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Abstract

Advances in kidney genomics in the last twenty years has opened the door for more precise 

diagnosis of kidney disease and identification of new and specific therapeutic agents. Despite 

these advances, an imbalance exists between low resource and affluent regions of the world. 

Individuals of European ancestry from US, UK, and Iceland, account for 16% of the world 

population, but represent >80% of all genome-wide association studies (GWAS). South Asia, 

South-East Asia, Latin America, and Africa together account for 57% of the world population 

but less than 5% of GWAS. Implications of this difference include limitations in new variant 

discovery, inaccurate interpretation of the effect of genetic variants in non-European populations, 

and unequal access to genomic testing and novel therapies in resource-poor regions. It also further 

introduces ethical, legal, and social pitfalls, and may ultimately propagate global health inequities. 

Ongoing efforts to reduce the imbalance in low-resource regions include funding and capacity 

building, population-based genome sequencing, population-based genome registries, and genetic 

research networks. More funding, training, and capacity building for infrastructure and expertise is 

needed in resource-poor regions. Focusing on this will ensure multiple fold returns on investments 

in genomic research and technology.
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Introduction

Chronic kidney disease (CKD) is an important cause of morbidity and mortality 

worldwide1–3, and it is estimated that 3.7% of the world population are living with CKD1. 

CKD is a leading cause of non-communicable disease-mortality and the global burden due 

to CKD is increasing1–3. The increased incidence and prevalence is attributed to incomplete 

understanding of etiology and pathogenesis of most causes of CKD. The downstream 

consequences of this incomplete understanding of disease mechanisms is the lack of 

effective and robust strategies for disease prevention and treatment. This effect is even more 

pronounced in countries with limited resources, where the factors above are compounded 

by environmental pollution, high prevalence of infectious diseases, and limited resources 

for the treatment and prevention of CKD1–3. Thus, morbidity and mortality associated with 

CKD is more noticeable in resource poor countries compared with high-income countries. 

In addition, in developed countries where more resources are available, there is a glaring 

disparity in the prevalence and severity of CKD in different populations. A good example 

is the United States, where people of African ancestry are disproportionately affected by 

CKD and tend to have worse outcomes because of years of enshrined racism, inequity, and 

unequal resource allocation in the health care system.

The completion of the Human Genome Project (HGP) and subsequent development of 

efficient analytical pipelines for genomic data has had a positive impact in our understanding 

of the molecular pathogenesis of chronic kidney diseases4. There is now a rapid turn-

around in making genetic diagnoses as well as in the identification of both new causes of 

monogenic kidney diseases and risk loci for complex or polygenic kidney diseases5–7. For 

example, in the last twenty years more than 650 single gene causes of different CKD were 

identified5–7. In addition, multiple disease risk loci were identified for the more common 

kidney diseases with complex inheritance patterns such as diabetic kidney disease (DKD), 

IgA nephropathy (IgAN), focal and segmental glomerulosclerosis (FSGS) and other types 

of nephrotic syndrome7. The payoff of these advances includes but are not limited to: 1) 

more precise clinical diagnosis, 2) better understanding of disease mechanisms, 3) improved 

understanding of biologic basis of health disparities, 4) identification of novel and specific 

diagnostic tools, 5) identification of disease pathogenesis driven new therapies, and 6) 

development of a robust approach to precision therapeutics.

Despite these obvious benefits of the genomic revolution, there are disparities and 

inequalities in the populations targeted for the generation of genomics and other omics 

data. For example, individuals of European ancestry account for approximately 16% of the 

World population, yet represent 80–96% of all published genome wide association studies 

(GWAS)8–12. In the Genome Aggregation Database (gnomAD), data are available on next 

generation sequencing (NGS) from 138,632 individuals comprising of 15,496 whole genome 
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sequencing (WGS) and 123,136 whole exome sequencing (WES).13 European populations 

make up 55% of all the NGS data despite the fact that they constitute only 16% of the 

total world population (Figure 1). In contrast, only 8.7% of African NGS are represented in 

the gnomAD database even though they account for 15.4% of the total world population13. 

In addition, review of the 81 monogenic causes of nephrotic syndrome reported in the 

literature showed that race and ethnicity of the participants was reported in only 66 of 

the discovery cohort (Supplementary Table 1). Of these reports, the initial discoveries 

were made predominantly in people of European, Middle Eastern, and Turkish ancestries 

(Supplementary Table 1). Similar patterns are observed in kidney disease related genome 

wide association studies.

An appraisal of the National Human Genome Research Institute (NHGRI) catalogue 

of GWAS using the broad search term “kidney phenotype” yielded 65 studies (https://

www.ebi.ac.uk/gwas/efotraits/EFO_0003086 Accessed 5/2/2022)14. The search showed 

disparity in race/population, geography, age, and phenotype studied (Supplementary 

Table 2). Based on the location of the senior authors, 37.5%, 37.5%, 25%, 0%, 0%, 

0% and 0% of the studies were carried out in North America, Europe, East Asia, 

South Asia, South East Asia, Latin America, and Africa respectively (Figure 2). As 

expected, most of the participants in these studies are of European ancestry. The reasons 

for this imbalance includes lack of resources for conducting genomic studies in poor 

countries, bureaucratic bottleneck associated with collaborative genomic research between 

investigators in developed countries and resource limited countries, and the reluctance of 

investigators to study diverse populations because of challenges in dealing with genetic 

ancestral architecture. Irrespective of the reasons, the consequences of not studying 

diverse populations for genetic risk are numerous and include exaggeration of already 

existing inequities in access to high quality healthcare, incomplete understanding of genetic 

architecture of different diseases, missed opportunities to determine the effect of gene 

and environment interaction in phenotypic expression, and misuse of Eurocentric disease 

polygenic risk scores8–13. A good example is extrapolating the rare variant findings in 

European populations to a more diverse African population even though rare variants are 

generally population specific8–13. All these gaps have the potential to dilute the benefits 

of the genomic revolution especially in ethnic minorities and resource poor countries and 

further exacerbate the already existing disparity and inequity in health.

In this review, investigators with expertise in genomic medicine in resource poor regions 

will discuss the state of genomic data generation, examine the implications of genomic data 

imbalance, and provide recommendations for accelerating genomic research in low-income 

countries.

Genomic research in Africa

Africa has a population of about 1.4 billion people and 15.4% of the world’s population. 

It is made up of 54 countries and covers 20% of the Earth’s land area as the second 

largest continent. Chronic Kidney disease (CKD) is a public health crisis in Africa with an 

overall estimated prevalence of 15.8% (189 million people).15 Despite the increased risk and 

accelerated progression of CKD in individuals of recent African ancestry, only a minimal 

Ilori et al. Page 3

Semin Nephrol. Author manuscript; available in PMC 2024 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/gwas/efotraits/EFO_0003086
https://www.ebi.ac.uk/gwas/efotraits/EFO_0003086


portion of individuals needing kidney replacement therapy in Africa can receive treatment. 

Delayed diagnosis, rudimentary facilities for the management of CKD, and exorbitant cost 

of treatment of CKD prevent the majority from accessing care. Similar to parts of Asia, 

Africans undergoing kidney replacement therapy have unsustainable out of pocket expenses 

and often sell assets to fund kidney transplantation or dialysis (Figure 3). The case in Figure 

3 illustrates some of the major constraints associated with genetic testing and genomic 

research in Africans with CKD.

To date, Africans are underrepresented in genome wide association studies (Figure 1). In our 

search of the English literature, we identified only one CKD GWAS study that was carried 

out in Africa (Table 1).16, 17 The pitfall of this imbalance is that the findings of >75% of all 

CKD GWAS studies cannot be extrapolated to Africans because of genetic diversity within 

Africa and difference in linkage disequilibrium between Africans and Europeans.18 This 

was clearly illustrated in the single GWAS of estimated glomerular filtration rate (eGFR) 

in a population in East Africa (n=3288) which reported a unique African specific variant at 

the glycine amidinotransferase (GATM), distinct from previously reported eGFR variants in 

European studies.16, 19–20 To the best of our knowledge, there are no published studies of 

large-scale next generation sequencing of CKD patients in Africa, some of the small scale 

studies using different genomic methods is shown in Supplementary Table 3.21 Most of the 

studies focused on replication of candidate genes rather than large scale discovery studies 

because of limited infrastructure and funding for research.21

Historical and Evolutionary Evidence on the Importance of Advancing Genomic Research 
on the African Continent: APOL1 as a case study

APOL1 kidney risk variants arose in the African population less than 10,000 years ago. 

APOL1 variantsare absent in all but African ancestry genome and spread globally due to 

the slave trade from the16th and 19th centuries. The APOL1 gene risk variants for CKD 

are two risk haplotypes (G1 and G2) that arose in African populations presumably due to 

the protection from African sleeping sickness in individuals carrying these variants.22–23 

Investigators proposed that the APOL1 risk variants arose after the “Out of Africa” 

expansion drove populations to other parts of the world, therefore APOL1 variants are 

predominantly observed in individuals of recent African ancestry.23–25 The risk variants are 

rare or non-existent in those without recent African ancestry (European ancestry) because 

the ancestors of modern Europeans migrated from Africa before the risk alleles originated. 

Circulating ApoL1 protects against Trypanosoma brucei and other Trypanosoma that infect 

animals.23 Humans are resistant to T.brucei because of the APOL1, because of this, a 

sub-species of the parasite emerged T. brucei rhodensiense which is resistant to APOL1 
mediated lysis.26 However, ApoL1 protein modified by carriers with genetic risk of G1 and 

G2 are resistant to inactivation by T. brucei rhodensiense and having two copies of APOL1 
risk variants (G1/G1, G1/G2, G2/G2) increases the risk of CKD in a recessive manner 

but the penetrance is incomplete.23, 26–27 In Africa having two copies of the APOL1 risk 

variant is protective against sleeping sickness in areas with high burden of sleeping sickness. 

However, in the US, and other areas that are non-endemic for trypanosomiasis the selective 

advantage is absent but the CKD consequences are present in African ancestry population.25 

The prevalence of the high risk APOL1 genotype is about 13% in African Americans in the 
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US, however the lifetime risk of CKD in patients with CKD is less than 25% suggesting 

the existence of additional CKD genetic risk factors, and possible genetic and environmental 

modifiers of the APOL1 high risk genotype.28–29 These findings demonstrate the importance 

of in-depth study of African genome and the urgent need for increase in pace of genomic 

research in Africa.

Genomic Research in Brazil and Latin America

Latin America is a geographic area where 8.4% of the world population live in 21 countries 

with different degrees of socioeconomic development. This region is also marked by social 

inequality which impacts negatively on health care systems and scientific research.30 The 

admixture population of Latin America started with Northeastern Asia people that arrived 

15,000 to 18,000 years ago, followed by recent arrivals of Europeans and Africans 500 years 

ago, during and after the period of conquering and colonization. More recently, new wave 

of Europeans and populations from Asia represent the Latin America admixture population, 

finally resulting in the general Brazilian genetic ancestry of 68.8–79.5% of European, 10.3–

29.3% of African, and 7.3–18.5% of Native American, these proportions vary between 

regions in Brazil.31–32

Population genomic data on diverse non-European and multi-ethnic admixture populations 

are scarce, and the inhabitants of Brazil, the largest country of Latin America, are not 

represented in the worldwide genomic data bank. In addition, there is no discovery GWAS 

or causal genes for kidney phenotypes from this region. Yet, specific data from this 

population is necessary for meaningful interpretation of existing genomic data sets. Another 

unique aspect of admixture in this region and most likely other regions worldwide is that 

phenotypes such as skin color and/or hair pigmentation does not correlate with genetic 

ancestry, therefore ethnicity determined by physical characteristics or self-declaration is 

usually misleading31–32. Therefore, GWAS and large-scale next generation sequencing in 

patients with CKD in Latin America populations is a unique opportunity to discover 

new loci related to ancestry-specific effects, and its interaction with known loci and the 

southern hemisphere’s unique environment. This specific information is also essential for 

drug discoveries and personalized use of existing therapeutic agents.7 Most of the genetic 

studies from this region are replication studies and results from these studies reinforce the 

need for concerted efforts for large-scale genomic studies (Supplementary Table 4).33–35

A recent example is the study of APOL1 high-risk genotype and steroid resistant nephrotic 

syndrome in Brazil35. In 318 pediatric patients with nephrotic syndrome followed in three 

tertiary pediatric nephrology centers in Brazil, APOL1 high risk genotype was found in 19 

patients (6%), and it was associated with faster progression to end stage kidney disease in 

those with steroid resistant nephrotic syndrome and/or FSGS. Patients who harbor APOL1 
high-risk alleles manifested nephrotic syndrome at older age, as observed in previous studies 

in African Americans, but unexpectedly, 9/19 (47%) of the cohort in Brazil self-declared 

as White.35 This study showed that the self-declaration of ethnicity and race in Brazil and 

possibly other countries in Latin America does not correlate with the ancestry loci driven 

risk, and corroborates the necessity for large scale genomic studies of CKD in this admixed 

population. There are also differences in the prevalence of APOL1 high-risk genotype 
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among Latin American countries. For example, the prevalence of high-risk APOL1 genotype 

in Latinos living in the US varied between 0.1 to 1%, and it is associated with countries and 

regions of origin in Latin America.36

In addition, a study of pediatric patients with nephrotic syndrome who received kidney 

transplantation showed that only 8.4% of them have monogenic nephrotic syndrome (NS) 

compared with 10–30% reported from Europe suggesting that the genetic architecture of 

nephrotic syndrome in Brazil is likely to be different from published data from Europe and 

North America.37

Genomic studies in South Asia

South Asia, comprising eight nations, is home to one-fourth of the world’s population while 

occupying only 3.5% of its land area.38 Almost a quarter of the South Asian population 

falls below the international poverty line of $1.25/day.39 Morbidities related to infectious 

illnesses have declined with improvements in economy and levels of hygiene, leading to 

increased emphasis on non-communicable diseases. Hence, rare inherited diseases have 

emerged as a public health concern, particularly given high rates of consanguinity within 

certain populations in south Asia. Current expenditures on health per capita, however, 

remains low at 60.6 US dollars, and spending on research and development is merely 

0.3–1.3% of the gross domestic product, making genetic testing virtually inaccessible.40–41 

Within Asia, genetic ancestry is strongly correlated with both linguistic affiliations and 

geography similar to Africa.42 Consistent with social history, the extant populations 

inhabiting northern regions of south Asia show genetic similarities to the Indo-European 

populations of central Asia, while the population in the peninsular region and Sri Lanka 

appears to be derived from the early colonizers arriving from Africa along the southern 

exit route.43 Despite its genomic diversity, Asia is significantly under-represented in current 

genetic studies and reference genome databases. For example, in the catalogue of GWAS 

studies of different CKD, apart from the exome-wide association study in children with 

nephrotic syndrome and a study of CKD of undetermined origin (CKDu) from Sri Lanka, 

there is no other GWAS that focuses exclusively on South Asian population.44–45

As recent as 10 years ago, confirming genetic diagnosis for rare kidney diseases in most 

countries in South Asia required samples to be shipped to high-end research laboratories 

in developed nations. Costs of diagnostic testing in leading international laboratories are 

prohibitive at approximately 400–600 US dollars (2010) for inherited diseases such as 

primary hyperoxaluria and Alport disease. Occasionally, testing was facilitated free of 

cost by enterprising clinicians getting in touch with individual researchers, who performed 

testing either on humanitarian grounds, as personal favors, in lieu of participation in disease 

registries, and/or in the interest of furthering knowledge of disease pathogenesis. These 

options enabled etiological diagnosis in anecdotal cases, a few of which were published in 

the early 2000s (Supplementary Table 5).

Availability of next generation sequencing within the region, as part of funded research 

projects as well as through private laboratories, has catapulted exome sequencing into the 

center stage of diagnostic investigations. In most tertiary care centers across India, it is now 
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possible to obtain clinical exome sequencing at a relatively affordable price ($200-$350) as 

part of work up for patients with suspected inherited nephropathies while whole exome 

sequencing costs 50% more. Thus, next-generation sequencing brought about a major 

turnaround in the access to genetic diagnosis.

On the research front, advances in sequencing techniques have clarified the genetic etiology 

of inherited kidney diseases in south Asia, which is often at variance with European 

studies. Research initiatives initiated locally to provide etiological diagnosis for specific 

syndromes through intramural grants at research institutes or government funding have 

enabled registries to explore the inherited basis of specific diseases or syndromes, including 

nephrotic syndrome, atypical hemolytic uremic syndrome, tubulopathies, cystic kidney 

diseases, and identification of founder mutations. For example, similar to Europeans, 

variations in NPHS1 are the leading cause of congenital nephrotic syndrome in India; 

however, certain mutations are very common and/or represent founder mutations, such 

that testing for just three variants in NPHS1 is likely to provide the diagnosis in half 

the cases of congenital nephrotic syndrome.46 Sri Lanka and Andhra Pradesh in India 

are described as hotspots of CKD of unknown origin (CKDu). While this ‘chronic 

interstitial nephritis in agricultural communities’ has been largely ascribed to exposure to 

agrochemicals/herbicides, one GWAS suggested a potential locus on chromosome 10 near 

the SLC13A3 gene for CKDu.45, 47 It should be noted that most of the genomic research 

activities in this region are limited to replication of findings from Europe and North America 

with few discovery studies in South Asians. A shift to well conducted discovery studies for 

monogenic diseases and identification of risk variants for different CKD will define better 

the genetic architecture of CKD In South Asia.

Genomic studies in South-East Asia

Southeast Asia consists of 11 countries, namely Brunei, East Timor, Indonesia, Singapore, 

Malaysia, Laos, Cambodia, Myanmar, Vietnam, Thailand, and Philippines. Covering about 

3% of Earth’s total land area, it has a population of 669 million (~ 8.5% of the 

world’s population). CKD is a common non-communicable disease in the region with 

an estimated overall prevalence ranging from 8.6% in Indonesia and Vietnam to 33% 

in Singapore.48 The genetic underpinning of CKD is not well studied even though the 

Southeast Asian population has distinct genetic variations from the well-studied European 

ancestry population.49

Like the other regions, most of the studies on monogenic diseases or GWAS are replication 

studies of genes, variants, or disease risk loci found in other populations (Supplementary 

Table 6). However, these studies are important as they highlight the important differences. 

A good example is the recent study of genetics of glomerulopathies by the DragoN 

(Deciphering Diversities: Renal Asian Genetics Network) collaborative group.50 In this 

study, 183 probands with suspected genetic glomerulopathies were studied with gene panels 

for glomerulopathies and genetic diagnosis was made in 14% of the probands. In this 

study, >30% of monogenic glomerulopathies were due to variants in COL4A4 or COL4A5 
genes.50 In addition, the prevalence of NPHS1 and NPHS2 mutations (common causes 

of monogenic NS in Europe) was low in this study.50–52 The diagnostic yield and the 
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common genetic causes of glomerulopathies were different from what has been commonly 

reported from Europe and North America suggesting different genetic architecture of 

glomerulopathies.50 The reasons for this is unclear, but it may be due to substantial genetic 

admixture with the Malays and Chinese in South East Asia, and high infant mortality rates 

in early-onset nephrotic syndrome in low-resource settings. A monogenic disease discovery 

study reported from this region is the identification of mutations in SLC4A1 as a cause of 

distal renal tubular acidosis and ovalocytosis syndrome.53–54 This is a common monogenic 

disease found exclusively among populations in South East Asia, the red cell abnormality 

(ovalocytosis) is believed to have evolved as a protective mechanism against plasmodium 

falciparum malaria.54 These findings are clear illustrations of host genetic adaptation to 

malaria in Southeast Asia and further support the need for gene and environment interaction 

studies.

There are also few genetic association studies in patients with CKD from South East 

Asia.55–56 Despite the fact that IgA nephropathy is a common kidney disease in this region, 

most of the discovery studies were carried out in populations derived from East Asia and 

North America.57–59 The only discovery study in IgA nephropathy from this region was a 

Singapore study performed in 28 Chinese and 30 controls.55 While 42 genes were identified 

as possible susceptibility genes for IgA nephropathy, this study was grossly underpowered 

to imply any meaningful association or clinical significance. Another northeastern Thai 

study involving in 216 patients with nephrolithiasis and 216 controls identified the variant 

c.326T > A (rs2274907) in intelectin-1 (ITLN1) gene as a risk factor for nephrolithiasis. 

However, just like the IgA nephropathy report, this study was carried out in a small cohort 

and the significance is unclear.56 There is a clear need for large collaborative studies of 

different CKD phenotypes in order to gain insight into the genetic landscape of CKD, and 

potentially identify important novel and major disease risk variants, similar to how variants 

in APOL1 genes were discovered as major drivers of excess of CKD in people of African 

ancestry.23, 60–61

Implications of the imbalance in CKD genomic data in resource poor 

countries

The identification of variants in APOL1 high risk genotypes as the major genetic driver of 

CKD in people of African ancestry and subsequent discovery of compounds that can prevent 

or treat APOL1 associated nephropathy is a clear illustration of the need for equitable 

representation of different ancestral populations in genomic research.23 All the regions in 

this review are not well represented in publicly available genome database, yet they are 

likely to have distinct genetic variations different from currently available genomic data. 

In addition, most of the populations are not monolithic and are comprised of admixed 

populations that can enrich currently available genomic data and facilitate the discovery of 

novel diseases associated variations in the human genome. Some of the inherent problems 

associated with leaving these regions and other regions behind in the genomic revolution 

include:

i. Limitations to discovery of new variants in different populations: Genetic 

discovery relies on studies in the population of interest and needs to be of 
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adequate power to detect an association, which in turn depends on effect size 

and the frequency of the variants. For example, variants that are common in 

individuals of African ancestry but rare in European populations cannot be 

discovered even with large scale studies in Europeans. This is clearly illustrated 

by the discovery of APOL1 CKD risk variants in Africans, and identification 

of causal genes for distal renal tubular acidosis and ovalocytosis syndrome in 

South East Asian population.23, 53 Furthermore, medications developed targeting 

molecular pathways may not be generalizable globally due to the regional 

differences in genetic architecture.

ii. Danger of using polygenic risk scores derived from other populations: A 

polygenic risk score (PRS) estimates the genetic risk to a trait or disease by 

summing up the independent risk associated with a trait or disorder using the 

most informative GWAS data. There are limitations in the generalizability of 

polygenic risk scores derived from European ancestry to other populations. 

Polygenic risk scores derived from European samples predict individual risk 

better in individuals of European ancestry than non-Europeans. For example, 

the poor performance of PRS discovered in European population in individuals 

of African ancestry may arise from diverse population structure, differences in 

variant frequencies, and differences in linkage disequilibrium patterns between 

African and European populations.62–63 This was clearly illustrated by a recent 

study in which the investigators found that prediction accuracy of PRS for 

anthropometric measurement and blood panel in the UK Bio Bank using 

European derived statistics performed poorly in Africans.63 Indeed, if current 

polygenic risk scores continue to be used, health disparities may be exacerbated, 

especially in individuals from resource poor countries.

iii. Unequal access to genomic testing and counseling services in resource poor 
regions: A downstream effect of the low-level of genomic research in these low 

resource regions is the paucity of genomic testing and counselling services. As 

seen in the case illustration from Africa (Figure 3), most people in these regions 

do not have ready access to clinical genetic testing, they do not have information 

about where they are available, and the tests are expensive and out of reach of 

many of them.

iv. Ethical, legal, and social implications (ELSI) of the imbalance of genomic 
research: Several studies have demonstrated significant ethical and scientific 

challenges in using genetic data without adequate representation from other 

populations.9, 64 Return of results is crucial and with the paucity of genetic 

counsellors in low-resource regions of the world, return of genomic results 

to participants is challenging. We cannot achieve health equity until when 

access to genetic testing and counselling is fair and balanced across populations 

irrespective of economic status or geography. Cultural differences across 

populations should also be taken into consideration when sharing genomic 

results. Additionally, there is need for genomic knowledge to be globally 

applicable and free of bias during implementation.64
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Strategies to improve genetic testing, research and clinical implications

To address this imbalance and to benefit maximally from the huge investments in genomic 

research so far, concerted efforts must be put in place to reduce the gap in genomic studies 

between resource endowed and resource poor regions. It is obvious that region-specific 

strategies are more likely to work. Two important points to highlight are that regardless 

of the source of the funding for genomic research, partnerships with local scientists, and 

community groups is crucial. Additionally, clarity on who has ownership of the data and 

data sovereignty needs to be well documented prior to the onset of the research. Below 

is a description of ongoing programs that are addressing this gap in different regions and 

proposed programs that may work across regions.

Africa

The Human Hereditary and Health in Africa Kidney Disease Research Network (H3A-

KDRN) is a research funded by the National Institute of Health in the US, consisting of 16 

academic medical centers in five African countries (Tanzania, Cameroon, Nigeria, Ghana, 

and South Africa).65 It is a part of the H3Africa Consortium funded by the NIH in the 

US and the UK Wellcome Trust.66 The goal of the H3Africa consortium is to identify the 

genetics underpinnings of both non-communicable and communicable diseases in Africa 

including CKD.67–68 The kidney disease cohort has recruited over 12,000 participants 

(cases with CKD and controls) and enrolled an additional 4000 participants with CKD in a 

prospective longitudinal cohort. The study has performed 750 renal biopsies and conducted 

GWAS in 3000 research participants.65 Adopting continent-wide efforts like the H3Africa 

framework in other low -resource settings may be crucial for playing catch-up in genomic 

research.

Latin America

The Brazilian public health system Sistema Unico de Saude (SUS) does not cover genetic 

testing and most Brazilians cannot afford out of pocket cost associated with genetic testing. 

In this context, The National Policy for the Comprehensive Care of Persons with Rare 

Diseases was launched in 2014 to regulate the integral care of people with genetic diseases 

and other rare conditions. With political and economic downturn, the availability of genetic 

testing through this program is still very limited.69 In 2021, the Agência Nacional de Saúde 

(ANS) in Brazil established the normative Resolution 465/21 that mandate genetic testing 

for hereditary cancers, neurologic, and syndromic or multisystemic diseases for private 

health sector that covers 25% of Brazilian population. This program will likely increase the 

number of Brazilian patients with access to genetic studies. Unfortunately, this program does 

not cover CKD, therefore advocacy efforts is ongoing to include CKD in this program.

At the population level, Brazil, the largest country in Latin America, is leading the effort 

to generate population based genomic data. The ABraOM (online Archive of Brazilian 

Mutations) is a Web-based public database that initially comprised exonic variants of 609 

individuals, and more recently included genomic data of 1,171 unrelated individuals from 

the Saude, Bem-Estare Envelhecimento (SABE) study (Table 2). The SABE study is a 

study of health, well-being, and aging sponsored by the Pan American Health organization 
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(PAHO), where seven Latin America countries including Brazil are participating. In Mexico, 

300 non-related self-identified Mestizo individuals from seven states were sequenced 

for Ancestry analysis as part of the Mexican Genome Diversity Project (MGDP). The 

proportion of Native American ancestry was higher than in Brazil, varying from 36.2 to 

66%, and was inversely proportional to the contribution of European ancestry, depending 

on the Mexico region. The African and East Asian ancestry contributions, in turn, 

are homogeneous among the seven states. Interestingly, a significant number of private 

haplotypes were found in the analyzed Mexican individuals. These initial findings pointed 

out the importance of increasing the number of Latino population sequencing to better 

understand their unique genomic variability and its potential implication in common 

complex disease in this specific population.70 In October 2021, the oriGen initiative 

was launched, this program is proposing to sequence the DNA of 100,000 Mexicans in 

order to create a genetic information database in collaboration with National Institute 

of Genomic Medicine, this study will be the largest study in Latin America when 

completed. (https://conecta.tec.mx/en/news/national/research/deciphering-mexican-genome-

challenge-origen-project, accessed 06/09/2022).

Research Institutes and professional societies are also collaborating to ensure universal 

availability of genetic testing, a recent initiative is that of the Brazilian Network for Pediatric 

Nephrotic Syndrome (REBRASNI) that was launched by three Brazilian public universities, 

the University of Sao Paulo, Federal University of Sao Paulo, and State University of 

Campinas. The goal of this program is to promote research in nephrotic syndrome for 

pediatric patients, generate resources for research from the government and private sector, 

and collaborate with other Investigators within and outside Brazil.71 A summary of some of 

these programs can be found in Table 2.

South Asia

A number of programs and initiatives sponsored by the government and large institutions 

are ongoing in this region to increase the pace of discoveries and address the imbalance 

(Table 2). The Genome Asia 100K Project was launched in 2016, the aim of this 

project is to sequence the genomes of 100,000 Asian individuals.72 Following the pilot 

phase of this project, 1739 genome sequences were published from samples across 64 

Asian countries, the completion of the project is expected to profoundly change our 

understanding of the genomic diversity of south Asia.72 Establishment of registries and 

collaborative efforts among researchers in this region of the World is also addressing the 

problem associated with dearth of genomic data and understanding of the genetic basis of 

different CKD. A good example is the Genomics for Understanding Rare Diseases: India 

Alliance Network (GUaRDIAN), this program intends to provide genomic solutions for rare 

diseases in India.73 Resources available publicly through this program include the SAGE, 

a compendium of genetic variants integrating South Asian whole genomes and exomes,74 

IGVdb, a DNA variation database of Indian population useful in understanding various 

aspects of human disease biology, including disease predisposition, adverse drug reaction 

and population migration.75 The INDEX-db is a database of genetic variations from the 

Indian population,76 the Indian Genetic Disease Database (IGDD),77 the India Allele Finder, 

a web-based annotation tool for identifying common alleles in next-generation sequencing 
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data of Indian origin,78 and the ClinIndb, a catalog of the frequencies of rare and deleterious 

variants in the Indian population created using high-throughput genotyping and sequencing 

methods.79 Registries specific to kidney diseases were established and/or shared preliminary 

findings on inherited basis of disease, include those for childhood nephrotic syndrome 

(NephQuest), tubular diseases, hemolytic uremic syndrome and CAKUT (Supplementary 

Table 5).46

Concerted efforts to bridge the gaps in access to genetic diagnosis include partnerships 

between clinicians and researchers to set up a comprehensive rare disease care model in 

south India, and the creation of the Genomics and other omics technologies for Enabling 

Medical Decision (GOMED).80 This is a long-term outreach program of the Council of 

Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology, that 

will enable equitable access to all patients to state-of-the-art genetic testing.81

South-East Asia

Initiatives are also ongoing in this region Deciphering Diversities: Renal Asian Genetics 

Network (DragoN) is a South Asia and South East Asia initiative that will facilitate 

large-scale genomic studies in the region (Table 2). Precision Health Research, Singapore 

(PRECISE) will enable more genetic testing. Genetic tests remain unaffordable to the 

majority of the people in Singapore despite its high gross domestic product (GDP). In 

addition, the lack of genetic counsellors, low genetic literacy amongst nephrologists and the 

public, and the implications of a genetic diagnosis on existing insurance policies and future 

insurability are huge barriers in increasing the uptake of genetic testing in Singapore. These 

barriers are currently being addressed by a public clinical implementation project initiated 

by the Precision Health Research, Singapore (PRECISE) (https://www.npm.sg/).

Recommendations to bridge the genomic research gap

As genomic research continues to advance and new therapeutic targets emerge, it is 

crucial that infrastructure and funding for research expands in low-resource regions to 

ensure balance in genomic research globally. There is need for multiple stakeholder 

engagement and investment (government, research establishments, public and private 

sectors, international scientific organizations). Table 3 shows some recommendations to 

bridge the gap in genomic advances between low -resource and more affluent regions of the 

world.82

Conclusion

Despite several efforts across South Asia, South East Asia, Latin America and Africa 

to increase genomic research in CKD, there remains a paucity of studies focused on 

kidney disease from these regions. Without addressing genomic research globally, we 

cannot improve global health inequities in kidney disease. This is an important global 

issue, whichcalls for nephrologists to advocate on behalf of our patients. It is our 

social responsibility to address inequities. Funding agencies, federal governments, private 

partnerships, and researchers also have unique role to play in initiatives to correct the global 

imbalance in genomic research.
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Figure 1: Publicly available next generation sequencing by ancestries.
Publicly available next generation sequencing by African, East Asian, European and South 

Asian Ancestries (red bar). Blue bar represent the proportion of each ancestries as a 

percentage of the world population.
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Figure 2: Proportion of continental population and kidney related GWAS studies in the NHGRI 
catalogue.
Figure 2 shows the proportion of the continental population and kidney related GWAS 

studies across Africa (0%), Southeast Asia (0%), Latin America (0%), South Asia (0%), 

Europe (37.5%), North America (37.5%), and East Asia (25%). Green dots represents 

percentage of World population, Red dots represent percentage of reported GWAS.
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Figure 3: 
Case Study of genetic testing in an African with Focal Segmental Glomerulosclerosis.
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Table 1:

Discovery studies of genetics of CKD from populations with ancestries in resource poor regions of the World

Study Population Method Phenotype Loci/gene

Jarolim et al. Deletion in erythrocyte band 3 gene in 
malaria-resistant Southeast Asian ovalocytosis. Proc Natl 
Acad Sci U S A. 1991 Dec 15;88(24):11022–6.

South East Asia 
Cases: 30
Controls: 30

Positional 
cloning

Distal RTA and 
ovalocytosis 
syndrome

SLC4A1

Kopp et al. MYH9 is a major-effect risk gene for 
focal segmental glomerulosclerosis. Nat Genet. 2008 
Oct;40(10):1175–84.

African American 
Cases: 190
Controls: 222

MALD FSGS
ESKD

MYH9

Kao et al. MYH9 is associated with nondiabetic end-
stage renal disease in African Americans. Nat Genet. 
2008 Oct;40(10):1185–92.

African American 
Cases: 1372
Controls: 806

MALD Non-diabetic 
ESKD

MYH9

Genovese et al. Association of trypanolytic ApoL1 
variants with kidney disease in African Americans. 
Science. 2010 Aug 13;329(5993):841–5.

African American 
Cases: 205
Controls: 180

Fine mapping 
of MYH9 
locus

FSGS
ESKD

APOL1

Woo et al. Parallel genotyping of 10,204 single 
nucleotide polymorphisms to screen for susceptible 
genes for IgA nephropathy. Ann Acad Med Singap. 2009 
Oct;38(10):894–9.

South East Asian 
Cases: 28
Controls: 13

GWAS IgA Nephropathy GCM1TNRTRDN

Nanayakkara et al. An integrative study of the genetic, 
social and environmental determinants of chronic kidney 
disease characterized by tubulointerstitial damages in the 
North Central Region of Sri Lanka. J Occup Health. 
2014;56(1):28–38.

South Asian Cases: 
311
Controls: 504

GWAS CKD of 
unknown 
etiology

SLC13A3

Gbadegesin et al. HLA-DQA1 and PLCG2 Are 
Candidate Risk Loci for Childhood-Onset Steroid-
Sensitive Nephrotic Syndrome. J Am Soc Nephrol. 2015 
Jul;26(7):1701–10

South Asian Cases: 
214
Controls: 149

Exome 
association 
study

Childhood 
steroid Sensitive 
nephrotic 
syndrome

HLA-DQA1

Pungsrinont et al. Association between intelectin-1 
variation and human kidney stone disease in northeastern 
Thai population. Urolithiasis. 2021 Dec;49(6):521–532

South East Asian 
Cases: 105
Controls: 105

GWAS Kidney stone ITLN1

Fatumo et al. Discovery and fine-mapping of kidney 
function loci in first genome-wide association study in 
Africans. Hum Mol Genet. 2021 Jul 28;30(16):1559–
1568.

African Cases: 3,288
Controls: 8,224

GWAS eGFR GATM

Table showing the major discovery studies of genetic studies from resource poor regions of the world. RTA: renal tubular acidosis, GWAS-
genome wide association studies, APOL1-ApoliporotienL1, egfr-estimated glomerular filtration rare, FSGS- focal sclerosing glomerulosclerosis. 
IgA-Immunoglobulin
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Table 2:

Ongoing initiatives to bridge the genomic research gap between resources limited and resources endowed 

regions

Initiative type Name Region/Country

International funding and capacity building H3A-KDRN Africa

Legislation Normative Resolution 465/21 Latin America/Brazil

Population based genome sequencing ABraOM Latin America/Brazil

oriGEN Latin America/Mexico

Genome Asia 100K Project South Asia

Registries and database Genomics for Understanding Rare Diseases: India Alliance Network 
(GUaRDIAN)

South Asia

SAGE: Genetic variants from South Asian whole genomes and 
exomes

South Asia

IGVdb, INDEX-db, IGDD, ClinIndb: DNA variations database of 
Indian population

South Asia/India

Clinical genomic tools GOMED South Asia

Professional network Brazilian Network for Pediatric Nephrotic Syndrome (REBRASNI) Latin America/Brazil

DragoN network (Asia renal genetics network) Southeast Asia

NephQuest (Cohort study, bio repository and genetics of steroid 
resistant nephrotic syndrome)

South Asia

Bio repository and registry for hemolytic uremic syndrome South Asia

Registry for renal tubular disorders South Asia

H3A-KDRN-Human Hereditary and Health in Kidney Disease Research Network AbraOM- Arquivo Brasileiro Online de Mutações (Online 
Archive of Brazilian Mutation) GoMED-Genomics and other omics tools for enabling medical decision
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Table 3:

Recommendations to bridge the gaps in genomic research in resource poor regions82

Increase representation of resource poor countries in genomic research

 Funders Include resource poor countries in large funding announcements
Focused studies engaging diverse populations in the regions
Fund community engagement efforts and community based participatory research

 Researchers Shift in focus from replication to discovery studies
Prioritize community engagement and community based participatory research
Collaborations with researchers in the diaspora
Include ethical, legal, and social implications in genomic research
Focus on larger studies where complex traits can be investigated
Design culturally sensitive studies

 Regional government, public and private 
sectors

Increase funding for genomic research by home countries
Provide infrastructure for genomic research and testing
Consider public-private partnerships to advance genomic research
Provide training opportunities
Focus on large campaigns educating the population on genomic research
Develop more tools to interrogate population specific genomes

Improve access to genomic services

 Funders Requirement from funders to include diverse population in studies
Funding and support for investigators in Western countries working in poor resource regions

 Researchers Ensure return of results and genetic counselling to participants
Design implementation studies to integrate genomic research in clinical setting

 Regional government, public and private 
sectors

Ensure that majority of the population have access to genomic services
Build expertise and infrastructure for genetic counselling and return of results
Fund training initiatives for specialists in genomic research
Policies to include genetic testing in national and private health insurance schemes61
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