRRK2 deleterious variants. Located in the ROC domain,

p.R1398H appears the most likely variant driving this

association.4,12

LRRK2 penetrance and putative
genetic modifiers

LRRK2 penetrance in PD is incomplete and age-

dependent, ranging from 17% up to 85%, with no sex

differences.9,11 Variants in MAPT29,30 have been

reported to increase PD risk in LRRK2 variant carriers,

but this effect has not been confirmed elsewhere.31 In a

genome-wide association study, the SNP rs77395454 in

CORO1C was associated with PD penetrance among

LRRK2 carriers, and showed an interaction at the

protein level with LRRK2 kinase using co-

immunoprecipitation.30 Variants in the GAK30,32 and

PARK1630,33 loci have also been suggested to modify

both LRRK2-PD penetrance and age at onset (AAO),

whereas DNM3 variants have been associated with

decreased LRRK2-PD AAO.31 However, further studies

are required to confirm and better define the role of

such variants in LRRK2-PD penetrance and/or AAO.

DNM3 variants, for instance, were not confirmed as

LRRK2-PD AAO modifiers in other studies and showed

possible ethnic-specific effects.34,35

Figure 1. Schematic representation of LRRK2 gene and LRRK2 protein with its functional domains. LRRK2 pathogenic variants are indicated in

red, risk variants in light blue, the protective haplotype in green. aa, amino acids; ANK, ankyrin repeat region; ARM, armadillo repeat region; Bp,

base pairs; COR, C-terminal-of-Roc domain; Kinase, protein tyrosine kinase-like domain; LRR, leucine-rich repeats; ROC, ras-of-complex GTPase

domain; WD40, WD40 repeat region.
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Polygenic risk score analyses comprising variants asso-

ciated with PD36 also showed an association with an

increased PD penetrance in LRRK2 variant carriers,

implying that the cumulative effect of such common vari-

ants might also act as a genetic modifier.30,37 Overall, the

role of the putative genetic modifiers in LRRK2-PD

requires further investigation to confirm their role in PD

penetrance.

Pathology

The typical PD pathology is characterized by the loss of

nigrostriatal dopaminergic neurons and the accumulation

of phosphorylated a-synuclein (a-syn), the major compo-

nent of Lewy Bodies (LBs).38 Unlike idiopathic PD (iPD),

LRRK2-PD does not show the typical LB pathology in

about half of the cases studied,39,40 while frequently dis-

playing an Alzheimer’s disease (AD)-like pathology with

senile plaques2 and/or phosphorylated tau-composed neu-

rofibrillary tangles.39,40

As detailed in Table 1, where we summarize the patho-

logical findings of 69 autopsies from multiple studies in

LRRK2-PD patients, only 43/69 (62%) of these patients

had LB pathology. This frequency differs between carriers

of the p.G2019S variant and other LRRK2 variants, with

76% of the former showing LB pathology, in contrast

with only 41% of the latter. Tau pathology is reported in

a larger proportion of LRRK2-PD, in 48/68 (71%) of the

patients. Similar to LB pathology, tau pathology is repre-

sented differently between carriers of p.G2019S and other

LRRK2 variants, appearing in 90% and 38% of the autop-

sies, respectively. A study using antibodies specific for

AD-type tau (co-presence of both 3 and 4 microtubule-

binding repeat isoforms) demonstrated that tau pathology

was found in 100% (11/11) of LRRK2-PD patients (LB

pathology was found in 64% of them) and that AD-type

Table 1. LRRK2-PD pathology reported by human brain autopsies in separate studies.

Report

Autopsies

(n) Variants (n) LB pathology (n+/n) Tau pathology (n+/n) Other inclusions (n+/n)

[10] 3 p.G2019S 3/3 1/3 –

139-141 33 p.G2019S 2/3 3/3 –

142 1 p.G2019S 0/1 1/1 PSP-like (1/1)

143 8 p.G2019S 8/8 6/8 –

144 3 p.G2019S 2/3 3 /3 –

145 4 p.G2019S 4/4 4/4 Olfactory bulb LBs (4/4)

146 3 p.G2019S 3/3 3/3 –

[39] 4 p.G2019S (3)

p.R1441G (1)

2/4 (2/3 p.G2019S, 0/1

p.R1441G)

3/4 (3/3 p.G2019S,

0/1 p.R1441G)

–

147 1 p.G2019S 1/1 1/1 –

42,8,148 6 p.R1441C (4), p.Y1699C

(2)

2/6 (2/4, p.R1441C, 0/2

p.Y1699C)

2/6 (1/4 p.R1441C,

1/2 p.Y1699C)

PSP-like (1/6, R1441C);

TDP-43 (1/6, R1441C)

[53] 1 p.Y1699C 1/1 1/1 Olfactory bulb LBs

149 1 p.I1371V 1/1 1/1 –

150 2 p.R793M (1), p.L1165P

(1)

2/2 2 /2 TDP-43 in TC (2/2)

139 1 p.R1441R 1/1 n.d. –

151,152 8 p.I2020T 1/8 0/8 Glial cytoplasmic inclusions

(1/8)

153 1 p.R1441G 0/1 1/1 Aß in SN

154 1 p.N1437H 1/1 1/1 Ubiquitin inclusions

155 3 p.R1441H 0/3 0/3 –

[40] 11 p.G2019S (9), p.L1165P

(1), p.R793M (1)

7/11 (5/9 p.G2019S, 1/1

p.L1165P, 1/1 p.R793M)

11/11 –

156 4 p.G2019S 2/4 4/4 Ubiquitin inclusions (1/4)

TOTAL 69 – 43/69 (62%) 48/68 (71%) –

TOTAL –

p.G2019S

42 – 32/42 (76%) 38/42 (90%) –

TOTAL – other

LRRK2 variants

27 – 11/27 (41%) 10/26 (38%) –

Aß, amyloid beta; LBs, Lewy bodies; n, number of subjects; n+, number of subjects with the pathology; PSP, progressive supranuclear palsy; SN,

substantia nigra; TC, temporal cortex; TDP-43, TAR DNA-binding protein 43.
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tau is the prominent type of tau present in these patients.

Abundant Ab pathology, consistent with AD, was also

found in most of the cases.40 More rarely, LRRK2-PD

exhibits ubiquitin-positive inclusions or the typical fron-

totemporal dementia pathology with TAR DNA-binding

protein 43 (TDP-43) deposits,41 or pure nigrostriatal neu-

rodegeneration reported in p.I2020T carriers, who show a

pure degeneration in about 50% of the cases.42

Clinical presentation

Although at the individual-level LRRK2-PD resembles

iPD in clinical manifestations and response to therapy,9

as a group, LRRK2-PD has some notable differences,

including a more benign phenotype with less frequent

non-motor symptoms. LRRK2-PD patients show a slower

progression and milder cognitive impairment compared

to iPD patients. They perform better in attention, execu-

tive functions and language tests, tend to develop cogni-

tive deficits only in more advanced stages of PD, and

dementia in general appears less frequently than in

iPD.9,43 Additionally, hyposmia and autonomic dysfunc-

tion are less prevalent in LRRK2-PD patients. Abnormal

olfaction is present in 36%–49% of LRRK2-PD patients,

compared to 75%–81% of iPD patients.9,44,45 LRRK2-PD

also shows a reduced frequency of orthostatic hypoten-

sion46 and gastrointestinal dysfunction,47 as well as greater

cardiac [123I]metaiodobenzylguanidine uptake on scintig-

raphy,48 compared to iPD. Another study, however,

showed a similar prevalence of autonomic dysfunctions in

LRRK2-PD and iPD.49 While rapid eye movement sleep

behavior disorder (RBD), a common prodromal symptom

of synucleinopathies, is present in about 25%–58% of

iPD patients, in LRRK2-PD it is displayed in only 0%–
15% of the cases.50–52 Whether the frequency of psychiat-

ric symptoms, including anxiety and depression, is differ-

ent in LRRK2-PD compared to iPD, is controversial.

Some studies showed that LRRK2-PD patients have an

increased risk of psychiatric symptoms, compared to iPD

patients,53,54 while others showed reduced risk.55

Although LRRK2-PD may display a milder phenotype

compared to iPD, some characteristics could be more

severe. LRRK2-PD patients are more prone to manifest

postural instability and gait difficulty.43 In addition, the

average AAO of LRRK2-PD is slightly lower than iPD

with a higher proportion of individuals developing PD

earlier than 40 years of age.9,56 Other differences of

LRRK2-PD compared to iPD include a larger involvement

of lower limbs in the motor dysfunction57 and an absence

of the male predominance observed in iPD.58,59 Finally,

LRRK2-PD shows more frequently atypical phenotypes,

such as tauopathy-like symptoms, progressive aphasia and

choreoathetosis.45

Only few attempts were made to compare the clinical

phenotype between different LRRK2 variants, typically

with inconsistent results. A meta-analysis attempted to fill

this gap and suggested some potential differences between

carriers of the p.G2019S and p.G2385R variants. For

example, p.G2019S, but not p.G2385R, was associated

with dyskinesia, and p.G2385R was associated with less

severe H&Y stages.60 A systematic review showed that

motor fluctuations were more frequently associated with

the p.R1441C/G/H/S mutations compared to p.G2019S.

Similarly, tremor and postural instability were more fre-

quent in carriers of p.R1441G compared to p.G2019S. No

other differences in motor symptoms, AAO or levodopa

response emerged between LRRK2 mutations,61 demon-

strating that, overall, it might be challenging for clinicians

to distinguish the LRRK2 mutations in individual patients

based on their PD presentation.

Inflammation

LRRK2 is particularly expressed in immune cells, includ-

ing lymphocytes B, macrophages, neutrophils, whereas it

is substantially less expressed in the brain, except for

medium-sized spiny neurons of the nucleus striatum and

microglia.62,63 Microglia arguably play a determinant role

in LRRK2-PD neurodegeneration. In addition to their tro-

phic function, microglial cells act as scavengers, internal-

izing and clearing extracellular debris, including

pathological a-syn. Furthermore, they are responsible for

inducing neuroinflammation by the recruitment of

peripheral immune cells and release of cytokines.64,65 a-
syn is one of the triggers of such release and LRRK2 inhi-

bition was shown to significantly mitigate this effect in

human microglia cell lines.66 In the human frontal cortex

and substantia nigra, LRRK2 expression may be modu-

lated by microglia-specific open chromatin regions.67

Numerous additional lines of evidence, many of which

have been extensively reviewed elsewhere,68,69 suggested

a link between LRRK2-mediated inflammation and PD

development. B/T cells and CD16+ monocytes of PD

patients express increased levels of LRRK2, compared to

healthy controls,19 increased levels of cytokines positively

correlate with LRRK2 expression in PD patient mono-

cytes.70 In microglia differentiated from patient-derived

iPSC, p.G2019S was shown to influence microglial

activation and cytokine production in response to

interferon-c.65

Another hint for the relationship between PD, LRRK2

and inflammatory processes is provided by the inflamma-

tory bowel diseases (IBDs), chronic autoimmune diseases

affecting the digestive tract, including Crohn’s disease

(CD) and ulcerative colitis (UC). IBD patients show a

20–90% increased risk for developing PD.71 The LRRK2
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p.N2081D variant has been associated with an increased

risk for CD and a mild increase in PD risk, and with ele-

vated kinase activity.72 The LRRK2 p.N551K-p.R1398H-

p.K1423K protective haplotype, in contrast, is associated

with reduced kinase activity and reduced risk for both

diseases.4,72 LRRK2 variants are also associated with lep-

rosy, a dermato-neurological infectious disease produced

by Mycobacterium leprae, and with type-1 reaction (T1R),

one of the main complications of this disease, which

causes an autoimmune response against the peripheral

nerves.73 These associations with immune and infectious

diseases strengthen the notion that LRRK2 has an impor-

tant role in the immune system and inflammation which

may contribute to PD pathogenesis in LRRK2 variant

carriers.

The association between LRRK2 variants and inflamma-

tion in PD has been challenged by a recent study,74 show-

ing how LRRK2-PD patients did not differ from healthy

controls in the count of any leukocyte subpopulation or

neutrophil-to-lymphocyte ratio, a biomarker of systemic

inflammation. These results suggest that LRRK2 might

mediate immune processes through different pathways,

with a more prominent role of inflammatory mediators

and a dysregulation of specific immune cell subpopula-

tions like microglia, while having a marginal effect on the

number of peripheral leukocytes.74

Other cellular mechanisms

Multiple LRRK2-mediated mechanisms have been pro-

posed in PD pathophysiology, including inflammation,

lysosomal, autophagy, and endolysosomal trafficking dys-

function, apoptosis, ciliogenesis, and numerous others18,75

(Fig. 2). In recent years its role in and around the lyso-

some has gained traction as a potentially important

mechanism in PD, and in this section, we mainly focus

on this role, as other mechanisms have been extensively

reviewed elsewhere18,75 and we discussed inflammation

separately above. Thus far, RAB8 and RAB10 are the most

validated LRRK2 substrates, while RAB29 and VPS35 are

potential upstream activators.76,77 Variants in RAB29 and

VPS35, but not in RAB8/10, have also been associated

with PD risk.36,78

Under stress conditions, RAB29 recruits LRRK2 to the

lysosomal membranes, where it phosphorylates Rab8/10

to maintain lysosomal homeostasis.79 LRRK2 mutations

have been associated with alteration in lysosomal mor-

phology, distribution, pH, and function.33,80–82 Wildtype,

but not mutated VPS35 protein, rescues endolysosomal

alterations driven by LRRK2 mutations in primary rodent

neurons.33 LRRK2 also plays a key role in vesicular endo-

cytosis and trafficking. Induced pluripotent stem cells

(iPSC)-derived dopaminergic neurons from PD patients

carrying the p.R1441G mutation showed impaired synap-

tic vesicle endocytosis (SVE), with a reduction of SVE

proteins and functional synaptic vesicles, along with the

accumulation of enlarged vesicles.83 Multiple proteins

phosphorylated by LRRK2 have been proposed to be

involved in these processes, including endophilin A, aux-

ilin, and synaptojanin 1.84 In addition, mannose-6-

phosphate receptor (M6PR), implicated in endosomal

sorting, including the transportation of lysosomal hydro-

lases to late endosomes, was shown to be deficient at the

lysosomes and Golgi of primary cortical neurons with

p.G2019S mutation, suggesting an impairment in endoly-

sosomal function.33,84,85

LRRK2 variants have also been implicated in calcium

dyshomeostasis, triggering endoplasmic reticulum (ER)

stress.86,87 This effect was not observed in LRRK2-

p.G2019S neurons, but when these were cocultured with

LRRK2-p.G2019S astrocytes, a-syn treatment was more

harmful to neurons, suggesting a cell-specific effect on

astrocytes. LRRK2 variants also affect lysosomal homeo-

stasis, autophagy, and intra�/extracellular clearance of a-
syn in astrocytes.87

LRRK2 is further implicated in the autophagy-

lysosomal pathway (ALP), playing a role both in macro-

autophagy and chaperon-mediated autophagy.88–92

LRRK2 mutations are associated with the accumulation

of ALP substrates (including a-synuclein) and autopha-

gic vacuoles.93,94 They are also associated with Rab10-

mediated enhancement of kinesin activity, which inter-

feres with the normal retrograde trafficking of autopha-

gosomes and the degradation of their content within

the lysosomes.95,96 Mitophagy was also demonstrated to

be affected by LRRK2 mutations, like p.G2019S and

R1441C, both associated with decreased mitophagy in

multiple human cell lines including fibroblasts, DA neu-

rons, and microglial cells.97 In mouse brains with

LRRK2 mutation, increased LRRK2 phosphorylation of

Rab8/10 enhances the activity of Rab interacting

lysosomal-like proteins 1 and 2 (RILPL1/2),98,99 which

alter centrosome cohesion and ciliogenesis.100 This

mechanism was suggested to impair the signaling of

neuroprotective factors sent by cholinergic neurons in

the striatum to the dopaminergic neurons in the sub-

stantia nigra, with a possible increased vulnerability to

neurodegeneration.98,101 LRRK2 does not only affect

mitophagy but may also be associated with mitochon-

drial dysfunction.102,103 In carriers of LRRK2 p.G2019S,

mtDNA damage was found specifically in midbrain

dopaminergic neurons compared to cortical neurons.102

One explanation proposed for the mitochondrial dys-

function is the LRRK2 variant-associated calcium dysho-

meostasis, which would in turn increase the calcium

influx into the mitochondria from the ER.103
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These data suggest that LRRK2 involvement in PD may

be mediated through mechanisms including endolysoso-

mal trafficking, autophagy dysfunction, mitochondrial

dysfunction, calcium dyshomeostasis, and inflammation.

These processes, like lysosomal dysfunction and inflam-

mation, might also be interconnected with each other in

PD pathophysiology.104,105 It is possible that other mecha-

nisms are at play, and further studies of LRRK2 are war-

ranted to characterize them.

LRRK2 and GBA1

GBA1 variants are common genetic risk factors for PD,

accounting for 5%–20% of PD patients in different popu-

lations.106 GBA1 encodes b-glucocerebrosidase (GCase), a

lysosomal enzyme that hydrolyzes glucocerebroside and

glucosylsphingosine.107 PD patients carrying GBA1 vari-

ants display reduced Gcase activity, and there is a large

variance in Gcase activity among non-carriers of GBA1

variants,108,109 suggesting the existence of other modifiers

of Gcase activity. The TMEM175 T393M and LRRK2

p.G2019S variants are such potential modifiers, as both

may affect Gcase activity.110

It is still unclear whether LRRK2 risk variants are asso-

ciated with increased or reduced Gcase activity. One study

on iPSC-derived dopaminergic neurons showed that

LRRK2 variants were associated with decreased Gcase

activity, with a mechanism that would involve Rab10

phosphorylation.111 However, in two studies performed

in peripheral blood, LRRK2 variant carriers exhibited

increased Gcase activity.25,109 These discrepant results can

be explained by the different tissues that have been ana-

lyzed, that is, LRRK2 variants might be associated with

decreased Gcase activity in dopaminergic neurons and

increased Gcase activity in blood cells.25 A cell-type-

specific effect of LRRK2 was further supported by a recent

study that showed decreased Gcase activity in p.G2019S

knock-in mouse brains and p.G2019S iPSCs-derived neu-

rons but increased in patient-derived blood cells and

fibroblasts.112 Another hypothesis that has been suggested

is that iPSCs cannot fully reproduce the aging processes

happening in the human tissues, hence not fully repre-

senting Gcase activity in PD patients as they age.25

Finally, the different methods to estimate GCase activity

and divergent specificities of the substrates used in the

studies can be another confounder.25,113

Figure 2. Principal mechanisms where LRRK2 has been implicated in Parkinson’s disease and therapeutic targets. ASO, antisense

oligonucleotides; CMA, chaperon-mediated autophagy; M6P, mannose-6-phosphate, deputed to transfer of lysosomal enzymes from the Golgi to

the lysosome. Created with Biorender.
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From a clinical perspective, it seems that the patho-

physiology of GBA1-PD, characterized by a decreased

Gcase activity, is different from LRRK2-PD. First, the

clinical presentation of GBA1-PD is more severe than

LRRK2-PD, with earlier onset, faster progression, and

more frequent non-motor symptoms, including neuropsy-

chiatric symptoms, RBD, autonomic dysfunction, and

others (Table 2).59,114–117 Three independent studies118–120

also demonstrated that PD patients carrying both GBA1

and LRRK2 mutations manifest a milder phenotype com-

pared to those carrying only GBA1 variants, in contrast to

what we would expect if LRRK2 mutations further dis-

rupted GCase activity. Moreover, the neuropathology of

GBA1-PD resembles the typical iPD pathology with LB

deposition, whereas LRRK2-PD often lacks this feature

(Table 1).39,40,121 Finally, while LRRK2 variants are associ-

ated just with PD among the synucleinopathies,122 GBA1

variants are also associated with dementia with Lewy bod-

ies,116,117 a synucleinopathy that shares several features

with PD, including LB deposition, but with cognitive

decline preceding the motor symptoms.123 All these dif-

ferences between GBA1 and LRRK2 suggest that the

development of LRRK2-PD is not connected with the

GCase impairment observed in GBA1-PD, but other path-

ways might rather be involved. Furthermore, an associa-

tion between LRRK2 variants and an increased GCase

activity might explain, at least in part, the milder pheno-

type observed in LRRK2-PD. It is also possible that in a

subset of these patients LRRK2 variants, and not GBA1,

represent the main driver of the disease. Functional stud-

ies on LRRK2 kinase mechanisms of action will be neces-

sary to address these hypotheses and clarify how LRRK2-

PD pathophysiology differs from GBA1-PD.

Therapy

LRRK2-targeted treatments

The discovery that LRRK2 deleterious variants lead to

increased kinase activity9,18 laid the foundations for

LRRK2 kinase inhibitors as a potential treatment for

LRRK2-PD (Table 3). The main LRRK2 inhibitors cur-

rently developed are DNL151 and DNL201, which already

passed phase I and Ib clinical trials with most of the

Table 2. Prevalence, penetrance, pathology, and clinical features of LRRK2-PD versus GBA1-PD.

LRRK2 GBA1 References

Prevalence in

PD

0–39% 5–20% [9,106,157,158]

Male/female representation Comparable Males

overrepresented

[58,59,159]

Penetrance in

PD

17–85% 10–30% [9,11,160]

Pathology Less frequent LBs; More frequent AD-like pathology. TDP-

43 deposits, ubiquitin-positive inclusions and pure nigral

degeneration have also been reported

Typical PD pathology, with LB deposition [2,39–42]

Clinical presentation

Motor

features

Comparable to iPD Comparable to iPD, but faster motor

progression, more frequent dysphagia,

dyskinesia and motor fluctuations

[9,43,116,117,161]

Cognitive

decline

Less severe, later onset, dementia less frequent More severe, earlier onset, faster progression,

dementia more frequent

[9,43,116,161]

Psychiatric

symptoms

Less frequent More frequent [53–55,161]

Autonomic

symptoms

Less frequent More frequent [46,48,49,55,161]

Hyposmia Less frequent More frequent [9,45,55,162]

RBD Less frequent More frequent [59,162,163]

Longitudinal features

Onset Comparable to iPD or slightly earlier Earlier [9,56,159]

Overall

progression

Slower Faster [9,164]

AD, Alzheimer’s disease; iPD, idiopathic Parkinson’s Disease; LBs, Lewy bodies; PD, Parkinson’s disease; PIGD, postural instability and gait disor-

ders; Prevalence in PD, prevalence of LRRK2/GBA variant carriers in PD patients; RBD, REM sleep behavior disorder; TDP-43, TAR DNA-binding pro-

tein 43.
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participants developing no or mild adverse effects at clini-

cally relevant doses (https://www.denalitherapeutics.com,

2021).124 An indirect mechanism proposed to control

LRRK2 activity is the inhibition of its GTPase activity,

which demonstrated positive outcomes both in vitro and

in vivo, with reduced LRRK2 autophosphorylation and

neuroinflammation, as well as suppression of neurodegen-

eration. Since LRRK2 is one of the only four ROC

GTPases in humans, GTPase inhibitors represent promis-

ing medications in PD therapy due to their potential

advantage of a greater specificity.125 However, evidence

for the involvement of LRRK2 GTPase in PD develop-

ment is still not completely clear and its activity appears

more difficult to modulate.51,126 Another potential

resource for LRRK2-targeted therapy is represented by

antisense oligonucleotides (ASO), RNA molecules that

decrease the expression or alter the splicing of LRRK2.

When injected into the brain ventricles of a PD murine

model with and without p.G2019S, reduced LRRK2 levels,

a-syn inclusions, and nigral dopaminergic loss were

observed.127 In LRRK2-PD human fibroblast-deriving

iPSCs, ASO restored endoplasmic reticulum Ca2+ homeo-

stasis and mitophagy rate.128 Compounds targeting spe-

cific LRRK2 mutations are also recently under

development.129

Safety concerns and limitations

Some safety concerns need to be addressed for LRRK2

therapy. First, along with immune cells, LRRK2 is also

highly expressed in the kidneys and lungs. In mice, histo-

pathological abnormalities have been reported in kidneys

after LRRK2 inhibition130 and, in primates, LRRK2 inhi-

bition produced reversible lamellar bodies in the lungs,

but they did not lead to any clinical manifestation.131 In

the DNL151/201 phase 1/1b clinical trials no significant

alteration in the pulmonary or renal function emerged

(https://www.denalitherapeutics.com, 2021).124 In addi-

tion, loss of function LRRK2 variants reduce LRRK2

protein levels but are not associated with any phenotypic

or pathological alteration.132 However, it should be noted

that, similar to other PD therapies, LRRK2-targeted ther-

apy will plausibly be chronic, and these experiments are

not sufficiently representative of typical long-term treat-

ments.51 This is especially true for LRRK2-PD, which pro-

gresses slowly and would require unrealistically long

clinical trials and large cohorts to observe the long-term

effects (beneficial and/or harmful) of the therapy. Another

safety concern is suggested by the role of LRRK2 in the

defense from opportunistic infections.133 In particular,

LRRK2 loss of function is associated with increased vul-

nerability to some infections, particularly of intracellular

pathogens.134,135 The impact of a decreased LRRK2 activ-

ity on the immune system will therefore be a major

aspect to consider in LRRK2-targeted therapy. Another

issue to consider is the interaction of LRRK2 with GCase

activity, both in the early and advanced stages of clinical

trials.2,18 As mentioned previously, the relationship

between LRRK2 and GCase is controversial. If increased

LRRK2 kinase activity is associated with decreased GCase

activity,111 then LRRK2 therapy might produce positive

effects in PD patients with reduced GCase activity,

including carriers of GBA1 variants. However, if LRRK2

kinase is associated with increased GCase activity, as sug-

gested by two studies in humans,25,109 then LRRK2 ther-

apy might have the collateral effect of reducing GCase

activity, which demands caution, especially in cases when

it is already impaired.

Biomarkers for LRRK2 therapy

Appropriate biomarkers to measure LRRK2 activity also

need to be identified. On top of measuring the effective-

ness of the LRRK2 therapy in clinical trials, they could

also be employed to stratify patients based on their

response and define the most appropriate dose for each

subgroup. Proposed biomarkers, already used in DNL151/

201 clinical trials,124 include phosphorylation of LRRK2

Table 3. Clinical trials for therapeutics targeting LRRK2.

Clinical trial Drug name Drug type Phase Funding body

NCT03710707 DNL201 Kinase inhibitor Phase Ib (completed) Denali Therapeutics Inc. (South San Francisco, CA,

USA)

NCT04056689 BIIB122/DNL151 Kinase inhibitor Phase Ib (completed) Denali Therapeutics Inc. (South San Francisco, CA,

USA) and Biogen (Cambridge, MA, USA)

NCT05348785 BIIB122/DNL151 Kinase inhibitor Phase IIb (ongoing) Denali Therapeutics Inc. (South San Francisco, CA,

USA) and Biogen (Cambridge, MA, USA)

NCT05418673 BIIB122/DNL151 Kinase inhibitor Phase III (ongoing) Denali Therapeutics Inc. (South San Francisco, CA,

USA) and Biogen (Cambridge, MA, USA)

NCT03976349 BIIB094 ASO Phase I (ongoing) Biogen (Cambridge, MA, USA)

ASO, antisense oligonucleotides.
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substrates, such as Rab10, or LRRK2 auto-

phosphorylation activity, both associated with LRRK2

kinase function and proven to be appropriate biomarkers

to measure target engagement.51 Another possible bio-

marker, potentially easier to measure on a clinical setting,

is the urinary bis(monoacylglycerol)phosphate (BMP), a

phospholipid localized on the late endosome and lyso-

somal membranes, which regulates the activity of the

lysosomal hydrolases and is significantly increased in car-

riers of the LRRK2 p.G2019S variant.124,136

Challenges in LRRK2 trial design and
recruitment

When planning clinical trials for LRRK2, we will face

several major challenges, especially around recruitment

and trial design. Specifically, LRRK2 mutations are rare,

and as indicated above, carriers with LRRK2 mutations

might progress slower than others. This means that in

order to see an effect on the chosen endpoint, a larger

and longer trial might be required. While LRRK2 muta-

tions are the most common cause of autosomal domi-

nant PD, they are still overall rare and represent a small

portion of PD patients. Therefore, performing large and

long trials might be challenging. This can be remedied,

at least in part, by large international collaborations

around these trials, some of which are already

ongoing137 (https://www.parkinson.org/advancing-research/

our-research/pdgeneration).

Future perspectives

LRRK2 is a widely studied gene in PD and considerable

advances have been made in our knowledge about the

mechanisms that may lead to LRRK2-PD, but this deeper

knowledge also raised new questions. Future studies will

need to clarify, for example, how LRRK2 regulates the

endolysosomal pathway and what is the role of primary

cilia in PD pathogenesis. Furthermore, inflammation

could be a determinant driver in PD development so it

will be crucial to elucidate the relationship of LRRK2 with

the inflammation in PD and the mechanisms that alter

such relationship.

Since increased LRRK2 activity has been observed also

in some iPD patients,138 understanding the role played by

LRRK2 in PD development could also further our under-

standing of iPD pathophysiology in some patients. It is

possible that LRRK2-targeting treatments might be benefi-

cial for this subgroup of iPD patients, and future research

should test this possibility. Understanding the differences

between LRRK2-PD from iPD might also provide key

clues to comprehending PD pathogenesis and progression.

For example, answering why LBs are often not observed

in LRRK2-PD patients might shed light on other drivers

of PD development.

Over the last years, considerable progress has been

made on LRRK2-targeted therapy in PD. The novel drugs

developed will need to address important safety concerns,

especially those connected to long-term side effects, and

the interactions of LRRK2 within its environment. In this

regard, important information to acquire will be the rela-

tionship between LRRK2 and GCase. In fact, given that

GBA1 and LRRK2 variants represent common genetic risk

factors in PD and that personalized treatments are under

development for both of these genes, understanding how

LRRK2 variants modulate GCase activity will be invalu-

able for deciding whether LRRK2 therapy can be used in

GBA1-PD and vice versa. Future clinical trials will need

to account for these concerns to enhance the safety and

effectiveness of future personalized therapy in PD.

Conclusions

In many ways, LRRK2-PD should be thought of as a sub-

type of PD mostly overlapping with iPD but with also

some distinctive pathological, pathophysiologic, and clini-

cal characteristics. The underlying mechanisms of LRRK2-

PD are likely multiple. While inflammatory response

emerges as one of the main functions of LRRK2, such

protein is also arguably involved in several intracellular

mechanisms, such as the endolysosomal pathway, synaptic

transmission, and ciliogenesis. The progressive under-

standing of the relationship between LRRK2 and PD set

the ground for the development of multiple therapeutic

approaches that could open the doors to a novel person-

alized medicine in PD. Clinical trials with LRRK2-

targeting treatments will still need to address several effi-

cacy and safety concerns, and trial design challenges. Fur-

ther research on the LRRK2 mechanisms involved in PD

development will largely benefit from an enhancement of

open science and genetic testing. This will promote a

broader availability of data and increase the appropriate-

ness and effectiveness of personalized treatment for PD.
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