Skip to main content
. 2023 Jan 1;7(1):148–159. doi: 10.1162/netn_a_00276

Table 3. .

Estimate (std. error) and p values of general linear models applied to identify significant associations between graph metrics (global efficiency and modularity), and clinical or cognitive evaluations of multiple sclerosis subjects, with age and gender as covariates. The p values are all corrected using Benjamini-Hochberg’s method. EDSS = Expanded Disability Status Scale. MSFC = Multiple Sclerosis Functional Composite. MSSS = Multiple Sclerosis Severity Score. SDMT = Symbol Digit Modalities Test. PASAT = Paced Auditory Serial Addition Test. CVLT = California Verbal Learning Test. CVLT-LD = CVLT–Long Delay. CVLT-TL = CVLT–Total Learning.

  Global efficiency Modularity
Estimate (std. error) p value Estimate (std. error) p value
Clinical evaluations
 EDSS −3,017.185 (5,749.439) 0.80 21.756 (11.828) 0.29
 MSFC 2,951.321 (2,551.787) 0.67 −3.395 (5.129) 0.80
 MSSS 92.591 (8,796.878) 0.99 3.702 (18.592) 0.96
 T2 lesion load −19.153 (30.554) 0.80 0.262 (0.049) <0.001***
Cognitive evaluations
 SDMT 61,450.748 (67,305.672) 0.41 −384.624 (133.871) 0.04*
 PASAT 69,843.475 (49,542.373) 0.25 −167.882 (103.082) 0.25
 CVLT-LD 3,364.148 (13,358.354) 0.80 −35.425 (26.507) 0.25
 CVLT-TL 52,578.776 (35,848.396) 0.25 −109.18 (72.304) 0.25

* p < 0.05, *** p < 0.001.