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Abstract

Low-cost sensors are often co-located with reference instruments to assess their performance 

and establish calibration equations, but limited discussion has focused on whether the duration 

of this calibration period can be optimized. We placed a multipollutant monitor that contained 

sensors that measure particulate matter smaller than 2.5 μm (PM2.5), carbon monoxide (CO), 

nitrogen dioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for one year. 

We developed calibration equations using randomly selected co-location subsets spanning 1 to 

180 consecutive days out of the 1-year period and compared the potential root mean square 

errors (RMSE) and Pearson correlation coefficients (r). The co-located calibration period required 

to obtain consistent results varied by sensor type, and several factors increased the co-location 

duration required for accurate calibration, including the response of a sensor to environmental 

factors, such as temperature or relative humidity (RH), or cross-sensitivities to other pollutants. 

Using measurements from Baltimore, MD, where a broad range of environmental conditions 

may be observed over a given year, we found diminishing improvements in the median RMSE 

for calibration periods longer than about six weeks for all the sensors. The best performing 
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calibration periods were the ones that contained a range of environmental conditions similar to 

those encountered during the evaluation period (i.e., all other days of the year not used in the 

calibration). With optimal, varying conditions it was possible to obtain an accurate calibration in 

as little as one week for all sensors, suggesting that co-location can be minimized if the period is 

strategically selected and monitored so that the calibration period is representative of the desired 

measurement setting.

1. Introduction

Instrument calibration is one of the main processes used to ensure instrument accuracy. In 

one method of calibration, measurements are compared between an uncalibrated instrument 

and a reference instrument, which can then be used to adjust the output of the uncalibrated 

instrument to see whether the data can meet performance standards (often in terms of 

accuracy and precision). In the case of low-cost air-pollution sensors, the raw output is 

often a voltage or resistance instead of a concentration, so a calibration curve is needed to 

convert the raw output into practical units. Cross-sensitivities to environmental conditions 

or other pollutants, non-linear responses, and variability between sensor units are common 

difficulties that must be considered when working with low-cost sensor data (Van Zoest 

et al., 2019; Levy Zamora, 2022; Li et al., 2021; Spinelle et al., 2015; Ripoll et al., 

2019). Several methodologies have been used to derive the calibration equations needed 

to convert the raw data into useable concentrations, such as exposing the sensors to 

known concentrations in a laboratory setting and co-locating the sensors with a reference 

instrument, often in a similar setting to which the sensor is to be used (Taylor, 2016; 

Zimmerman et al., 2018; Mead et al., 2013; Ikram et al., 2012; Hagler et al., 2018; Cross 

et al., 2017; Holstius et al., 2014; Mukherjee et al., 2019; Gao et al., 2015; Heimann et al., 

2015; (Scaqmd), 2016a, 2017, 2016b; Levy Zamora et al., 2018a). Field co-location is a 

widely used calibration method, but a tradeoff must be made between the time dedicated to 

collecting calibration data and the data collected at the final measurement location. There 

is currently no standardized co-location duration, and the reported co-location durations for 

low-cost sensors with reference instruments in recent work have varied from several days 

to several months (Mukherjee et al., 2019; Gao et al., 2015; Topalović et al., 2019; Kim 

et al., 2018; (Aq-Spec), 2018; Spinelle et al., 2017; Pinto et al., 2014; Datta et al., 2020). 

To date, little discussion has focused on whether the selected periods were adequate for 

the deployment period or whether the calibration period can be optimized in future studies 

(Topalović et al., 2019; Okorn and Hannigan, 2021). In one study that assessed the impacts 

of co-location duration for a low-cost sensor, Okorn et al (Okorn and Hannigan, 2021) 

randomly selected calibration periods up to six weeks in duration from six weeks of methane 

data in Los Angeles. The calibration equations were then applied to data from an earlier 

month in the same location. They reported that longer calibration periods (i.e., six weeks) 

produced fits with lower bias than fits from shorter calibration periods (i.e., 1 week). In that 

study, the one-week calibrations yielded the best R2 values.

The central goal of this specific work was to identify the key factors that influence the 

duration of a co-location required to obtain sufficient data to achieve consistent calibrate 

curves for five low-cost sensors (particulate matter smaller than 2.5 microns (PM2.5), 
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carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and nitrogen monoxide (NO)) 

(Buehler et al., 2021). In addition, we aim to identify how this necessary calibration period 

can be optimized.

2. Methods

2.1. Data Collection

Data collected at two sites were used in the co-location analyses based on the availability 

of reference instrumentation. The CO (Alphasense CO-A4 sensor), NO2 (Alphasense NO2-

A43F), NO (Alphasense NO-A4), and O3 (MiCS-2614) sensors were co-located with 

reference instruments at the Maryland Department of the Environment’s (MDE) Essex 

site (ID = 240053001) in Baltimore County, Maryland. The PM2.5 sensor (Plantower PMS 

A003) was concurrently co-located with a reference instrument at the MDE Oldtown site 

(ID = 245100040) in Baltimore City, Maryland. The Essex site (39.310833, −76.474444) 

is about 11 km east of the Oldtown site (39.298056, −76.604722). Additional details about 

the sensors in the multipollutant monitor have been described in detail by Buehler et al. 

(Buehler et al., 2021) and Levy Zamora et al. (Levy Zamora, 2022). Co-location data from 

February 1, 2019, to February 1, 2020, were used in the PM2.5 analysis, and co-location data 

from February 1 to December 20, 2019, were used in the CO, NO, NO2, and O3 sensors 

analyses. Due to an issue affecting the gas sensor inlet on the Essex monitor, the O3, NO2, 

and NO sensor data were unavailable after December 20, 2019. Hourly average data were 

used in all analyses. Both reference sites also measured hourly averaged temperature and 

relative humidity (RH). The ambient temperature and RH ranged between −11 and 36°C 

and 14 and 95% over the full year, respectively. The temperatures and RHs measured inside 

the multipollutant pollutant monitors were slightly different from the ambient values due to 

direct sunlight warming the monitors and the small amount of heat produced by the sensors 

themselves within the box. The box temperatures and RHs ranged between −8 and 45 °C 

and 14 and 80%, respectively.

2.2. Assessing the Role of Co-location Duration

We use different subsets of the full co-location period to create a suite of hypothetical 

co-location durations based on which the calibration models will be trained. For each 

hypothetical calibration colocation scenario (i.e., ranging from 1 to 180 consecutive days 

in 1 day increments), 250 sample calibration test periods were randomly selected of that 

duration. These test periods were used in the sensitivity analysis at each test condition to 

assess the range of potential resulting root mean squared error (RMSE) values and Pearson 

correlation coefficients (r). For example, a calibration duration of 1 day indicates that a 24-

hour period was randomly selected out of the available data, referred to as the “calibration 

period”, and the data from those 24 hours was used to develop the calibration equations 

(see below) relating the raw sensor data to ambient conditions. This was then evaluated 

against all days not included in the calibration period, referred to as the “evaluation period”. 

Ideally, evaluation periods of the same length would be used in all cases; however, this is 

challenging with a limited data set and when comparing pollutants with notably different 

seasonal trends. The randomly chosen calibration periods could overlap, but no two periods 

were exactly the same. In Supplemental Figure 1, the start times of 250 randomly selected 
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PM2.5 calibrations are shown as an example. Each tested co-location duration produced 

250 RMSE and r values, and only calibration periods with at least 70% valid sensor and 

reference data were used in the analyses (e.g., a 24 hr calibration period needed to have more 

than 16 hours of valid data for both instruments). No laboratory or information from the 

manufacturer was used to additionally calibrate the sensors in this work. All data analysis 

was conducted using Matlab 2020a.

Sensor data from the calibration period was used to determine the coefficients for multiple 

linear regression (MLR) models based on previously identified known environmental factors 

influencing concentration for each sensor (Levy Zamora, 2022). A generic MLR model is 

given by:

Reference Pollutant (t) = βo + β1 ∗ Sensor Pollutant(t) + ∑1

n βn ∗ Predictor n(t) (1)

where Referencepollutant is the reference concentration at time t for a given pollutant, β0 is 

the constant intercept, β1 is the coefficient applied to the uncalibrated Sensorpollutant value 

for a given pollutant at time t, and βn is the coefficient applied to Predictorn. Levy Zamora et 

al. (Levy Zamora, 2022) have reported the predictors needed to calibrate these five low-cost 

sensors in detail. Briefly, the PM2.5 sensor model incorporated temperature and RH as 

predictors. The CO sensor model included temperature, RH, and time, where time refers 

to the current date and time that the data were collected. The NO2 sensor model included 

temperature, RH, NO, O3, and time. The O3 model included temperature, RH, NO2, and 

time, and the NO model included temperature and CO as predictors. The CO, O3, and NO2 

sensors may exhibit baseline drift over the year, which is why the time predictors were 

included. The data used as the predictors came from the other sensors in the multipollutant 

monitor (e.g., the NO sensor model used the co-located low-cost CO sensor for the CO 

predictor). Once the regression coefficients were determined for a calibration period, this 

equation was applied to all data in the corresponding evaluation period.

For each calibration period tested, the RMSE and correlation coefficients were determined 

by comparing the 1-hour averaged reference and corrected sensor data from all hours during 

the evaluation period. The RMSE was calculated using Equation 2 where Referencei and 

Predictedi are the corresponding i-th 1-hour averaged concentrations from the evaluation 

period with N data points.

RMSE  = ∑i = 1
N Reference i − Predicted i

2

N
(2)

An RMSE value of 0 would indicate a perfect agreement between the reference and the 

sensor. The correlation coefficient is a measure of the linear correlation between two data 

sets. It is a value between −1 and 1, where 1 indicates a strong positive relationship, −1 

indicates a strong negative relationship, and 0 has no discernible relationship. The median 

RMSE and median r referenced in this manuscript refer to the median value from all the 250 

calibration scenarios for each duration. Outliers are defined as a value that is more than three 

scaled median absolute deviations (MAD) away from the median.
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We hypothesize that a user could strategically choose a co-location period to minimize 

the calibration period and that co-location duration is not the only factor to consider 

when optimizing co-locating an instrument for calibration. In these analyses, we use the 

term “coverage” to indicate the representativeness of environmental conditions during a 

calibration period compared to that observed across the full data set (calibration and 

evaluation periods). In order to visualize how the environmental conditions during the 

calibration period compared to the evaluation period, we compared the range of temperature, 

RH, and other key pollutants from each period. For example, if the full RH ranged between 

10 and 90% and the calibration period ranged between 20 and 60%, the RH coverage of that 

calibration period would be 50% (40/80). Descriptive statistics of the reference data used in 

the calibration models from the full year are displayed in Supplementary Table 1.

Coverage = MaximumValue Calibration Period − MinimumValue Calibration Period

MaximumValue Full Year − MinimumValue Full Year
× 100 (3)

3. Results and Discussion

3.1. Impact of colocation duration on calibration performance

The range of RMSE values from 250 calibration periods in the sensitivity analysis of six 

colocation durations (i.e., 1 day, 1 week, 1 month, 6 weeks, 3 months, and 6 months) 

for all five low-cost sensors are shown in Table 1, and the box plots of the RMSEs from 

co-location durations ranging 1–180 days are shown in Figures 1 (PM2.5 and CO) and 2 

(NO2, O3, and NO). Overall, longer calibrations resulted in lower median RMSE values. 

The greatest improvements in median RMSE values were observed when increasing the 

co-location duration from 1 day to about two weeks. After about six weeks, diminishing 

improvements were observed in the median RMSEs for all the sensors except ozone. The 

median RMSE for ozone decreased by about 5 ppb when increasing the duration from 6 

weeks to 6 months. There were also a limited number of high outlier RMSEs for any of the 

sensors after about two months indicating that most of the 250 calibrations were generally 

yielding similar RMSEs. In addition, the lowest RMSE values (e.g., 1st percentile) were 

similar for all co-location durations longer than about one week for many of the sensors. 

This suggests that optimized calibration periods can yield high-performance calibrations. 

For example, the RMSEs from the 1-week calibration periods for the PM2.5 sensor ranged 

between 3.1 and 18.3 μg/m3, and the 6-month calibrations ranged between 3.2 and 3.7 

μg/m3. The 1st percentile RMSEs for the 1 week and 6 months were also similar for CO 

(61 and 51 ppb, respectively), NO2 (4.1 and 3.6 ppb, respectively), O3 (9.1 and 8.1 ppb, 

respectively), and NO (3.3 and 2.9 ppb, respectively). The 10th percentile RMSEs were 

similar after about 1 month for most sensors. For example, the 10th percentile for PM was 

3.4 at 1 month and 3.5 μg/m3 at 6 months (CO: 66 and 69 ppb, respectively; NO2: 4.3 and 

4.1 ppb, respectively; O3: 11.0 and 8.4 ppb, respectively; NO: 3.5 and 2.9 ppb, respectively). 

The differences between the 1st and 99th percentile RMSE for the 6-month scenarios were 

comparatively small for all sensors compared to the overall concentrations and ranges (e.g., 

the RMSE range at 6 months for PM2.5 was 0.5 μg/m3 compared to the annual average 

concentration of 8.3 μg/m3).
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The ranges of correlation coefficients for the five low-cost sensors are shown in Table 

2, and the box plots of the r values from co-location durations between 1–180 days are 

shown in Figure 1 (PM2.5 and CO) and Supplemental Figure 2 (NO2, O3, and NO). Overall, 

longer calibrations also resulted in higher r values, though in some individual test periods 

it was possible to produce correlation coefficients at or above 0.6 in as little as 1 day for 

all five sensors. After about six weeks, only incremental improvements were observed in 

the median correlations for all the sensors. For example, the greatest improvement in the 

median correlation after 6 weeks was observed for ozone which increased from 0.71 at 6 

weeks to 0.84 at 6 months. All of the sensors were able to achieve reliably high correlations 

without poorly-performing outlier cases (e.g., all 250 calibrations produced r > 0.6), but the 

co-location durations required to reduce this risk of outliers ranged between 18 days for the 

NO sensor and about 120 days for the CO sensor (Figure 1, Supplemental Figure 2).

3.2 Selecting Optimal Calibration Conditions for Co-location Periods

The results show that the calibration performance from shorter-term co-locations varies 

considerably depending on the chosen co-location period. If a user wanted all 250 potential 

co-location periods for the PM2.5 sensor to have an RMSE below 4 μg/m3 and an r > 

0.6, the minimum co-location duration that would ensure all calibration periods satisfied 

these two requirements would be 108 days at this site. However, 22% of the 7-day co-

locations also produced calibrations that satisfied these two requirements, so we analyzed 

the environmental factors during one-week calibrations that led to low and high RMSEs. 

In Figure 3 and Supplemental Figure 3, results from two one-week calibration periods 

are shown to demonstrate the range of potential RMSE values for the PM2.5 sensor 

with differences in calibration conditions. The corresponding raw sensor, temperature, and 

RH data are also shown in the lower panels of Figure 3. In this comparative example, 

“Calibration Period 1” produced more accurate concentrations during the evaluation periods 

(RMSE = 3.1 μg/m3), whereas “Calibration Period 2” performed poorly (RMSE = 19.5 

μg/m3). Calibration Period 1 included a wider range of concentrations (1–45 μg/m3), 

temperatures (−2 – 12°C), and RHs (17–93%) and was able to yield similar concentrations 

as the reference data for the full year, whereas Calibration Period 2 was more limited in 

its range of conditions (6–37 μg/m3, 21–30 °C, and 42–88%, respectively) and performed 

reasonably only during the summer months. In addition, the largest 6-month RMSE (e.g., 

3.7 μg/m3 for PM2.5 and 12.6 ppb for Ozone; Table 1) were generally comprised of more 

months when ambient concentrations were low and less variable (summer and winter, 

respectively), and the scenarios with the lowest RMSE included the months with the greatest 

concentrations observed in the data set. An analysis of the PM data where the 250 randomly 

selected calibration periods were from between 02/2019 and 11/2019 and the evaluation 

period was held to 11/2019–02/2020 (only one season) is shown in Supplemental Figure 4. 

The results were consistent with the original method.

Based on these results, we hypothesized that a key element governing good calibration 

outcomes is if the calibration co-location period is representative of the evaluation period in 

terms of the required predictors in Equation 1. Note, the required predictors are distinct for 

each sensor type, so optimal periods may differ by sensor. To evaluate this hypothesis, the 

median RMSEs for three sensors (PM2.5, NO2, and CO) were plotted as a function of the 
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coverage of key predictors in the calibration period (Figure 4). The gases NO2 and CO are 

shown because the NO2 sensor responds to numerous factors including other pollutants (i.e., 

cross-sensitivity) and the CO sensor exhibits a non-linear response to temperature (Levy 

Zamora, 2022). The median RMSE of the corrected PM2.5 sensor is plotted as a function 

of RH and temperature coverage since they have been shown to drive biases in the PM2.5 

sensor data (Sayahi et al., 2019; Levy Zamora, 2022; Levy Zamora et al., 2018a). If the 

coverage of key predictors is high, this indicates that the conditions during the calibration 

period are representative of the evaluation period (i.e., they cover a similar range of values). 

In general, the calibrations for PM2.5 become more accurate (lower RMSEs) as the RH 

coverage increases (i.e., moving to the right in Figure 4A), and there is a slight improvement 

with increasing temperature coverage (i.e., Figure 4A moving upwards). The lowest RMSEs 

were observed when the coverage was high for both temperature and RH. To further clarify 

the influence of coverage on calibration outcomes, the median RMSEs as a function of 

temperature and RH coverages when the PM2.5 concentration coverage was greater than 

50% are shown in Table 3. RH strongly influences the sensor’s raw output, particularly 

compared to temperature (Levy Zamora et al., 2018b; Levy Zamora, 2022; Sayahi et al., 

2019). To yield the best performing calibration outcomes, highly influential cross-sensitives 

or environmental factors (i.e., RH) should have a minimum coverage of about 70% and 

secondary factors (i.e., temperature) should have a minimum coverage of about 50%.

The NO2 sensor exhibits cross-sensitivities to O3 and NO in addition to responding to 

temperature and RH (Li et al., 2021; Levy Zamora, 2022), so an adequate calibration period 

should cover an adequate range for all four parameters. The reference NO2 concentrations 

ranged between 1 and 58 ppb, with a median concentration of 5 ppb. In general, the RMSEs 

in the NO2 plots decrease as the RH (Figure 4C x-axis), temperature (Figure 4C y-axis), and 

O3 coverage increase (Figure 4D x-axis), but the gradient is more clearly seen in the NO 

coverage (i.e., moving upwards on the y-axis in Figure 4D). The O3 sensor is an example 

of another sensor that exhibits a cross-sensitivity to another common pollutant (NO2; not 

shown in the main text), which has been demonstrated in a previous work (Levy Zamora, 

2022). Additional examples of coverage of key variables for all the sensors are shown in 

Supplemental Figure 5.

For all three sensors in Figure 4, the RMSEs decreased as the concentration coverage 

increased, but it was particularly notable for the CO sensor, likely due to the significant 

differences in seasonal concentrations (e.g., the peak reference CO concentration from 

December and July were 2950 ppb and 773 ppb, respectively). The reference CO 

concentrations ranged between 100 and 2950 ppb during the full year, with a median 

concentration of 199 ppb. This indicates that a period with only low concentrations may 

not be able to yield as accurate calibration curves if the evaluation period has a much 

broader concentration range than observed during the calibration period. In the CO sensor 

panel (Figure 4B), greater temperature coverage generally resulted in lower RMSEs, but a 

key factor for the CO sensor is that the calibration must cover warm temperatures if the 

calibration is going to be applied to warm seasons. This is due to the notably different 

responses to high and low temperatures. This CO sensor exhibits minimal temperature 

effects below about 15°C but strongly responds to warmer temperatures (i.e. the sensor will 

overestimate concentrations at higher temperatures if not properly calibrated) (Levy Zamora, 
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2022). More specifically, if a calibration period only included temperatures below 15°C, that 

data could not reasonably be extrapolated to a warmer period because it would not be able to 

correct for this overestimation at high temperatures. Sensors with more linear responses are 

less sensitive to this issue because a smaller range may be more accurately extrapolated. We 

note that the NO and O3 sensors also exhibit non-linear responses to temperature.

It is important to mention that Baltimore, MD is a region that experiences a broad range 

of meteorological conditions each year, so the co-location duration must be long enough 

to capture an adequate range of conditions to fully characterize the calibration curves. The 

pollutants also exhibit significant seasonal variation at this location. In other regions where 

the weather conditions are less variable, shorter co-location durations may be more likely to 

produce accurate results. This is the primary reason why employing a “coverage” approach 

might be a more useful approach for identifying appropriate co-location durations. Also, 

we were applying the calibration equations on data from a full year, but shorter co-location 

durations would likely be satisfactory if the calibration and measurement period were going 

to be completed under similar conditions (e.g., within one season). For example, if we 

limited the calibration and evaluation periods to within June 1 - August 31, 2019 (peak 

PM2.5 = 25 μg/m3), 70% of one-week co-locations would have an RMSE below 4 μg/m3 

and an r > 0.6. Similarly, if we limited the calibration and evaluation periods to between 

November 1, 2019, and February 1, 2020 (peak PM2.5 = 53 μg/m3), 40% of one-week 

co-locations would have fulfilled these two requirements. Another benefit of strategically 

identifying co-location needs is that it may permit users of sensor networks to co-locate each 

device in the network for shorter periods to get device-specific calibration equations. By 

ensuring a minimum coverage of key factors for each device co-location period, calibration 

data between units would likely be more consistent even if the data were collected from 

different periods. This would be particularly advantageous for sensor types that exhibit 

notable variability between units.

If little information is known about key predictors at the measurement sites, which is likely 

at remote locations, it may be possible to use historical meteorological data and general 

information about pollutant patterns (e.g., emissions and seasonal concentration patterns) 

to determine a representative range of conditions. Future work should explore whether 

a combination of multiple, shorter calibration periods in different seasons may produce 

reasonable calibrations for year-round data sets. However, in all cases, it is advisable to 

increase the estimated co-location periods in case of data loss or unusual air quality events to 

increase the probability of well-performing calibrations.

4. Conclusions

In this study, we assessed five pairs of co-located reference and low-cost sensor data 

sets (PM2.5, O3, NO2, NO, and CO) to identify key factors that influence the duration 

of a co-location required to calibrate low-cost sensors via co-location. We compared the 

RMSE and correlation coefficients from co-location periods spanning between 1 and 180 

days. While longer co-location periods of up to several months generally improved the 

performance of the sensor, optimal calibration could be produced from shorter co-location 

lengths if the calibration period covered the span of conditions likely to be encountered 
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during the evaluation period. We determined that many factors could increase the duration 

of co-location required, including if a sensor responds to environmental factors such as 

temperature or RH; if the sensor exhibits a cross-sensitivity to another pollutant; if a 

response is non-linear to any of these factors; and duration of the full deployment (i.e., 

within a season or spanning multiple seasons). Particular attention must be given to sensors 

that exhibit a non-linear response if the actual measurement period (e.g., the evaluation 

period) is going to extend into another season. These results suggest that co-location time 

can be minimized if selected strategically based on the typical characteristics of a region. 

The factors that strongly influence the sensor response should have a minimum coverage of 

about 70% and secondary factors should have a minimum coverage of about 50%. Future 

work should evaluate if employing methods that account for the non-linear responses of 

key predictors can further optimize the calibration of low-cost sensors as well as if more 

sophisticated comparisons of the statistical distributions of predictors across calibration 

periods are beneficial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The potential range of A-B) RMSE and C-D) correlation coefficients (r) for a given 

co-location length for the low-cost PM2.5 and CO sensors. A calibration length of 1 

day indicates that a random, continuous 24-hour period was selected out of all available 

days. The RMSE for a given sample calibration was determined by comparing the 1-hour 

averaged reference and corrected sensor data from the days during the evaluation period 

(i.e., all other days of the year not used in the calibration). For each calibration length 

tested, 250 sample calibration periods were used to assess the range of potential RMSE and 

correlation coefficients. All sensors were calibrated using previously identified predictors 

in a multiple linear regression using data from the calibration period only. Reference 

PM2.5 concentrations ranged between 1 and 53 μg/m3, with a median concentration of 

7 μg/m3, and reference CO concentrations ranged between 100 and 2947 ppb, with a median 

concentration of 199 ppb.
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Figure 2. 
The potential range of RMSE values for a given co-location length for three low-cost 

sensors (NO2, O3, and NO). A calibration length of 1 day indicates that a random 24-hour 

period was selected out of all available days between February 2019 and February 2020. 

The RMSE for a given test calibration period was determined by comparing the 1-hour 

averaged reference and the corrected sensor data associated with that calibration across 

the evaluation period (all days not included in the calibration period). For each calibration 

length, 250 randomly selected calibration periods were used to assess the potential RMSE 

range. All sensors were calibrated using previously identified predictors in a multiple linear 

regression using data from the calibration period only. The reference NO2 concentrations 

ranged between 1 and 58 ppb over the full year, with a median concentration of 5 ppb. The 

reference O3 concentrations ranged between 1 and 110 ppb, with a median concentration of 

31 ppb. The reference NO concentrations ranged between 0.1 and 137 ppb, with a median 

concentration of 0.5 ppb.
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Figure 3. 
Example comparison of two potential one-week calibration periods. These were selected to 

illustrate the range of potential RMSE values that can result from using different periods 

of the same co-location duration. In the example here, “Calibration Period 1” yielded more 

accurate concentrations (shown in green; RMSE = 3.1 μg/m3), while “Calibration Period 

2” performed poorly when considered across the whole evaluation period (shown in red; 

RMSE = 19.5 μg/m3). A) The calibrated PM2.5 (μg/m3) time series are shown using the 

two test calibration periods and the reference data (black) from February to August 2019. 

B) Scatterplot of PM2.5 data from the two calibration periods compared to reference data in 

comparison to the full data set. C) Comparison of RH and ambient temperature for the two 

calibration periods compared to data from the full year.
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Figure 4. 
Median RMSE values for PM2.5, CO, and NO2 sensors are shown as a function of data 

coverage (i.e., representation) of observed ambient conditions for key predictors within 

1-week calibration periods. Bluer colors indicate better calibration results with lower RMSE. 

The + markers indicate where there were at least 25 calibration runs that fell within that box. 

The “coverage” values indicate the representativeness of the one-week calibration period 

compared to the full data set across all seasons. For example, if the temperature ranged 

from 0 to 40 °C over the full year and a given calibration period ranged from 0 to 12°C, 

the temperature coverage of that calibration period would be 30% (i.e., Δ12°C/40°C). The 

ambient temperature and RH ranged between −11 and 36 °C and 14 and 95% over the full 

year,
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Table 1.

The median and range (1st to 99th percentile) of RMSE from 250 calibration runs from six co-location lengths 

(1 day, 1 week, 6 weeks, 1 month, 3 months, and 6 months) for five low-cost sensors. The median and range 

(min to max) of PM2.5, CO, NO2, O3, and NO reference concentrations were 7 (1–53) μg/m3, 199 (100 –

2950) ppb, 5.5 (1–58) ppb, 32 (1–110) ppb, and 0.5 (0.1–136.5) ppb, respectively.

1 Day 1 Week 1 Month 6 Weeks 3 Months 6 Months

PM2.5(μg/m3) 44.9 (5.2 – 400) 6.6 (3.1 – 18.3) 3.4 (3.1 – 9.1) 3.4 (3.2 – 7.9) 3.5 (3.2 – 5.6) 3.6 (3.2 – 3.7)

CO (ppb) 4870 (196 – 28,580) 437 (61 – 1,630) 125 (57 – 231) 98 (59 – 219) 77 (57 – 135) 76 (51 – 105)

NO2(ppb) 22.4 (7.8 – 1830) 8.6 (4.1 – 21.8) 6.1 (4.1 – 10.5) 6.1 (3.9 – 8.7) 6.0 (3.7 – 7.8) 4.9 (3.6 – 7.6)

O3(ppb) 721.2 (15.2 – 10,100) 50.8 (9.1 – 267.8) 15.7 (8.9 – 27.1) 15.8 (8.2 – 22.8) 15.0 (8.4 – 23.0) 10.3 (8.1 – 12.6)

NO (ppb) 16.3 (4.2 – 624) 7.5 (3.5 – 72.4) 4.3 (3.3 – 6.2) 3.5 (3.1 – 4.7) 3.6 (2.4 – 4.1) 3.2 (2.9 – 3.6)
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Table 2.

The median and range (1st to 99th percentile) of correlation coefficients (r) from 250 calibration runs from six 

co-location lengths (1 day, 1 week, 1 month, 6 weeks, 3 months, and 6 months) for five low-cost sensors.

1 Day 1 Week 1 Month 6 Weeks 3 Months 6 Months

PM 2.5 0.11 (−0.78 – 0.70) 0.66 (−0.61 – 0.80) 0.77 (0.57 – 0.82) 0.79 (0.66 – 0.82) 0.80 (0.69 – 0.83) 0.84 (0.78 – 0.87)

CO 0.18 (−0.48 – 0.73) 0.41 (−0.40 – 0.90) 0.76 (−0.21 – 0.92) 0.86 (-0.17 – 0.92) 0.88 (0.54 – 0.92) 0.92 (0.88 – 0.95)

NO 2 0.49 (−0.58 – 0.82) 0.70 (0.39 – 0.88) 0.75 (0.63 – 0.89) 0.77 (0.69 – 0.88) 0.78 (0.74 – 0.88) 0.85 (0.76 – 0.88)

O 3 0.07 (−0.47 – 0.63) 0.30 (−0.18 – 0.88) 0.70 (0.17 – 0.90) 0.71 (0.36 – 0.91) 0.74 (0.61 – 0.92) 0.84 (0.81 – 0.90)

NO 0.27 (−0.89 – 0.95) 0.88 (−0.23 – 0.95) 0.94 (0.73 – 0.96) 0.94 (0.86 – 0.96) 0.95 (0.94 – 0.97) 0.97 (0.97 – 0.98)
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Table 3.

Comparison of the median RMSE (μg/m3) for PM2.5 from 1-week calibration periods with different coverages 

of temperature and RH conditions. Only calibration periods with more than 50% coverage of the PM2.5 

concentration range were included in the table (>50% corresponds to 26 μg/m3 or more in this dataset). For 

four scenarios (e.g., PM2.5 coverage > 50%, RH Coverage > 50%, T Coverage > 20%), the 1st percentile 

RMSE, 99th percentile RMSE, and the percentage of calibrations that exhibited all required conditions (e.g., 

RH > X % and T > X%) are shown (1st - 99th percentile; %). For comparison, the median (1st - 99th percentile) 

of the PM2.5 1-week calibration periods from the full data set (i.e., no coverage requirements) was 6.6 μg/m3 

(3.1 – 18.3 μg/m3).

PM2 5 RMSE from 1-week calibrations with 
> 50% concentration coverage

Increasing Temperature Data Coverage ---->

T range > 
Δ10°C 

(Coverage 
>~20%)

T range > 
Δ15°C 

(Coverage 
>~30%)

T range > 
Δ20°C 

(Coverage 
>~40%)

T range > 
Δ25°C 

(Coverage 
>~50%)

T range > 
Δ30°C 

(Coverage 
>~60%)

Increasing RH Data 
Coverage <----

RH range > Δ40% 
(Coverage >~50%)

4.7 (3.2 – 17.2; 
21%) 4.7 4.7 4.4 3.8 (3.3 – 11.5; 

2%)

RH range > Δ48% 
(Coverage >~60%) 4.7 4.7 4.7 4.4 3.7

RH range > Δ56% 
(Coverage >~70%) 4.3 4.3 4.4 4.3 3.7

RH range > Δ64% 
(Coverage >~80%) 4.3 4.3 4.3 4.1 3.7

RH range > Δ72% 
(Coverage >~90%)

4.2 (3.2 – 6.8; 
7%) 4.2 4.3 3.9 3.6 (3.2 – 3.7; 

1%)
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