
Predicting rare events using neural networks and short-
trajectory data

John Strahana, Justin Finkeld, Aaron R. Dinnera,b, Jonathan Wearec,**

aDepartment of Chemistry and James Franck Institute, the University of Chicago, Chicago, IL 
60637

bCommittee on Computational and Applied Mathematics, the University of Chicago, Chicago, IL 
60637

cCourant Institute of Mathematical Sciences, New York University, New York, New York 10012

dDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of 
Technology, Cambridge, MA 02139

Abstract

Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic 

dynamical systems. When the event is rare in comparison with the timescales of simulation 

and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct 

observations becomes challenging. In such cases a more effective approach is to cast statistics of 

interest as solutions to Feynman-Kac equations (partial differential equations). Here, we develop 

an approach to solve Feynman-Kac equations by training neural networks on short-trajectory 

data. Our approach is based on a Markov approximation but otherwise avoids assumptions 

about the underlying model and dynamics. This makes it applicable to treating complex 

computational models and observational data. We illustrate the advantages of our method using 

a low-dimensional model that facilitates visualization, and this analysis motivates an adaptive 

sampling strategy that allows on-the-fly identification of and addition of data to regions important 

for predicting the statistics of interest. Finally, we demonstrate that we can compute accurate 

statistics for a 75-dimensional model of sudden stratospheric warming. This system provides a 

stringent test bed for our method.
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1. Introduction

In many complex dynamical systems, behaviors of strong interest occur infrequently 

compared to the system’s fastest timescale phenomena. For example, most climate-related 

destruction is due to extreme weather events (e.g., hurricanes, heat waves, flooding) [1, 2, 

3, 4, 5]. More broadly, fluid turbulence in 5 both natural and engineered systems produces 

intermittent, damaging extreme events [6]. In the molecular sciences, chemical reactions and 

molecular rearrangements occur on timescales many orders of magnitude longer than the 

timescale of individual bond vibrations [7, 8]. In the biomedical sciences, it may take many 

mutations before a virulent strain of a pathogen emerges [9], or many heart beats before a 

cardiac arrhythmia becomes life-threatening [10, 11].

Among the most common computational tasks related to these rare events is prediction—

assessing the likelihood and extent of an event (i.e., the risk and cost in the case of a 

deleterious event)—before it occurs. When the event is not too rare, it can often be predicted 

with sufficient accuracy by direct forward-in-time integration of a computer model as is 

frequently done, for example, in weather prediction. However, when the event is very rare, 

direct forward-in-time integration becomes prohibitively expensive because many simulated 

model trajectories are required to observe even one instance of the event, leave alone 

compute statistics. The computational cost increases further when the goal is to gain an 

understanding of how the rare event develops, which requires predictions generated from 

many initial conditions.

One common approach to this problem is to construct a “coarse-grained” model, in which 

some details of the system are treated implicitly [12, 13, 14]. One example is a Markov 

State Model (MSM), in which one groups the states of the full system into discrete sets 

and then evolves the system between these sets according to transition probabilities that 

are estimated from trajectories of the full system [15, 16, 17, 18]. A variety of machine 

learning approaches that instead yield continuous coarse-grained representations of systems 

have come to be known as “equation discovery” [19, 20, 21, 22, 23, 24]. When an 

accurate coarse-grained model can be constructed, it can be simulated extensively to make 

predictions with statistical confidence. However, building an accurate coarse-grained model 

can be challenging, in particular, because it is often not clear a priori which features must 

be included. The construction of coarse-grained models thus remains a subject of intense 

inquiry.

Here, we pursue an alternative approach: directly estimating conditional expectations of a 

Markov process as a function of initial condition. We term these conditional expectations 

“prediction functions.” Prediction functions can be used to reveal how a rare event develops 

in remarkable detail. For example, the committor (also known as the splitting probability)—

the probability that a process proceeds to a set of target states before a competing set of 
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states—can be used to define the transition state ensemble of a molecular rearrangement 

[25, 26], as well as the pathways that lead between the reactant and product states [27, 

28]. Prediction functions can also provide important information for decision making. For 

example, the committor can be used by energy, transportation, and financial sectors to 

measure risk due to extreme weather and allocate resources accordingly [29]. Committor 

estimation is a growing research focus in meteorology [30, 31, 32, 33]. In real-time settings, 

the lead time—the expected time until onset of the event given that it occurs—is also 

essential to know [34, 35, 33].

Prediction functions satisfy Feynman-Kac equations, linear equations of the operator that 

describes the evolution of expectations of functions of a process, the transition operator 

(also known as the Koopman operator [36]) and its infinitesimal generator [37, Chapter 

3]. Feynman-Kac equations cannot be solved by conventional discretization approaches 

because they involve a high-dimensional independent variable (the state of the underlying 

process). Moreover, the form of the transition operator is generally not known. Nonetheless, 

we showed recently that Feynman-Kac equations can be solved approximately by a basis 

expansion in which inner products of basis functions are estimated from a data set of short 

trajectories [27, 38].

While this approach has been successfully applied to such diverse processes as protein 

folding [27], molecular dissociation [28], and sudden stratospheric warming [34], it relies 

on identifying an effective basis set. One choice is to use a basis of indicator functions 

for discrete sets, in which case the approach reduces to construction of an MSM (but with 

appropriate boundary conditions for the prediction function). However, just as it can be 

challenging to group states into sets that satisfy the Markov assumption in construction of an 

MSM [18, 39], the choice of basis set is not always straightforward.

Here, we address this issue through a neural network ansatz for prediction functions. Our 

work builds on recent studies, which showed that a neural network ansatz can be used 

to solve for the committor if one assumes particular, explicit forms for the dynamical 

operator [40, 41, 42, 43] (and see [44] for a closely related approach using tensor network 

approximation). Similar neural-network techniques have been devised to solve a wide 

variety of partial differential equations [45, 46, 47, 48, 49, 50]. Because we work directly 

with a data set of short trajectories, our approach is free of restrictive assumptions about 

the dynamics (e.g., microscopic reversibility) and does not require explicit knowledge of 

a model generating the data, opening the door to treating high-fidelity models, and even 

experimental and observational data [33], without simplifying assumptions.

In Section 2, we review prediction functions and the Feynman-Kac equation that we need to 

solve to estimate them. In Section 3 we introduce our neural network approach to solving 

Feynman-Kac equations using a data set of paired trajectories. In Section 4, we compare 

with Galerkin methods and explore the role of the lag time and the distribution of trajectory 

initial conditions on performance. In Section 5 we introduce an adaptive sampling method 

that enriches the data set based on the current neural network approximation. Finally, in 

Section 6 we apply our algorithm to estimating the probability of onset and the lead time of 

a sudden stratospheric warming event.
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2. Prediction functions and their Feynman-Kac equations

We consider events defined by a set of target states B; often, there is also a competing 

set of states A. For example, if we want to estimate the probability that a moderate storm 

develops into an intense hurricane before dissipating, we would take B to include all weather 

states consistent with an intense hurricane and A to include all quiescent states. The initial 

moderate storm would be a state in the domain D = (A ∪ B)c.

Mathematically, we select states in B with the indicator function

1B(x) = 1, x ∈ B
0, x ∉ B, (1)

where x denotes a particular state of the system. We define analogous indicator functions for 

other sets.

We assume the dynamics of the system can be described by a Markov process Xt. In the 

example above, X0 = x is a moderate storm state, and the probability that it develops into an 

intense hurricane before the weather returns to a quiescent state is the committor:

q(x) = ℙx[XT ∈ B] = Ex[1B(XT)], (2)

where the subscript indicates the initial condition, and T = inf{t > 0 :Xt ∈ A ∪ B} is the 

stopping time, i. e., when the process leaves the domain D = (A ∪ B)c.

Continuing the example above, we may also want to compute the lead time, i.e., the average 

time until a moderate storm develops into an intense hurricane, given that the intense 

hurricane occurs (B occurs before A). The lead time tells us how much time we have to 

prepare for the worst case; by definition, it is shorter than the average time until an intense 

hurricane develops, which can be misleadingly large if the storm has a high probability of 

dissipating (A occurs before B). Mathematically, the lead time is

mAB(x) = Ex[T1B(XT)]
Ex[1B(XT)] . (3)

When the event of interest is rare, computing q(x) or mAB(x) by direct forward-in-time 

simulation is difficult. It involves repeatedly simulating Xt starting in a selected initial 

condition x and running until either A or B is reached (which defines the stopping time 

T ), and then assembling a sample average. This approach has significant drawbacks: first, 

when the time T  is very large, generation of a single sample trajectory may be prohibitively 

computationally expensive, and second, when q(x) is small, many sample trajectories will 

be required to observe a single trajectory reaching B. For example, starting from a typical 

weather state, the expected time to the next extreme event may be years, and the probability 

that it occurs on a much shorter time scale may be very small.
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In this paper we estimate prediction functions by solving operator equations for them 

approximately. In the case of the committor, the operator equation takes the form

(TDc
τ − ℐ)[q](x) = 0 with q(x) = 0 for x ∈ A and q(x) = 1 for x ∈ B, (4)

where τ is a time interval known as the lag time and ℐ is the identity operator. Here we 

focus on finite τ; the case of infinitesimal τ is discussed in Section 4.4. Above, the stopped 

transition operator TDcs  encodes the full dynamics of the system when it is in D; it is defined 

by its action on an arbitrary test function f:

TDc
τ [f](x) = Ex[f(Xτ ∧ T)], (5)

where τ ∧ T = min{τ, T}. Physically, (4) reflects the fact that the average probability that B
occurs before A after time τ over all trajectories emanating from X0 = x is the same as the 

probability that B occurs before A starting from x. Similarly, the lead time satisfies

(TDc
τ − ℐ)[mABq](x) = − Ex ∫

0

τ ∧ T

q(Xs)ds with mAB = 0 for x ∈ A ∪ B . (6)

In this case, the right hand side accumulates the time until reaching A ∪ B, weighted by the 

likelihood of reaching B before A.

Eqs. (4) and (6) are examples of Feynman-Kac equations [37, Chapter 3], which can take 

more general forms, such as

(TDc
τ − ℐ)[u](x) = − Ex ∫

0

τ ∧ T

ℎ(Xs)ds with u(x) = g(x) for x ∉ D (7)

which is solved by the prediction function.

u(x) = Ex g(XT) + ∫
0

T

ℎ(Xs)ds (8)

We recover (4) by setting ℎ(x) = 0 and g(x) = 1B(x) and (6) by setting ℎ(x) = q(x) and g(x) = 0; 

the latter case yields [mABq](x), and we must solve separately for q(x) and divide by it to 

obtain mAB(x). Crucially, (7) exactly characterizes u for any choice of τ > 0. In particular, τ
can be chosen much shorter than typical values of T .

On its own, (7) brings us no closer to a practically viable approximation of the prediction 

function. The independent variable x is typically high-dimensional, rendering useless any 

standard discretization approach to solving (7) for u. Instead, the current state-of-the-art 

approach involves expansion of u in a problem-dependent basis [27, 28, 38]. In the next 

section, we explore a potentially more flexible and automated approach to solving (7).
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3. Solving Feynman-Kac equations with neural networks

The goal of the present study is to solve (7) by approximating u by a neural network uθ with a 

vector of parameters θ. Specifically, we seek θ = θ∗ that minimizes a mean square difference 

between the left and right hand sides of the Feynman-Kac equation and boundary condition 

in (7):

θ∗ = arg min
θ

[CFKE + λCBC] (9)

with

CFKE = (TDc
τ − ℐ)uθ + Ex ∫

0

τ ∧ T

ℎ(Xs)ds 1D
μ

2

and CBC = ‖(uθ − g) 1Dc‖μ
2 . (10)

The norm that we use is the μ-weighted L2 norm ‖f‖μ
2 = ∫ ∣ f(x) ∣2 μ(dx), where μ is the 

sampling distribution. Importantly, unlike the many existing estimators [40, 41, 42, 43, 44, 

51, 52, 53, 54, 55], our data need not be generated from (or re-weighted according to) 

the invariant distribution of Xt (which may not exist), a feature that we exploit in Section 

4.5. In (10), CFKE and CBC are both zero when uθ equals the desired prediction function. 

The parameter λ controls the strength of the first norm, which enforces the Feynman-Kac 

equation, relative to the second norm, which enforces the boundary condition. Smaller 

values enforce the boundary conditions more strictly but can compromise the satisfaction of 

the Feynman-Kac equation. For our numerical tests below, we tuned λ by trial and error to 

the smallest value that still enforced the boundary conditions to the desired precision.

The gradient of CFKE includes the integral of a product of two terms of the form TDcτ v with 

v = uθ and v = ∂θuθ, the gradient of uθ with respect to the parameters θ. While we cannot hope 

to evaluate TDcτ v exactly for any non-trivial v, as long as we can evaluate v we have access 

to the random variable v(Xτ ∧ T) whose expectation is TDcτ v. With only one sample of Xτ ∧ T

for each sample of X0, we would not be able to build an unbiased estimate of the product of 

two terms of the form TDcτ v. One approach, common in reinforcement learning applications, 

is to simply drop the term involving this product from the gradient [56]. However, given at 

least two independent samples of Xτ ∧ T for each sample of X0, we can construct an unbiased 

estimator of the full gradient of CFKE that converges to the exact gradient of CFKE in the limit 

of many samples of X0 (even when the number of independent samples of Xτ ∧ T for each 

sample of X0 does not increase). Below we outline a procedure that constructs an unbiased 

estimate of the gradient of CFKE given a data set of samples of X0, together with ℓ ≥ 2 samples 

of Xτ ∧ T for each sample of X0 (in tests of 2 ≤ ℓ ≤ 10, we found the results to be insensitive to 

the choice of ℓ, and we use ℓ = 2 throughout).

Our procedure is as follows.

1. Select a set of n initial conditions X0
i from the sampling distribution μ.
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2. From each X0
i, launch ℓ independent unbiased simulations to generate trajectories 

{(X0
i, XΔ

ij, …, XSΔ
i, j )}j = 1

ℓ . Here we assume that τ = SΔ.

3. For trajectory j = 1, 2, …, ℓ with initial condition X0
i, determine the index of its 

stopping time as ki, j = min{s′ :Xs′Δ
i, j ∈ (A ∪ B) or s′ = S}.

4. Given the data set of grouped trajectories, approximate the first norm in (9) as

C̄FKE = 1
n ∑

i = 1

n 1
∣ Si ∣ ∑

j ∈ Si

uθ(Xki, jΔ
i, j ) − uθ(X0

i) + Δ ∑
s = 0

ki, j

ℎ(XsΔ
i, j)

× 1
∣ Si

′ ∣ ∑
j′ ∈ Si

′
uθ(Xki, j′Δ

i, j′ ) − uθ(X0
i) + Δ ∑

s = 0

ki, j′

ℎ(XsΔ
i, j′) 1D(X0

i)
(11)

and the second norm in (9) as

C̄BC = 1
n ∑

i = 1

n
(uθ(X0

i) − g(X0
i))2 1Dc(X0

i) . (12)

where Si and Si
′ are randomly chosen index sets such that Si ∩ Si

′ = ∅.

5. Compute the total approximate loss function as

C̄ = C̄FKE + λC̄BC, (13)

which converges to the loss in (9) as n increases.

6. Adjust the parameters to minimize (13).

7. Check termination criteria and stop if met (discussed further below).

8. If adaptively sampling, apply the procedure in Section 5 and set n to the total 

number of initial conditions.

9. Go to step 3.

In principle, the loss can be minimized over any sufficiently flexible ansatz uθ. In this 

work, uθ is a fully connected feed-forward neural network, and we determine the optimal 

parameters via the Adam algorithm [57]. In the present study, we stop training (step 7) when 

the average loss for an epoch is less than zero. It is possible for C̄FKE to become negative 

because the two parenthetical factors in (11) are evaluated using independent samples 

of Xτ ∧ T. While this could be avoided by choosing Si = Si
′, the result would be a biased 

estimator of CFKE. In the limit of large n, C̄FKE converges to CFKE, which must be non-negative. 

When using any sample approximation of CFKE, some regularization is required to avoid 

overfitting. We find early stopping at the first occurrence of a negative value of C̄FKE to be a 

natural and effective approach. Further details are given in conjunction with the numerical 

examples.
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4. Illustration of numerical considerations

In this section, we use a model for which we are able to compute reference results to 

illustrate the advantages of our approach relative to existing ones. Specifically, we compare 

our approach with one that employs a basis expansion (a Markov State Model) and one that 

employs a neural network with an assumed form for the dynamical operator. Finally, we 

examine common choices for the sampling distribution. We show that an important practical 

advantage of our approach is the freedom to choose the sampling distribution μ with which 

to weight the norm in CFKE.

4.1. Müller-Brown model

The system that we study is specified by the Müller-Brown potential [58], which is a sum of 

four Gaussian functions:

V MB(y, z) = 1
20 ∑

i = 1

4
Ci exp[ai(y − zi)2 + bi(y − yi)(z − zi) + ci(z − zi)2] . (14)

For all results shown, we use Ci = { − 200, − 100, − 170, 15}, ai = { − 1, − 1, − 6.5, 0.7}, 

bi = {0, 0, 11, 0.6}, ci = { − 10, − 10, − 6.5, 0.7}, yi = {1, − 0.27, − 0.5, − 1}, zi = {0, 0.5, 1.5, 1}. 

The potential is shown in Figure 1(left).

We consider the overdamped Langevin dynamics associated with V MB, discretized with the 

BAOAB algorithm [59]:

Xt + dt = Xt − ∇V (Xt)dt + dt
2β (Zt + Zt − dt) (15)

where dt is the time step, β is the inverse temperature, Zt ∼ N(0, 1), N(0, 1) is the normal 

distribution with zero mean and unit standard deviation (i.e., Zt is Gaussian noise), and 

V = V MB with β = 1 unless otherwise specified. In practice, we use a time step of dt = 0.001, 

saving the configuration every time step, such that Δ = 0.001 (cf. step 2 in Section 3). When 

the parameter β is large, Xt makes only very rare transitions between the local minima of 

V MB.

We define states A and B as

A = {y, z :6.5(y + 0.5)2 − 11(y + 0.5)(z − 1.5) + 6.5(z − 1.5)2 < 0.3}
B = {y, z : (y − 0.6)2 + 5(z − 0.02)2 < 0.2},

(16)

neighborhoods of two of the three local minima of V MB (Figure 1(left)).

The Müller-Brown model described above is commonly employed as a simple illustration of 

the features of molecular rearrangements [58, 38, 41, 42, 43]. The presence of local minima 

in addition to A and B, and the fact that, at low noise, the trajectories connecting the minima 

do not align with the coordinate axes are both features that can be challenging for algorithms 
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that enhance the sampling of transitions between the reactant (A) and product (B) states. In 

our tests, we specifically focus on the committor. We compute a reference committor by the 

finite difference scheme outlined in the appendices of [38, 60] with ϵ = 0.0125. In all tests, 

we compare the estimated committor to the reference committor computed using the same 

potential energy function used to generate the data.

Finally, to represent the fact that one of the most challenging aspects of treating complex 

systems is that the manifold on which the dynamics take place is generally not known, we 

transform the trajectories and sets A and B to a new set of coordinates. Specifically, we map 

the two-dimensional system onto a Swiss roll (Figure 1(right)):

y
z

(c + y) cos((y + c)f)
z

(c + y) sin((y + c)f)
, (17)

where the parameter f controls how tightly the roll is wound, and c is an offset to ensure 

that the range of x is positive. Unless otherwise specified, we use f = 3 and c = 1.8. For the 

remainder of the tests based on the Müller-Brown potential, we use the three-dimensional 

coordinates as input features for all neural networks and k-means clustering. For clarity of 

visualization, we plot the estimated committors on the original two-dimensional coordinates. 

The error metric that we use is independent of coordinate system.

Unless otherwise specified, for our experiments with the Müller-Brown model below, we 

draw 30,000 initial conditions uniformly from the region:

Ω = {y, z : − 1.5 < y < 1.0, − 0.5 < z < 2.5, V (y, z) < 100} . (18)

Two independent trajectories of length τ (to be specified below) are then generated from 

each initial condition using (15).

4.2. Neural network details

For all the numerical experiments involving the Müller-Brown potential, we use fully 

connected feed-forward neural networks with three inputs, three hidden layers, each 

consisting of 30 sigmoid activation functions, and an output layer with a single sigmoid 

activation function. In all trials with fixed data sets, we trained for a maximum of 3000 

epochs with a learning rate of 0.0005 and a batch size of 1500. Each epoch proceeds 

by drawing a permutation of the data set, then one step of Adam is performed using 

mini-batches of size 1500 (that is, 1500 pairs of trajectories) such that each trajectory pair is 

used exactly once per epoch (that is, the number of Adam steps is the data set size divided 

by the mini-batch size). The boundary term is computed with the same mini-batch as C̄FKE; 

we use λ = 1 to weight the terms in the loss function. We also explored deeper networks 

with ReLU activation functions, and they performed comparably and generally required 

shorter training times (results not shown); we focus on the shallower networks with sigmoid 

activation functions because they allow a direct comparison with loss functions involving 

explicit derivatives of uθ in Section 4.4.
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4.3. Galerkin methods

As discussed in the Introduction, one of our main motivations in introducing an approach 

based on neural networks is that it can be difficult to identify basis functions for linear 

(e.g., Finite Element or other Galerkin) methods for solving Feynman-Kac equations. To 

illustrate this issue explicitly, we compare estimates for the committor from our approach 

with those obtained from dynamical Galerkin approximation [38, 27] using a basis of 

indicator functions, which can be considered a MSM [38]. We do so as a function of the 

parameter f in (17) and generate data sets with 0 ≤ f ≤ 10.

To construct an MSM, we clustered the configurations in each data set by the k-means 

algorithm (with k as specified below) applied to the three-dimensional coordinates of the 

model. The indicator functions of the set of points closest to each cluster centroid form a 

basis for a Galerkin approximation of the committor function. A transition matrix T was 

constructed by counting transitions of the stopped process between clusters among our 

trajectory data set with a lag time of τ = 150Δ. Here we use the convention that the row 

and column indices are zero for A and their maximum values for B. The committor is then 

computed from Tq+ = q+ with the last component of the solution vector set to 1. The neural 

network and its training were as described in Section 4.2.

Figure 2 shows the results. We see that as the roll is wound tighter (higher f), the MSM 

estimates, constructed with a constant 300 clusters, decrease in accuracy, while the network 

estimates remain consistently good. In the right panel, we vary the number of clusters and 

report the number required to reach a root mean squared error threshold of 0.045. This 

threshold is chosen because it results in numbers of clusters in a range that is typical in 

MSM studies [27, 34]. We increase the number of trajectories in proportion to the number 

of MSM clusters to ensure that each cluster is sampled a consistent amount. In this test, 

we see that large numbers of MSM clusters, and hence large amounts of data, are needed. 

Intuitively, the MSM encounters problems when a single cluster spans adjacent layers. 

Therefore, it is necessary to vary the size of the clusters with the distance between layers 

of the Swiss roll, which is a linear function of 1 ∕ f. Consistent with this idea, in Figure 2 

we find an approximately linear dependence of the number of clusters needed to achieve a 

certain error threshold.

We note that in practice MSMs are often constructed on coordinates obtained from a 

method for dimensionality reduction and/or manifold learning. With such pre-processing, 

linear methods can clearly be successful. However, kernel-based methods for dimensionality 

reduction (e.g., diffusion maps [61] or kernel time-lagged independent component analysis 

[62, 63]) scale poorly with the size of the data set. A neural network (e.g., an autoencoder 

[64, 65]) can be used for dimensionality reduction, but the approach presented here is 

simpler in that we go directly from model coordinates to prediction function estimates.

4.4. Lag time

As discussed in the Introduction, neural networks have been applied to estimating high-

dimensional committors assuming a partial-differential form for the dynamical operator [40, 
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41, 42]. This form arises in the limit that one considers an infinitesimal lag time. In this case, 

one can write (7) as

ℒ[u](x) = ℎ(x) for x ∈ D and u(x) = g(x) for x ∉ D, (19)

where ℒ is the is the infinitesimal generator:

ℒ[f](x) = lim
dt 0

Ex[f(Xdt)] − f(x)
dt . (20)

For a diffusion process, ℒ takes the form

ℒ(f)(x) = ∑
i = 1

κ
bi(x) ∂f

∂xi
+ 1

2 ∑
i, j = 1

κ
(σσT)ij(x) ∂2f

∂xi ∂xj
, (21)

where b ∈ ℝk and σ ∈ ℝκ × κ are the drift and diffusion coefficients that determine the 

evolution of Xt. In the limit of small dt, the dynamics in (15) correspond to a generator with 

b = − ∇V  and σ = 2 ∕ β. In this case, the loss function becomes

C̄FKE = ∑
i = 1

n
∑
j = 1

κ
bj(X0

i)∂uθ(X0
i)

∂xj
+ 1

2 ∑
j, l = 1

κ
(σσT)jl(X0

i)∂2uθ(X0
i)

∂xj ∂xl
− ℎ(X0

i)
2
1D(X0

i) (22)

with an appropriate boundary condition term.

The loss function in (22) differs from the one used in many recent articles on the subject 

of committor estimation with neural-network (or recently tensor-network) approximations 

[40, 41, 42, 43, 44]. Those papers focus specifically on the case of reversible overdamped 

diffusive dynamics. In this case the committor can be found by minimizing a sample 

approximation of the loss function ‖∇q‖π
2 (for constant, isotropic diffusion coefficient) where 

π is the invariant distribution of the dynamics [55]. Relatedly, despite a resemblance to 

(10), the estimator ‖(q+(Xτ) − q+(X0))‖π
2 that appears in [51, 52, 53, 54] is, in fact, a small τ

approximation of ‖∇q‖π
2.

We stress that (22) is only appropriate for diffusion processes and requires working with 

the full set of variables in which the dynamics are formulated. Importantly, one generally 

analyzes only functions of a subset of the variables (termed collective variables or order 

parameters) [27, 28, 33, 38]. For example, in a molecular simulation of a solute in solvent, 

one may include only the dihedral angles of the solute. In a weather simulation, one may 

focus on the wind speed and geopotential height at particular altitudes. When working with 

observational data, one only has access to the features that were measured. Even when 

the tracked variables can be described by an accurate coarse-grained model, that model 

is not known explicitly and is difficult to identify from data. These considerations make 

minimization of any loss function explicitly involving (21) impossible for many practical 

applications.
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Nonetheless, the loss function in (22) is appealing because it involves only a single time 

point, so no trajectories need to be generated if explicit forms for the drift and diffusion 

coefficients are known. While this would appear to be an advantage, we show in this section 

that, even when the dynamics can be reasonably described by (21), it can be preferable to 

work with finite lag times.

To make this point, we consider dynamics governed by the Müller-Brown potential with a 

small oscillating perturbation (Figure 3A):

V (x) = V MB(x) + 0.1 sin(2πωx) sin(2πωy), (23)

where ω controls the spatial frequency of the perturbation. Again we represent the data 

on the Swiss roll as described in Section 4.1. As shown in Figure 3B, the perturbation is 

sufficiently small that it makes no qualitative change to the committor.

Given this data set, we train neural networks to minimize the loss function in (13), using 

either (11) or (22) for C̄FKE, with ℎ(x) = 0 and g(x) = 1B(x), corresponding to the committor. 

The network architecture was the same as above: i.e., fully connected feed forward with two 

inputs, 30 activation functions per hidden layer, and one output. The neural network and its 

training were as described in Section 4.2.

Typical results are shown in Figure 3C and D, and the error in the committor is quantified 

in Figure 4. As the frequency of the the perturbation increases, the drift becomes large, 

with rapid sign changes, and the training of the infinitesimal lag time network tends to 

get stuck at poor estimates of the committor (Figure 4(left)). By contrast, finite lag time 

networks consistently achieve low errors at longer lag times (Figure 4(center and right)). 

This presumably results from averaging over values of the drift. Interestingly, we found 

that when the potential is smooth (Figure 4(center)), slightly lower errors can be obtained 

using the zero lag time approach. However, in the presence of even such a small amount 

of roughness that the committor is qualitatively unchanged (Figure 3A and B), our finite 

lag time approach performs better (Figure 4(right)). We expect the latter case to be more 

relevant in many practical applications.

It may be tempting to assume that the zero lag time approach has lower computational cost 

since there is no need to actually simulate the stochastic differential equation (here, (15)). 

This is not necessarily the case. With the infinitesimal lag time loss function, the drift needs 

to be evaluated for each data point for every pass over the data set (one epoch). By contrast, 

the finite lag time loss function introduced here does not require evaluation of the drift once 

the data set is generated. Therefore, if the number of epochs needed to train the zero lag 

time network is comparable to the number of time steps used to generate the data set for the 

two-trajectory method, the finite lag time method will be less computationally costly.

4.5 Sampling distribution

In this section, we investigate the role of the choice of sampling distribution. Following 

generation of a data set as described in Section 4.1, we selected initial points from the region 

specified in (18) with weight μ(x) ∝ exp( − βsV (x)) (βs need not be the same as β) and trained 
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over a range of βs values. To a good approximation when dt is small, the invariant density of 

(15) is μ with βs = β. When βs is large, the data set of initial conditions concentrates at the 

local minima of V (x). As βs becomes small, the distribution approaches uniform. While this 

parametric form for the sampling distribution is convenient for the tests performed in this 

section, we emphasize that, unlike many existing schemes [40, 41, 42, 53, 54], our algorithm 

does not require explicit knowledge of the invariant density.

We trained ten networks on each pair of sampling distribution and lag time following the 

procedure in Section 4.2, and the resulting errors and their standard deviations are plotted 

as a function of 1 ∕ βs in Figure 5. At low 1 ∕ βs, which concentrates the initial points in the 

minima, the network is unable to find a good solution at any lag time. As 1 ∕ βs increases and 

the distribution becomes more uniform, the solution improves significantly. This suggests 

that it is important to have the regions between minima well-represented in the data set, 

which is consistent with previous observations [66, 38, 27, 34, 43]. In high-dimensional 

examples, sampling the transition regions is not straightforward, and we present a solution to 

this problem in the next section.

5. Adaptive Sampling

As we showed in Section 4.5, the choice of sampling distribution is important. In this 

section, we propose a simple method for adding data as the training proceeds. Since the 

approach depends on constructing a spatial grid we must first select a low-dimensional (e.g., 

two-dimensional) set of (possibly non-linear) coordinates ξ(x) which, as noted above, we 

term collective variables. We then partition the space of possible ξ values into bins of equal 

volume labeled S1, S2, …, Sm, and estimate

P η =
∫ (TDc

τ − ℐ)uθ + Ex ∫0
τ ∧ T ℎ(Xs)ds 21Sη(ξ(x))μ(x)dx

∫ 1Sη(ξ(x))μ(x)dx
(24)

for each bin. The weights Pη are then used to select bins, and new initial points are then 

sampled from the selected bins with uniform probability. The essential idea is that we add 

data to the regions (bins) that contribute most to CFKE.

When adaptively sampling to learn the committor we approximate (24) by

P η

=
∑i = 1

n 1
∣ Si ∣ ∑j ∈ Si (uθ(Xki, j

i, j ) − uθ(X0
i, j)) 1

∣ Si
′ ∣ ∑j ∈ Si

′ (uθ(Xki, j
i, j ) − uθ(X0

i, j)) 1Sη(ξ(X0
i, 1))

∑i = 1
n 1Sη(ξ(X0

i, 1))
.

(25)

We compute (25) for each bin, select N bins with probability proportional to P η with 

replacement, and sample a single additional initial point from each selected bin. From each 

of the N new initial points we generate a trajectory. In practice, we observed that (25) can 

become negative for some bins in the same way that C̄FKE can become negative. In this case, 

we set all negative probabilities to zero.
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The success of our adaptive sampling approach depends on the choice of ξ. In the absence of 

other knowledge, a reasonable choice is the current estimate of the committor function itself. 

We adopt this choice to test our adaptive sampling procedure on the Müller-Brown model. 

A related adaptive sampling approach using stratified sampling [67, 68] based on a current 

committor estimate is proposed in [43].

The simulation and Swiss roll parameters, as well as neural network and training parameters 

are the same as above. We initially train with 10,000 pairs of trajectories drawn uniformly 

from the region in (18) for 1000 epochs. Then we alternate between adding N = 5000 new 

pairs of trajectories and training for 500 epochs, for four cycles. We compare to 30,000 

trajectory pairs drawn uniformly from the region in (18). Results are presented in Figure 

6. We find that the adaptive sampling and uniform sampling perform similarly at long 

lag times, although the adaptive procedure gives more reproducible results as shown by 

the smaller error bars. At short lag times the average error is lower as well. The adaptive 

sampling procedure concentrates sampling in the transition region, that is, near q+ = 0.5. In 

the next section, we illustrate the adaptive sampled distribution on our atmospheric model, 

and we again see that sampling is effectively directed to the transition region. For low noise 

diffusions, the transition region becomes narrower, and this is reflected by a sharper peak 

than in Figure 6. In our testing, our adaptive sampling scheme remains effective, although 

more data are required at lower noise. We find that our method works for barriers < 10 ∕ β.

6. Predicting an atmospheric transition

As a demanding test of our method, we compute the committor and lead time for a model 

of sudden stratospheric warming (SSW), aiming to improve upon the benchmarks computed 

in [34]. Like other models of geophysical flows, the dynamics are irreversible and the 

stationary distribution is unknown. As a consequence, many competing approaches for 

computing the committor (e.g., [40, 41, 42, 53, 54]) are not applicable.

Typical winter conditions in the Northern Hemisphere stratosphere support a strong polar 

vortex, fueled by a large equator-to-pole temperature gradient. Approximately once every 

two years, planetary waves rising from the troposphere impart a disturbance strong enough 

to weaken and destabilize the vortex, in some cases splitting it in half. Such events 

cause stratospheric temperatures to rise by about 50°C over several days, affecting surface 

weather conditions for up to three months. The polar vortex is dynamically coupled to the 

midlatitude (tropospheric) jetstream, which sometimes weakens in response to SSW. This 

can engulf the midlatitudes in Arctic air and alter storm tracks, bringing severe weather 

conditions to unprepared locations. Predicting SSW events is therefore a prime objective in 

subseasonal-to-seasonal weather prediction, but their abruptness poses a real challenge. For 

a review of SSW observations, predictability and modeling, see [69] and references therein.

We consider the Holton-Mass model [70], augmented by time-dependent stochastic forcing 

as in [34] to represent unresolved processes and excite transitions between the strong and 

weak vortices. Despite the simplicity of the model relative to state-of-the-art climate models, 

these transitions capture essential features of SSW such as the rapid upward burst of wave 

activity mediated by the “preconditioned” vertical structure of zonal-mean flow [71, 72]. 
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We briefly describe the model here, but refer the interested reader to [34, 73, 70, 74] for 

additional background and details.

The model domain is the region of the atmosphere north of 30° and above the altitude of 

z ≈ 10 km (the tropopause). The Holton-Mass model describes stratospheric flow in terms 

of a wave-mean flow interaction between two physical fields. The mean flow refers to the 

zonal-mean zonal wind u(y, z, t): the horizontal wind velocity component in the east-west 

(zonal) direction, averaged over a ring of constant latitude (zonal-mean, denoted by the 

overbar). The spatial coordinate y denotes the north-south (meridional) distance from the 

latitude line ϕ0 = 60°
, i.e., y = a(ϕ − ϕ0), where a is the Earth’s radius and ϕ is the latitude. 

The wave refers to the perturbation streamfunction ψ′(x, y, z, t): the deviation from zonal 

mean (denoted by a prime symbol) of the geostrophic streamfunction, which is proportional 

to the potential energy of a given air parcel. Holton and Mass worked with the following 

ansatz for the interaction:

u(y, z, t) = U(z, t) sin(ℓy)
ψ′(x, y, z, t) = Re{Ψ(z, t)eikx}ez ∕ 2H sin(ℓy) (26)

where k = 2 ∕ (a cos 60°) and ℓ = 3 ∕ a are zonal and meridional wavenumbers, and H = 7 km
km is a scale height. The equations in (26) prescribe the horizontal structure entirely, so the 

model state space consists of U(z, t) and Ψ(z, t), the latter being complex-valued. Insertion of 

(26) into the quasigeostrophic potential voriticity equation yields a system of two coupled 

PDEs. Following [34, 70, 73, 74], we discretize the PDEs along the z dimension in 27 

layers. After enforcing boundary conditions, this results in a 75-dimensional state space:

Xt = [Re{Ψ(Δz, t)}, …, Re{Ψ(25Δz, t)},
Im{Ψ(Δz, t)}, …, Im{Ψ(25Δz, t)},
U(Δz, t), …, U(25Δz, t)] .

(27)

The two states of interest in this model are a strong polar vortex, with large positive U(z, t)
(meaning eastward wind, marked as state A in Figure 7), and a weak polar vortex, with a 

weak wind profile in which U(z, t) sometimes dips negative (marked as state B in Figure 7). 

Specifically, we define A and B as spheres centered on the model’s two stable fixed points 

(Ψa, Ua) and (Ψb, Ub) in the 75-dimensional state space. The two spheres have radii of 8 and 

20 respectively, with distances measured in the non-dimensionalized state space specified in 

[34]. In physical units, these correspond to the ellipsoids

A = Ψ, U : ‖Ψ − Ψa‖2

(7.2 × 105 m2 ∕ s)2 + ‖U − Ua‖2

(2.9 m ∕ s)2 ≤ 82
(28)

B = Ψ, U : ‖Ψ − Ψb‖2

(7.2 × 105 m2 ∕ s)2 + ‖U − Ub‖2

(2.9 m ∕ s)2 ≤ 202
(29)

where ‖ ⋅ ‖ is the complex vector 2-norm.
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Figure 7 illustrates the key features of this model relevant to the prediction problems we 

consider here. We see that the average time to reach B starting from A is over 1000 days, 

which is substantially longer than the longest lag times we consider here (≤ 10 days). We 

can also see that the transition paths do not proceed through the saddlepoint of the effective 

free energy (i.e., the negative logarithm of the stationary density, marked by the contours), 

indicating that dynamical, non-diffusive, irreversible dynamics are important. Specifically, 

the transition path can be roughly divided into two stages: a “preconditioning” phase, in 

which the vortex gradually weakens, followed by an upward burst of wave activity that 

rips the vortex apart. Most of the committor’s increase happens during the preconditioning 

phase, which siphons enstrophy (that is, squared vorticity, a measure of vortex strength that 

is conserved in the absence of dissipation) away from the mean flow and into the wave 

activity. The wave eventually dissipates, but only after its magnitude ∣ Ψ ∣ bypasses the 

saddlepoint (Figure 7). See [35, 75] for further discussion.

To generate an initial data set, we sampled 30,000 points uniformly in U(30 km) and 

∣ Ψ ∣ (30 km) from a long (50,000 days) trajectory and ran two ten-day trajectories from 

each starting point. Simulation details are reported in [34]. We simulated with a time step of 

0.005 days, and saved the state of the system every 0.1 days. To validate our neural network 

results, we use a long trajectory of 500,000 days to compute

〈q(s)〉 = E[1B(X(τ)) ∣ uθ∗(X(0)) ∈ [s, s + Δs]] for s ∈ [0, 1] . (30)

where θ∗ are the parameters obtained from solving (9). This is the mean reference committor 

over the isocommittor surfaces from the neural network function. A perfect prediction 

corresponds to 〈q(s)〉 = s. We use a similar construction for mABq, which we denote 〈[mABq](s)〉. 
For the committor, we take the overall error to be

Error = ∫
0

1

(〈q(s)〉 − s)2ds (31)

Because the lead time does not have a fixed range and scales exponentially with the noise, 

for it, we instead compute the relative error

∫
0

40

(〈[mABq](s)〉 − s)2 ∕ s2ds . (32)

Figure 8 shows the reference committor and lead time projected onto the collective 

variables.

Figure 9(left) shows results for the committor obtained with the adaptive sampling method. 

As collective variables in the adaptive sampling scheme we use ξ = (U(30 km), ∣ Ψ ∣ (30 km)). 
The space between U(30 km) = − 29 and 72.5 m/s and between ∣ Ψ ∣ (30 km) = 0 and 1.26 

× 107 m/s2 is partitioned into a 20 × 20 grid of bins. We choose this collective variable 

space because it is physically intuitive, coming directly from the model’s state space, and 

because it resolves SSW events well. Physically, U measures the strength of the vortex while 
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∣ Ψ ∣ measures the strength of the disruptive wave. Their coupling is key to the nonlinear 

dynamics of the model. We begin with 50,000 pairs of short trajectories and add 22,000 

new pairs of ten-day trajectories every 100 epochs for a total of 10 cycles. Thus the final 

number of trajectory pairs is 270,000. We take λ = 10 in (13). The network architecture is 

a fully connected feed forward network with 75 inputs, 10 hidden layers of width 50, with 

ReLU activation functions, and an output layer with a single sigmoid activation function. 

We stop training between each addition of data whenever the loss goes below zero (Figure 

10). Networks for the lead time have the same structure, except that they have a quadratic 

output layer. The contour lines in Figure 9(left) indicate the density produced at the end of 

the training by the adaptive sampling procedure. The method concentrates new samples in 

the transition region without being given any information about its location. The method 

identifies the transition region on the fly.

To validate the results, we trained ten networks on the data set produced by the adaptive 

sampling method and computed (30) (Figure 9(right)). The error bars show the standard 

deviation in 〈q(s)〉. We see that the training is robust and consistently able to produce good 

estimates of the committor. We used the data set obtained from the adaptive sampling 

scheme for the committor to train the neural network to predict the lead time (Figure 11). 

Once again, we find that the method consistently produces good results compared with 

estimates from a long trajectory. We expect the errors in Figure 11 to be larger than those in 

Figure 9 because the estimated committor is used in the loss function for the lead time (as 

discussed below (7)), allowing errors to compound.

Finally, we determined how the performance of our method depended on key 

hyperparameters. To elucidate trends, we trained 10 networks on the data set produced 

by our adaptive sampling method. Figure 12 shows the error in our scheme as the lag 

time is increased. As we observed in the case of the rugged Müller-Brown potential, the 

error decreases as the lag time increases. We note that as the lag time goes to infinity, 

all trajectories reach A ∪ B, and the algorithm reduces to nonlinear regression of point 

estimates of the conditional expectation of being in state B (see (2)). We also investigated the 

dependence of the performance on the network depth, as shown in the right panel of Figure 

12. We found that deeper networks were able to achieve low errors at intermediate lag times, 

although there was relatively little sensitivity to this hyperparameter at short and long lag 

times.

7. Conclusions

In this work, we have proposed a machine learning method for solving prediction problems 

given a data set of short trajectories. By computing conditional expectations that solve 

Feynman-Kac equations rather than trying to learn the full dynamical law, we reduce the 

scope of the problem and hence render it more tractable. Our method has a number of 

advantages over existing ones:

• it allows computation of any statistic that can be cast in Feynman-Kac form;
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• it does not require explicit knowledge of either the model underlying the data 

or its dynamics (e.g., the form of the generator and its parameters, such as the 

diffusion tensor);

• it allows for use of arbitrary lag times;

• it allows use of an arbitrary sampling distribution;

• it does not require microscopic reversibility.

We illustrate these advantages using two numerical examples. Using a three-dimensional 

model for which we can compute an accurate reference solution, we show that our method 

using short trajectory data is often more robust than related methods that instead use the 

differential operator form of the Feynman-Kac equation [40, 41, 42, 43]. With the same 

model, we demonstrate the importance of having data in the low probability regions between 

metastable states and adequately weighting it against the data in the high probability regions. 

We propose a simple adaptive sampling scheme that allows us to add data so as to target the 

largest contributions to the loss during training. Finally, we show that we can compute key 

statistics for a 75-dimensional model of SSW events (not just the committor but also the lead 

time) from trajectories that are significantly shorter than the times between events.

Our method opens new possibilities for the study of rare events using experimental and 

observational data. For example, data sets of short trajectories generated by weather 

forecasting centers can be analysed by our method to study extreme weather and climate 

events [33]. However, the requirement that two trajectories be generated from each initial 

condition poses an obstacle to application of our method to many other data sets. Future 

work will focus on relaxing this restriction.
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Highlights

• We develop an approach that represents predicted value functions by neural 

networks.

• This enables long-time predictions from short-duration trajectories.

• The data is sampled adaptively during training.

• The approach does not require knowledge of or access to an underlying 

model.

• We demonstrate the method on data from a model of sudden stratospheric 

warming.
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Figure 1: 
The system used for the numerical experiments in Section 4. (left) Müller-Brown potential 

[58]. Sets A and B are marked by the orange and red ellipses, respectively, and contours 

are spaced at intervals of 1 in the units of (14). (right) Reference committor for the Müller-

Brown dynamics mapped to the Swiss roll, and below on the two-dimensional surface. We 

compute the reference from a finite difference scheme [38] in two dimensions and then map 

it to the Swiss roll using (17).
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Figure 2: 
Comparison with Galerkin methods. (left) For an MSM estimate with k = 300 clusters, the 

root mean square (RMS) error in the committor for the Müller-Brown model as the Swiss 

roll is wound tighter (higher f in (17)). Shading shows the standard deviation in the error 

from training on ten independent data sets. (right) Number of MSM clusters needed to 

achieve an RMS error in the committor of less than 0.045.
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Figure 3: 
Effect of potential roughness on the performance when using a loss function based on the 

infinitesimal lag time limit. Results shown are obtained with (22) and (23) with ω = 0 (top 

row), and ω = 10 (bottom row). (A) The potentials. (B) Reference committors obtained from 

the finite-difference scheme in [38, 60]. (C) Neural network prediction of the committors. 

(D) Differences between the references and the predictions. (E,F) Same as columns C and 

D, except for a lag time of 100 steps. Note the different scales on the difference maps in 

columns D and F.
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Figure 4: 
Comparison of infinitesimal and finite lag time loss functions. (left) RMS error in the 

committor for the Müller-Brown dynamics mapped to the Swiss roll obtained with the 

infinitesimal lag time loss function in (22) as the frequency of the sinusoidal perturbation, ω, 

is increased. The other panels show the error as the lag time is increased with the frequency 

fixed at ω = 0 (center) or ω = 10 (right). Shading shows the standard deviation in the error 

from training on ten independent data sets.
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Figure 5: 
RMS error of the committor as the sampling temperature, 1 ∕ βs, is increased. The point 

at 1 ∕ βs = 1 corresponds to the stationary distribution for the Müller-Brown model (in the 

small dt limit) at the temperature of the dynamics. Increasing the temperature makes the 

distribution more uniform. The point labeled ∞ is uniform. Shading shows the standard 

deviation in the error from training on ten independent data sets.
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Figure 6: 
Adaptive sampling scheme applied to the Müller-Brown dynamics mapped to the Swiss 

roll. (left) Comparison of uniform and adaptive sampling. Shading and error bars show the 

standard deviation in the error from training on ten independent data sets. (right) Histogram 

of the final data set as a function of the committor from training a neural network with a lag 

time of 100.
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Figure 7: 
Illustration of some key properties of the Holton Mass model relevant to the prediction 

problems considered here. Red and yellow ellipses approximately mark the projections 

of states A and B, respectively, on the collective variables. The background color shows 

the average time to hit state B, clipped to a maximum of 1300 days to show detail. 

Black contours show the negative logarithm of the stationary density marginalized on these 

collective variables. Three transition paths harvested from a long simulation are shown in 

white.
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Figure 8: 
Reference statistics for the Holton-Mass model. (left) Committor and (right) lead time 

computed from a long trajectory and projected onto U(30 km) and ∣ Ψ ∣ (30 km). Colors show 

reference statistics, and contours show the effective free energy.
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Figure 9: 
Committor for the Holton-Mass model. (left) Colors show predictions, and contour lines 

show the density of added points from the adaptive sampling scheme described in Section 

5. (right) Comparison of predicted and reference committors. Symbols show (30). Error bars 

show the standard deviation from networks trained on ten separate data sets resulting from 

the adaptive sampling scheme.
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Figure 10: 
The value of the loss as the training progresses for several replicates. We add data adaptively 

every 100 epochs and halt training when the loss goes below zero. Synchronized spikes in 

the loss function result from adding data where the loss is high.
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Figure 11: 
Lead time for the Holton-Mass model. (left) Colors show predictions, and contour lines 

show the density of points in the data set obtained from the adaptive sampling scheme for 

the committor. (right) Comparison of predicted and reference lead times. Symbols show 

〈[mABq](s)〉. Error bars show the standard deviation from networks trained on ten indpendent 

data sets resulting from the adaptive sampling scheme used to train the committor.
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Figure 12: 
Dependence of performance as key hyperparameters are varied. (left) RMS error of the 

committor as a function of lag time. (right) Relative error in the product used to solve for 

the lead time as a function of the network depth and lag time. Shading shows the standard 

deviation from networks trained on ten indpendent data sets resulting from the adaptive 

sampling scheme used to train the committor; on the right, shading is only shown for the 

deepest network for clarity.
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