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Abstract

Chromatin states are functionally defined by a complex combination of histone modifications, 

transcription factor binding, DNA accessibility, and other factors. Current methods for defining 

chromatin states cannot measure more than one aspect in a single experiment at single-cell 

resolution. Here, we introduce nanobody-tethered transposition followed by sequencing (NTT-

seq), an assay capable of measuring the genome-wide presence of up to three histone 

modifications and protein-DNA binding sites at single-cell resolution. NTT-seq utilizes 

recombinant Tn5 transposase fused to a set of secondary nanobodies (nb). Each nb-Tn5 fusion 

protein specifically binds to different immunoglobulin-G antibodies, enabling a mixture of primary 

antibodies binding different epitopes to be used in a single experiment. We apply bulk- and single-

cell NTT-seq to generate high-resolution multimodal maps of chromatin states in cell culture and 

in human immune cells. We also extend NTT-seq to enable simultaneous profiling of cell-surface 

protein expression and multimodal chromatin states to study cells of the immune system.

Several related methods were recently developed that enable individual aspects of chromatin 

state to be measured at single-cell resolution via an antibody-guided DNA tagmentation 

reaction (1–3). However, chromatin states are characterized by combinations of factors at 

an individual locus (4), including histone posttranslational modifications and the binding 

of non-histone proteins to the DNA. For example, promoters are commonly marked by 
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both H3K27ac and H3K4me2, whereas enhancers are marked by H3K27ac but typically 

lack H3K4me2. Furthermore, active and poised enhancers are both marked by H3K4me1 

and can be distinguished by the presence of H3K27ac (5). Therefore, multimodal single-

cell chromatin profiling methods are required to fully characterize chromatin states in 

heterogeneous tissues.

A majority of single-cell chromatin profiling methods employ protein-A/G fused to Tn5 

transposase (1–3,6,7). Protein-A/G binds to IgG antibodies, enabling Tn5 to be directed 

to regions of the genome where an IgG antibody is bound and insert adapters for DNA 

sequencing. As protein-A/G binds to IgG antibodies from different species with high 

affinity, such methods are difficult to perform in an antibody-multiplexed design aiming 

to measure multiple histone modifications in a single experiment. Current approaches for 

multimodal chromatin profiling using protein-A/G, such as MulTI-Tag, involve complex 

experimental workflows with multiple wash and incubation steps (7). Such methods 

have not been demonstrated to work with complex tissues (6,7), thus limiting their 

broader application. We reasoned that the use of small single polypeptide chain antibodies 

(nanobodies) that specifically bind IgG from different species or different IgG subtypes 

in place of protein-A/G may enable the multiplexing of primary antibodies to facilitate 

a multimodal chromatin assay (8). Nanobodies bind strongly to their target epitope with 

dissociation constants (Kd) in the high picomolar-scale, whereas protein-A/G has Kd in the 

low nanomolar scale (9,10). Furthermore, nanobodies are stable under a broad temperature 

and pH range. We hypothesized that a nanobody-Tn5 (nb-Tn5) fusion would form a stable 

and specific protein-protein complex with a target primary IgG antibody.

In this study we engineered a set of nanobody-Tn5 fusion proteins and apply these 

fusion proteins in a multiplexed chromatin-profiling assay, measuring up to three distinct 

chromatin targets genome-wide simultaneously in single cells. We demonstrate the accuracy 

of multiplexed chromatin data obtained using our novel assay using cultured cells and 

human immune cells from the bone marrow and peripheral blood.

Results

We engineered and produced four different recombinant nb-Tn5 fusion proteins, specific 

for IgG antibodies from different species or IgG subtypes (Fig. 1A, Extended Data Fig. 

1A). This included anti-mouse and anti-rabbit IgG nanobodies, as well as isotype-specific 

nanobodies for mouse IgG1 and IgG2a. Loading nb-Tn5 fusion proteins with barcoded DNA 

adaptor sequences enables the identity of individual nb-Tn5 fusion proteins that generated 

the sequenced DNA fragment to be determined through DNA sequencing.

We tested each recombinant nb-Tn5 fusion in a bulk-cell NTT-seq experiment and obtained 

an NTT-seq library only when the nb-Tn5 matched the target antibody, while the incubation 

of nb-Tn5 with the unmatched Ab resulted in no library amplification via PCR (Extended 

Data Fig. 1B). Motivated by this result, we performed multiplexed NTT-seq aiming to 

profile multiple different chromatin features in a single experiment. In our protocol, 

extracted nuclei are stained in a single step using primary antibodies for multiple epitopes 

simultaneously, the excess antibody is washed and nuclei are incubated with a mixture of 
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adapter-barcoded (11) nb-Tn5s, with each nb-Tn5 recognizing a specific IgG antibody. 

Subsequently, nb-Tn5s are activated by adding Mg2+ resulting in the tagmentation of 

genomic DNA in proximity of the primary antibody. The released DNA fragments harbor 

specific barcodes enabling the assignment of sequenced fragments to an individual nb-Tn5 

and its associated primary antibody (Fig. 1B).

To test the targeting specificity of our species-specific nb-Tn5 fusion proteins, we used 

antibodies for H3K27me3 and H3K27ac in bulk human peripheral blood mononuclear 

cells (PBMCs), as these marks do not co-occur in the genome (12). Multiplexed NTT-seq 

resulted in libraries with nearly identical genomic distributions for each separate mark to 

matched NTT-seq performed on the same cells for each histone mark separately (Fig. 1C). 

The enrichment of sequenced fragments falling in H3K27me3 and H3K27ac peaks was 

approximately the same across the multiplexed and non-multiplexed experiments (Fig. 1D, 

E), and showed mutual exclusivity (Fig. 1F, G; Extended Data Fig. 1C). This suggests that 

multiplexed NTT-seq results in highly accurate localization of chromatin marks genome-

wide. Then, we tested our isotype-specific nb-Tn5 profiling of three primary antibodies in 

a single experiment, repeating similar experiments using K562 cells staining with mouse 

IgG1 antibody against H3K27me3, mouse IgG2a antibody against H3K27ac, and including 

an additional rabbit IgG antibody for RNA Polymerase II (RNAPII) with phosphorylated 

Serine 2 and Serine 5 (elongating RNAPII, enriched on actively transcribed genes) (13). 

In comparison with a control experiment in which each of the three targets was profiled 

individually, multiplexed NTT-seq again produced comparable target enrichment specificity 

in peaks (Fig. 1H, I, J; Extended Data Fig. 1D), demonstrating the ability to profile three 

targets simultaneously, as well as the ability to profile non-histone proteins.

Encouraged by the results obtained in bulk cells, we next applied NTT-seq to characterize 

multimodal chromatin states at single-cell resolution using the 10x Genomics scATAC-seq 

kit (Fig. 2A). We profiled H3K27me3, H3K27ac and elongating RNAPII in a mixture 

of 8,617 K562 and HEK293 cells. We obtained on average 743 (s.d. 699) fragments 

for H3K27me3, 382 (s.d. 282) fragments for H3K27ac and 542 (s.d. 350) fragments for 

RNAPII per cell, outperforming the recently-developed multiCUT&Tag method (6) in terms 

of sensitivity and specificity (Extended Data Fig. 2A, B, C; Extended Data Table 1). We 

projected cells into a low-dimensional space using latent semantic indexing (LSI) and 

UMAP (14,15), and clustered cells using a weighted combination of all three data modalities 

(16) (Fig. 2B). We identified two groups of cells corresponding to K562 and HEK293 cells. 

The genomic distribution of reads for each mark obtained in the multiplexed single-cell 

experiment was highly similar to data from the same cell lines where each feature was 

profiled individually in bulk (Fig. 2C, Extended Data Fig. 2B). Examining the distribution 

of fragments at ATAC (17), H3K27me3, H3K27ac, and RNAPII peaks further showed the 

co-occupancy of RNAPII and H3K27ac in open chromatin regions, while the signal for 

H3K27me3 was mutually exclusive with the other profiled marks (Fig. 2D, E). Furthermore, 

multiplexed single-cell-derived signals were highly correlated with bulk-cell signal for each 

assay profiled individually (Fig. 2D). Using a combination of cellular modalities provided 

the strongest separation of the two cell types in low-dimension space. When constructing a 

neighbor graph, we observed a higher fraction of a cell’s neighbors belonging to the same 

cell type as that cell when using multiple modalities (Fig. 2F). This highlights the value 
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of multimodal chromatin data in measuring cellular states, and together these results show 

that NTT-seq is an effective method for profiling multiple chromatin modalities at single-cell 

resolution.

We next sought to extend the NTT-seq method to enable simultaneous measurement of cell 

surface protein expression alongside multimodal chromatin states at single-cell resolution. 

Building on the recently-developed CUT&Tag-pro method (18), we stained a population of 

mobilized PBMCs with an oligonucleotide-conjugated panel of 173 antibodies targeting 

immune-relevant cell surface proteins. Cells were then crosslinked, permeabilized, and 

incubated with antibodies against H3K27me3 and H3K27ac, and our standard NTT-seq 

protocol followed to generate single-cell libraries. This resulted in a dataset of 4,684 cells 

with a mean of 2,854 H3K27me3 and 412 H3K27ac fragments per cell (s.d. 2,953, 356 

respectively), with similar sensitivity and specificity to PBMC scCUT&Tag (19) (Extended 

Data Fig. 3A). We further quantified 690 antibody-derived tag (ADT) counts per cell (s.d. 

613), achieving a sensitivity similar to the recently demonstrated scCUT&Tag-pro method 

(Extended Data Fig. 3B) (18). We clustered cells using a weighted combination of each 

modality (16) and annotated cell clusters based on their patterns of protein expression 

(Fig. 3A). Protein expression patterns were concordant with cell clusters determined from 

a chromatin-based clustering, and we observed uniform expression of CD3 in T cells, 

mutually exclusive expression of CD4 and CD8, expression of CD14 in monocytes, CD19 in 

B cells, and IL2RB in NK cells (Fig. 3B). Pseudobulk H3K27me3 and H3K27ac NTT-seq 

profiles were highly correlated with individual single-cell CUT&Tag-pro (18) profiles for 

human PBMCs for the same histone marks (Fig. 3C). Consistent with our previous results, 

we also observed an extremely low coefficient of determination (R2=0.00028) between 

H3K27me3 and H3K27ac levels within peaks (Fig. 3D), further supporting the accuracy 

of multiplexed NTT-seq single-cell profiles when applied to complex tissues. We observed 

consistency between chromatin states and protein expression patterns for each cell type, 

supporting accurate cell-surface protein quantification. For example, the PAX5 locus was 

repressed in non-B cells with low CD19 protein expression, and active in B cells with 

high CD19 expression (Fig. 3E). Similarly, the CD33 locus was active in monocytes with 

high CD33 protein expression and repressed in B cells with low CD33 expression. To 

evaluate the accuracy of our cell type classifications and multimodal chromatin landscapes 

measured by NTT-seq, we compared the results of our single-cell NTT-seq experiment with 

FACS-sorted ChIP-seq profiles for CD14 monocytes, CD34+ CMPs, and B cells previously 

published by the ENCODE consortium (17). Pseudobulk profiles generated from our NTT-

seq cell types recapitulated the expected cell-type-specific ENCODE ChIP-seq profiles 

(Extended Data Fig. 3C). To evaluate the reproducibility of single-cell chromatin profiles 

measured by scNTT-seq, we generated a second scNTT-seq dataset measuring H3K27me3 

and H3K27ac in human PBMCs (Extended Data Fig. 3D). This dataset achieved a similar 

level of sensitivity and specificity (Extended Data Fig. 3E,F, Extended Data Table 1), and 

was highly correlated with the genome-wide chromatin profiles obtained in our first PBMC 

dataset (Extended Data Fig. 3G), supporting the reproducibility of the assay.

While cell-surface protein expression information provides a powerful method of studying 

immune cells, these methods are of limited value outside of the immunology field. To test 

whether a low-dimensional structure similar to that obtained using protein expression could 
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be learned using the chromatin data alone, we compared the neighbor graphs obtained using 

protein expression data to that obtained using individual or combined chromatin modalities. 

While individual chromatin marks were unable to faithfully recapitulate the low-dimensional 

structure observed when including protein expression data, the combination of H3K27me3 

and H3K27ac modalities provided a similar low-dimensional neighbor structure (Fig. 3F). 

This again highlights the unique power of multimodal chromatin data in resolving cellular 

states, and indicates that multiplexed NTT-seq may be a powerful method capable of 

characterizing heterogeneous tissues without the need for cell surface protein measurements.

We next sought to apply NTT-seq in a complex tissue that contains differentiating cells to 

capture chromatin remodeling dynamics that shape cellular identity. We profiled H3K27me3 

and H3K27ac in human bone marrow mononuclear cells (BMMCs) (Fig. 3G). This resulted 

in 5,236 cells with a mean of 1,217 and 326 fragments per cell for H3K27me3 and 

H3K27ac respectively (Fig. 3H, Extended Data Table 1). We annotated cell clusters using 

a combination of label transfer using an annotated BMMC scATAC-seq dataset (20,21) 

using the H3K27ac assay, and manual annotation inspecting the presence of active and 

repressive histone marks at key marker genes for each cell type. We identified the expected 

cell types present in the immune system, including hematopoietic stem and progenitor cells 

(HSPCs) (Fig. 3G). Consistent with results obtained using cells in culture and PBMCs, 

we observed mutual exclusivity between H3K27ac and H3K27me3 across regions of the 

genome for BMMCs, and a mean fraction of fragments in ENCODE peaks of 0.18 and 

0.26 for H3K27me3 and H3K27ac, respectively (Extended Data Fig. 4A, B). To study 

how multimodal chromatin states may change during cell development, we ordered cells 

belonging to the B cell lineage, including HSPCs, common lymphoid progenitors (CLPs), 

pre-B, B, and plasma cells along a developmental pseudotime trajectory using Monocle 3 

(22) (Fig. 3I).

While the H3K27ac data was more sparse than the H3K27me3 data, combining data from 

both modalities enabled a trajectory to be identified that revealed the expected ordering 

of cells in a trajectory leading from HSPCs through CLP, pre-B, B, and plasma cells. To 

identify regions of the genome that changed their H3K27me3 and H3K27ac state across this 

trajectory, we quantified fragment counts for each cell in 10 kb bins spanning the entire 

genome for each chromatin modality. We identified genome bins with signal correlated with 

pseudotime (Pearson correlation >0.2, Bonferroni-corrected p-value < 1e-08), and identified 

a set of 514 regions with opposing relationships between H3K27me3 and H3K27ac signal 

(>0.5 difference in Pearson correlation between the marks). Sorting these regions by the 

point at which they reached maximal H3K27me3 signal revealed an ordered sequence of 

sites that became repressed or activated during B cell development (Fig. 3J). The genome 

bin with the strongest gain in H3K27ac and loss of H3K27me3 signals across pseudotime 

was located at the PAX5 promoter (H3K27me3 r = −0.70, H3K27ac r = 0.53), a B-cell-

specific transcription factor. Of the 514 dynamic sites, we further identified 87 of these 

sites that displayed dynamic H3K27me3 and H3K27ac states across the B cell trajectory, 

but were static in their DNA accessibility profile (|r| < 0.05, Bonferroni-corrected p > 

0.01), as quantified in an existing BMMC scATAC-seq dataset (20). This suggests that 

additional chromatin state dynamics can be identified using multimodal epigenomic data 

generated by scNTT-seq. Further experimental analysis will be required to fully characterize 
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the function of these chromatin-dynamic sites in B cell development. To systematically 

assess the cell-type-specific expression pattern of genes located near genomic bins that were 

repressed or activated along the B cell pseudotime trajectory, we examined a published 

scRNA-seq dataset for healthy human BMMCs. We identified the closest gene to each 

pseudotime-correlated genome bin, and classified these as activated (positive correlation 

between H3K27ac and pseudotime) or repressed (positive correlation between H3K27me3 

and pseudotime). Examining the expression of repressed and activated genes in the scRNA-

seq dataset revealed concordant patterns of gene expression, with chromatin-activated genes 

becoming expressed later in B cell development, and repressed genes being expressed in 

HSPCs but turned off later in B cell development (p < 2.2e-16, t-test; Fig. 3K).

Discussion

Together these analyses demonstrate that NTT-seq datasets provide accurate multimodal 

chromatin landscapes at single-cell resolution, contain sufficient information to identify 

major cell types and states in primary human tissues, provide profiles that reflect high-

quality bulk ChIP-seq data (17), and can be generated in conjunction with accurate 

cell-surface protein expression measurements. Existing multimodal chromatin technologies 

require complex experimental workflows and have not been demonstrated to work with 

complex tissue samples (6,7), or are strictly limited in the chromatin states that they 

can measure (23). NTT-seq overcomes both of these limitations, providing a streamlined 

experimental workflow applicable to complex tissues.

Current limitations of this method, as well as other tagmentation-based chromatin profiling 

methods, include the need to perform tagmentation in high salt conditions to avoid 

open chromatin bias (1). This may preclude the measurement of some DNA binding 

proteins, including some transcription factors. Furthermore, the small number of currently 

available secondary nanobodies limits the number of different marks that can be profiled 

simultaneously.

We anticipate future reagent development and protocol improvements will enable us to scale 

NTT-seq to profiling of more than three marks simultaneously, and are actively working 

on the generation of additional nb-Tn5s targeting antibodies raised in different species such 

as goat, rat, sheep, guinea pig and multiple IgG isotypes within the same species. This 

will expand the portfolio of reagents for multimodal chromatin profiling. The application 

of computational integration methods (18,21) may also enable composite profiles for 

many aspects of chromatin states to be generated in silico, beyond what is feasible to 

measure in a single experiment. Moreover, we anticipate that the use of dual-barcoded 

nb-Tn5 can be implemented in our protocol to investigate intra-locus interactions between 

different chromatin features, such as bivalent promoters or enhancers. We believe that the 

simplicity with which NTT-seq achieves simultaneous profiling of chromatin features makes 

this approach particularly appealing, and could represent the standard for multifactorial 

chromatin mapping in the future.
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Conclusions

In this study we have developed a novel multifactorial chromatin-profiling method, NTT-

seq, capable of measuring the genome-wide distribution of up to three different chromatin 

marks in bulk- and single-cell samples. NTT-seq uses a set of engineered nanobody-Tn5 

fusion proteins to guide Tn5 transposition to specific sites in the genome, where sequence-

barcoded DNA sequencing adaptors are inserted by Tn5. Our results demonstrate the 

high accuracy of multiplexed chromatin profiles obtained by NTT-seq in comparison to 

non-multiplexed CUT&Tag or ChIP-seq experiments, compatibility with simultaneous cell-

surface protein expression measurement, and the application of NTT-seq to human tissues.

Methods

Cell culture

K562 cells were acquired from ATCC (nos. CCL-243). HEK293FT cells were acquired 

from Thermo Fisher (no. R70007). HEK293FT cells were maintained at 37°C and 5% 

CO2 in D10 medium (DMEM with high glucose and stabilized L-glutamine (Caisson, no. 

DML23) supplemented with 10% fetal bovine serum (FBS; Thermo Fisher, no. 16000044)). 

K562 cells were maintained at 37°C and 5% CO2 in R10 medium (RPMI with stabilized 

L-glutamine (Thermo Fisher, no. 11875119) supplemented with 10% FBS).

Primary cells acquisition and processing

Fresh mobilized peripheral blood mononuclear cells (PBMCs) used for scNTT-seq with cell 

surface protein measurement were isolated within 48 hours of blood collection utilizing 

a Ficoll (Thermo Fisher Scientific, #45-001-750) gradient according to manufacturer’s 

recommendations and cryopreserved. Isolated mononuclear cells were thawed and stained 

according to standard procedures, beginning with resuspension in staining buffer (Biolegend, 

#420201) and incubation with Human TruStain FxC (10 minutes at 4°C; Biolegend, 

#422302) to block Fc receptor-mediated binding. Cells were then stained with a CD34-

PE-Vio770 antibody (20 minutes at 4°C; Miltenyi Biotec, clone AC136, #130-113-180) 

and DAPI (Invitrogen, #D1306). The samples were then sorted for DAPI-negative, CD34-

positive cells using a BD Influx cell sorter. Live CD34-positive and CD34-negative were 

mixed 1:10 and processed with NTT-seq. BMMCs and PBMCs profiled by scNTT-seq 

without cell surface protein measurement were purchased from AllCells. After thawing into 

DMEM with 10% FBS, the cells were spun down at 4°C for 5 min at 400 g and washed 

twice with PBS with 2% BSA. After centrifugation, the cell pellet was resuspended in 

staining buffer (2% BSA and 0.01% Tween in PBS).

Cloning of nb-Tn5 plasmid constructs

Previously published sequences coding for secondary nanobodies (8) were synthesized as 

a gene fragment (IDT) flanked by restriction enzyme sites NcoI and EcoRI. To replace 

protein-A with a nanobody, 3XFlag-pA-Tn5-Fl (addgene #124601) and gene fragments were 

digested with NcoI and EcoRI 1h at 37°C, ligated overnight at 16°C and subsequently 

transformed into competent cells (NEB C2992H).
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Nanobody-Tn5 transposase production

The pTXB1-nbTn5 vector was transformed into BL21(DE3)-competent Escherichia coli 

cells (NEB, no. C2527), and nb-Tn5 was produced via intein purification with an affinity 

chitin-binding tag (24). 400 mL of Luria broth (LB) culture was grown at 37°C to 

optical density (OD600) = 0.6. nb-Tn5 expression was then induced with isopropyl-ß-d-

thiogalactopyranoside (IPTG) 0.25 mM at 22°C 6 hours. After induction, cells were pelleted 

and then frozen at −80°C overnight. Cells were then lysed by sonication in 100 mL pf 

HEGX (20 mM HEPES-KOH pH 7.5, 0.8 M NaCl, 1 mM EDTA, 10% glycerol, 0.2% Triton 

X-100) with a protease inhibitor cocktail (Roche, no. 04693132001). The lysate was pelleted 

at 30,000g for 20 min at 4°C. The supernatant was transferred to a new tube, and 3 μL 

of neutralized 8.5% polyethylenimine (Sigma-Aldrich, P3143) was added dropwise to each 

100 μL of bacterial extract, gently mixed and centrifuged at 30,000g for 30 min at 4°C 

to precipitate DNA. The supernatant was loaded on four 2 mL chitin columns (NEB, no. 

S6651S). Columns were washed with 10 mL of HEGX, then 1.5 mL of HEGX containing 

100 mM DTT was added to the column with incubation for 48 h at 4°C to allow cleavage 

of nb-Tn5 from the intein tag. nb-Tn5 was eluted directly into two 30 kDa molecular-weight 

cutoff (MWCO) spin columns (Millipore, no. UFC903008) by the addition of 2 mL of 

HEGX. Protein was dialyzed in five dialysis steps using 15 mL of 2x dialysis buffer 

(100 HEPES-KOH pH 7.2, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT, 20% glycerol) and 

concentrated to 1 mL by centrifugation at 5,000g. The protein concentrate was transferred to 

a new tube and mixed with an equal volume of 100% glycerol. nb-Tn5 aliquots were stored 

at −80°C.

Transposome assembly

We obtained barcoded Tn5 adaptors from IDT, as described by Amini et al. (11) with 8 

bp barcode sequences designed using FreeBarcodes (25). To produce mosaic-end, double-

stranded (MEDS) oligos, we annealed each barcoded T5 tagmentation oligo with the 

pMENT common oligo (100 μM each) as follows, in TE buffer: 95°C for 5 min then cooling 

at 0.2°C per second to 4°C (bcMEDS-A). The same process was used to anneal a single 

T7 tagment oligo with the pMENT common oligo (MEDS-B; Extended Data Table 2). 

bcMEDS-A and MEDS-B were mixed 1:1 and 6 μL was transferred to a new tube and mixed 

with 10 μL of nb-Tn5 enzyme. After 1 hour at room temperature to allow for transposome 

assembly. Adapter sequences are shown in Extended Data Table 2.

Antibodies

Antibodies used were H3K27ac (1:50, Active Motif, 39133), H3K27ac (1:50, Active 

Motif, 91193), H3K27ac (1:50, AbCam, ab4729), H3K27me3 (1:50, Active Motif, 61017), 

Phospho-Rpb1 CTD (Ser2/Ser5) (1:50, Cell Signaling, 13546). For NTT-seq with surface 

markers readout on primary cells, the TotalSeq-A conjugated Human Universal Cocktail 

v1.0 panel was obtained from BioLegend (399907).

NTT-seq

We performed NTT-seq using similar methods to those described previously by Kaya-Okur 

et al. (1) (dx.doi.org/10.17504/protocols.io.bcuhiwt6), described in detail below.
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Antibody staining

For NTT-seq with surface markers readout on primary cells, 1 million thawed PBMCs were 

resuspended in 200 μL staining buffer (2% BSA and 0.01% Tween in PBS) and incubated 

for 15 min with 20 μL Fc receptor block (TruStain FcX, BioLegend) on ice. Cells were 

then washed three times with 1 mL staining buffer and pooled together. The panel of 

oligo-conjguated antibodies was added to the cells to incubate for 30 min on ice. After 

staining, cells were washed three times with 1 mL staining buffer and resuspended in 100 μL 

staining buffer. After the final wash, cells were resuspended 200 μL PBS ready for fixation.

Fixation and permeabilization

For human cell lines, nuclei were extracted as previously described (26) and resuspended 

in 150 μL of PBS. Then, 16% methanol-free formaldehyde (Thermo Fisher Scientific, 

PI28906) was added for fixation (final concentration: 0.1%) at room temperature for 3 

min. The cross-linking reaction was stopped by addition of 12 μL 1.25 M glycine solution. 

Subsequently, nuclei were washed once with 150 μL antibody buffer (20 mM HEPES pH 

7.6, 150 mM NaCl, 2 mM EDTA, 0.5 mM spermidine, 1% BSA, 1× protease inhibitors).

For NTT-seq on PBMCs and BMMCs, 16% methanol-free formaldehyde (Thermo Fisher 

Scientific, PI28906) was added for fixation (final concentration: 0.1%) at room temperature 

for 5 min. The cross-linking reaction was stopped by addition of 12 μL 1.25 M glycine 

solution. Subsequently, cells were washed twice with PBS. The permeabilization was 

performed by adding isotonic lysis buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 

mM MgCl2, 0.1% NP40, 0.1% Tween-20, 1% BSA, 1× protease inhibitors) on ice for 7 min. 

Subsequently, 1 mL of cold wash buffer (20 mM HEPES pH 7.6, 150 mM NaCl, 0.5 mM 

spermidine, 1× protease inhibitors) was added, and cells were centrifuged at 800g for 5 min 

at 4°C.

Tagmentation

Nuclei or permeabilized cells were directly suspended with 150 μL antibody buffer (20 mM 

HEPES pH 7.6, 150 mM NaCl, 2 mM EDTA, 0.5 mM spermidine, 1% BSA, 1× protease 

inhibitors) with a cocktail of primary antibodies and incubated overnight on a rotator at 4°C. 

The next day cells were washed twice with 150 μL wash buffer to remove the remaining 

antibodies. The cells were then resuspended in 150 μL high salt wash buffer (20 mM HEPES 

pH 7.6, 300 mM NaCl, 0.5 mM spermidine, 1× protease inhibitors) with 2.5 μL nb-Tn5 for 

each target of interest and incubated for 1 h on a rotator at room temperature. The cells were 

then washed twice with high salt wash buffer and resuspended in 50 μL tagmentation buffer 

(20 mM HEPES pH 7.6, 300 mM NaCl, 0.5 mM spermidine, 10 mM MgCl2, 1× protease 

inhibitors). The samples were incubated for 1 h at 37°C. Tagmentation steps were performed 

in 0.2 mL tubes to minimize cell loss.

NTT-seq Bulk

To stop tagmentation, 1 μL of 0.5 M EDTA, 1 μL of 10% SDS and 0.25μL of 20 mg/mL 

Proteinase K was added to the sample, incubated at 55°C for 1 hour. DNA was extracted 

with Chip DNA clean & Concentrator kit (Zymo Research, D5201) following manufacturer 

instructions. To amplify libraries, 21 μL DNA was mixed with 2 μL of a universal i5 and 
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a uniquely barcoded i7 primer, using a different barcode for each sample. A volume of 25 

μL NEBNext HiFi 2× PCR Master mix was added and mixed. The sample was placed in a 

Thermocycler with a heated lid using the following cycling conditions: 72°C for 5 min (gap 

filling); 98°C for 30 s; 14 cycles of 98°C for 10 s and 63°C for 30 s; final extension at 72°C 

for 1 min and hold at 8°C. Post-PCR clean-up was performed by adding 1.1× volume of 

Ampure XP beads (Beckman Coulter), and libraries were incubated with beads for 15 min at 

RT, washed twice gently in 80% ethanol, and eluted in 30 μL 10 mM Tris pH 8.0.

NTT-seq single cell encapsulation, PCR, and library construction

After tagmentation, cells were centrifuged for 5 min at 1,000g and the supernatant was 

discarded. Cells were resuspended with 30 μL 1× Diluted Nuclei Buffer (10x Genomics, 

#2000207), counted, and diluted to a concentration based on the targeted cell number. The 

transposed cell mix was prepared as following: 7 μL of ATAC buffer and 8 μL cells in 1× 

Diluted Nuclei Buffer. All remaining steps were performed according to the 10x Chromium 

Single Cell ATAC protocol. For NTT-seq with surface markers readout on primary cells, the 

library construction method was adapted from ASAP-seq (27). Briefly, 0.5 μL of 1 μM 

bridge oligo A 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNNNVTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTT/3InvdT/) was added to the barcoding mix. Linear amplification 

was performing using the following PCR program: (40°C for 5 min, 72°C for 5 min, 98°C 

for 30 s; 12 cycles of 98°C for 10 s, 59°C for 30 s and 72°C for 1 min; ending with hold at 

15°C). The remaining steps were performed according to the 10x Genomics scATAC-seq 

protocol (v1.1), with the following additional modifications:

Antibody-derived tags: during silane bead elution (Step 3.1s), beads were eluted in 43.5 μL 

of elution solution I. The extra 3 μL was used for the surface protein tags library. During 

SPRI cleanup (Step 3.2d), the supernatant was saved and the short DNA derived from 

antibody oligos was purified with 2x SPRI beads. The eluted DNA was combined with the 

3 μL left aside after the silane purification to be used as input for protein tag amplification. 

PCR was set up to generate the protein tag library with Kapa Hifi Master Mix (P5 and RPI-x 

primers): 95°C for 3 min; 14–16 cycles of 95°C for 20 s, 60°C for 30 s and 72°C for 20 s; 

followed by 72°C for 5 min and ending with hold at 4°C.

RPI-x primer:

CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTGACTGGAGTTCCTTGGCACCCGA

GAATTCCA.

P5 Primer:

AATGATACGGCGACCACCGAGATCTACAC

Sequencing

The final libraries were sequenced on NextSeq 550 by using custom primers (Extended Data 

Table 2) with the following strategy: i5: 38bp, i7: 8bp, read1: 60bp, read2: 60bp (for PBMC 

single-cell NTT-seq without cell surface proteins, read1: 50bp, read2: 50bp).
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Bulk-cell data analysis

Bulk-cell data for the cell culture and PBMC datasets were mapped to the hg38 analysis 

set using bwa-mem2 with default parameters (28). Output BAM files were sorted and 

indexed using samtools (29), and bigwig files created using the deeptools bamCoverage 

function with the –normalizeUsing BPM option set. Fragment files were created using the 

Sinto (https://github.com/timoast/sinto), which uses the Pysam and htslib packages (29). 

Multi-NTT-seq heatmaps were generated in DeepTools (30). ChIP-seq peak coordinates for 

H3K27me3 and H3K27ac for bulk PBMCs, and for H3K27me3, H3K27ac, and RNAPII 

serine-2 and serine-5 phosphate for K562 cells were downloaded from ENCODE (17). 

We counted sequenced DNA fragments falling within each peak region for each bulk-cell 

PBMC or K562-cell NTT-seq dataset using custom R code and the scanTabix function in 

Rsamtools, and normalized counts according to the total number of mapped reads for each 

dataset (counts per million mapped reads normalization). The coefficient of determination 

(R2) between peak counts across pairs of experiments was computed using the lm function 

in R.

Single-cell data analysis

Cell culture dataset

Read mapping: Reads were mapped to the hg38 analysis set using bwa-mem2 (28) with 

default parameters, the output sorted and indexed using samtools (29), and the resulting 

BAM file used to create a fragment file using the Sinto package (https://github.com/timoast/

sinto). We ran the sinto fragments command with the --barcode_regex “[^:]*” parameter 

set to extract cell barcodes from the read name. Output files were coordinate-sorted, bgzip-

compressed and indexed using tabix (31), and the resulting fragment files used as input to 

downstream analyses.

Quantification, quality control, and dimension reduction: Genomic regions were 

quantified using the AggregateTiles function in Signac (14) with binsize=10000 and 

min_counts=1, using the hg38 genome. Cells with <10,000 total counts, >75 H3K27ac 

counts, >150 H3K27me3 counts, and >100 RNAPII counts were retained for further 

analysis. Each assay was processed by performing TF-IDF normalization on the count 

matrix for the assay, followed by latent semantic indexing (LSI) using the RunTFIDF and 

RunSVD functions in Signac with default parameters. Two-dimensional visualizations were 

created for each assay using UMAP, using LSI dimensions 2 to 10 for each assay. Weighted 

nearest neighbor (WNN) analysis was performed using the FindMultiModalNeighbors 

function in Seurat, with reduction.list = list(“lsi.k27ac”, “lsi.k27me”, “lsi.pol2”) and dims 

= list(2:10, 2:10, 2:10) to use LSI dimensions 2 to 10 for each assay. Cell clustering 

was performed using the resulting WNN graph using the Smart Local Moving community 

detection algorithm (32) by running the FindClusters function in Seurat, with algorithm=3, 

graph.name=“wsnn”, and resolution=0.05. This resulted in two cell clusters, which were 

assigned as HEK or K562 based on their correlation with bulk-cell chromatin data for HEK 

and K562 cells.
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Specificity analysis: K562-cell bulk ChIP-seq peaks for H3K27ac, H3K27me3, and RNA 

Pol2 Ser-2 and Ser-5 phosphate were downloaded from ENCODE (17). Since the fraction 

of reads in peaks metric can be sensitive to the peak set used, we opted to use previously-

reported ENCODE peaks throughout our analysis as much as possible. Ser-2 and Ser-5 

phosphate peaks were combined using the reduce function from the GenomicRanges R 

package. Fragment counts for K562 cells in the bulk and single-cell dataset were quantified 

for each peak using the scanTabix function in the Rsamtools R package, with counts 

normalized according to the total sequencing depth for each dataset. To assess the targeting 

specificity in single-cell NTT-seq, we computed the coefficient of determination (R2) 

between peak counts for each pair of assays, and between bulk and single-cell data for 

the same assay. We visualized relative peak counts for each assay for each peak by creating 

a ternary plot using the ggtern R package (33). To assess the low-dimensional neighbor 

structure obtained using each assay or combinations of assays, we computed the fraction of 

k-nearest neighbors for each cell i that belonged to the same cell type classification as cell i 
(k=50 for single-modality neighborhoods, variable k per-cell for multimodal neighbor graph 

due to the weighted nearest neighbor method).

multi-CUT&Tag comparison: To create a fragment file for the published multi-CUT&Tag 

dataset, raw sequencing data from Gopalan et al. (6) were downloaded from NCBI SRA 

and split into separate FASTQ files according to their Tn5 barcode using a custom Python 

script. Reads were mapped to the hg38 genome using bwa-mem2 and fragment files created 

as described above for the NTT-seq datasets. Code to reproduce this analysis is available on 

GitHub: https://github.com/timoast/multi-ct. We ran the CountFragments function in Signac 

to count the total number of fragments per cell for each multi-CUT&Tag assay, and retained 

cells with >200 total counts for further analysis, as described in the original publication 

(6). For mixed-barcode fragments we counted ½ count to the total of each assay matching 

the pair of Tn5 barcodes. To compute the targeting specificity, we downloaded published 

ENCODE ChIP-seq peaks for H3K27me3 and H3K27ac for mESCs (ENCFF008XKX 

and ENCFF360VIS), and computed the fraction of fragments in peak regions using the 

scanTabix function in the Rsamtools R package, normalizing counts according to the 

total sequencing depth for the dataset. We also computed the R2 between H3K27me3 and 

H3K27ac as described above, using the ENCODE peak regions.

PBMC datasets

Read mapping: Genomic reads were mapped and processed as described above for the cell 

culture single-cell dataset. Antibody-derived tag (ADT) reads were processed using Alevin 

(34). We first created a salmon index (35) for the BioLegend TotalSeq-A antibody panel, 

with the --features -k7 parameters. We quantified counts for each ADT barcode using the 

salmon alevin command with the following parameters: --naiveEqclass, --keepCBFraction 

0.8, --bc-geometry 1[1-16], --umi-geometry 2[1-10], --read-geometry 2[71-85].

Quantification, quality control, and dimension reduction: Genomic bins were quantified 

using the AggregateTiles function in Signac, with binsize=5000 and min_counts=1 to 

quantify 5 kb bins genome-wide, retaining bins with at least one count. We retained 

cells with <40,000 and >300 H3K27me3 counts, <10,000 and >100 H3K27ac counts, 
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and <10,000 and >100 antibody-derived tag (ADT) counts. We normalized the ADT 

data using a centered log ratio transformation using the NormalizeData function in 

Seurat, with normalization.method=”CLR” and margin=2. We reduced the dimensionality 

of the ADT assay by first scaling and centering the protein expression values, and 

running PCA (ScaleData and RunPCA functions in Seurat). We computed a 2-dimensional 

UMAP visualization using the first 40 principal components (PCs), and clustered cells 

using the Louvain community detection algorithm. We identified and removed two low-

quality clusters containing higher overall ADT counts, as well as higher counts for 

naive IgG antibodies included in the staining panel. After removing low-quality ADT 

clusters, we reduced the dimensionality of the H3K27me3 and H3K27ac assays using LSI 

(FindTopFeatures, RunTFIDF, RunSVD functions in Signac) and created 2-dimensional 

UMAPs using LSI dimensions 2 to 30 for each chromatin assay. To construct a low-

dimensional representation using all three data modalities, we ran the weighted nearest 

neighbors (WNN) algorithm, using the first 40 ADT PCs, and LSI dimensions 2 to 

30 for H3K27me3 and H3K27ac (FindMultiModalNeighbors function in Seurat). We 

clustered cells using the WNN neighbor graph using the Smart Local Moving algorithm(32) 

(FindClusters function in Seurat with algorithm=3 and resolution=1). Cell clusters were 

manually annotated as cell types using the protein expression information. To compare the 

low-dimensional structure obtained using individual chromatin modalities or combinations 

of modalities, we computed for each cell i the fraction of neighboring cells annotated as the 

same cell type as cell i. We repeated this computation using neighbor graphs computed using 

single data modalities, or weighted combinations of modalities computed using the WNN 

method.

ENCODE data comparison: Peaks and genomic coverage bigWig files for H3K27me3 

and H3K27ac ChIP-seq published by the ENCODE consortium (17) for B cells, CD34+ 

CMPs, and CD14+ monocytes were downloaded from the ENCODE website (https://

www.encodeproject.org/). We created bigWig files for each corresponding cell type 

identified in the single-cell multiplexed NTT-seq PBMC dataset by writing sequenced 

fragments for those cells to a separate BED file, creating a bedGraph file using the bedtools 

genomecov command(36), and creating a bigWig file using the UCSC bedGraphToBigWig 

tool. We computed the genomic coverage for NTT-seq datasets and ChIP-seq datasets within 

H3K27me3 and H3K27ac regions using the deeptools multiBigwigSummary function (30) 

with the –outRawCounts option set to output the raw correlation matrix as a text file. We 

computed the correlation between peak region coverage in NTT-seq and ENCODE ChIP-seq 

datasets using the cor function in R with method=“spearman”. We computed the fraction of 

fragments per cell falling in ENCODE H3K27me3 and H3K27ac ChIP-seq peak regions for 

PBMCs for each assay as described above.

CUT&Tag-pro data comparison: Processed CUT&Tag-pro H3K27me3 and H3K27ac 

datasets for human PBMCs were downloaded from Zenodo: https://zenodo.org/record/

5504061. We compared the number of antibody-derived tag (ADT) counts in NTT-seq and 

scCUT&Tag-pro datasets by extracting the total number of ADT counts per cell from the 

scCUT&Tag-pro and NTT-seq Seurat objects and plotting the distribution of total ADT 

counts per cell for each dataset. We created bigWig files for each scCUT&Tag-pro dataset 
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by first creating a bedGraph file using the bedtools genomecov function, and then creating 

a bigWig file using the UCSC bedGraphToBigWig function. We computed the coverage for 

scCUT&Tag-pro datasets within H3K27me3 and H3K27ac PBMC ENCODE peaks using 

the multiBigwigSummary function in deeptools as described above for the ENCODE data 

comparison.

BMMC dataset

Read mapping: Raw genomic reads were mapped and processed as described above for the 

cell culture single-cell dataset.

Quantification, quality control, and dimension reduction: Genomic bins were quantified 

using the AggregateTiles function in Signac, with binsize=5000 and min_counts=1 to 

quantify 5 kb bins genome-wide, retaining bins with at least one count. We retained cells 

with <10,000 and >100 H3K27me3 counts, and <10,000 and >75 H3K27ac counts for 

further analysis. We normalized the counts and reduced dimensionality for each assay 

by running the RunTFIDF, RunSVD, and RunUMAP functions in Signac and Seurat 

for each assay. We computed a WNN graph for H3K27me3 and H3K27ac using the 

FindMultiModalNeighbors function in Seurat, with reduction=list(“lsi.me3”, “lsi.ac”) and 

dims.list=list(2:50, 2:80) to use LSI dimensions 2 to 50 and 2 to 80 for H3K27me3 

and H3K27ac, respectively. A 2-dimensional UMAP was created using the WNN graph 

by running the RunUMAP function in Seurat with nn.name=“weighted.nn” to use the 

pre-computed neighbor graph. We clustered cells using the WNN graph using the Smart 

Local Moving community detection algorithm (32) (FindClusters function in Seurat with 

algorithm=3, resolution=3, graph.name=“wsnn”). We computed the fraction of fragments 

per cell falling in ENCODE PBMC H3K27me3 and H3K27ac ChIP-seq peak regions for 

each assay as described above.

Cell annotation: To annotate cell types we performed label transfer (21) using the 

H3K27ac assay and a previously published scATAC-seq dataset containing healthy human 

bone marrow cells (20). As the original publication mapped reads to the hg19 genome, 

we re-processed the original reads using the 10x Genomics cellranger-atac v2 software 

with default parameters, aligning to the hg38 genome. Code to reproduce this analysis 

is available on GitHub: https://github.com/timoast/MPAL-hg38. To transfer cell type 

labels from the scATAC-seq dataset to our multimodal NTT-seq dataset, we quantified 

scATAC-seq peaks using the H3K27ac assay, then performed TF-IDF normalization 

on the resulting count matrix using the IDF value from the scATAC-seq dataset. We 

performed LSI on the scATAC-seq BMMC dataset using the RunTFIDF and RunSVD 

functions in Signac with default parameters. We next ran the FindTransferAnchors 

function in Seurat, with reduction=”lsiproject”, dims=2:30, and reference.reduction=”lsi” 

to project the query data onto the reference scATAC-seq LSI using dimensions 2 to 

30, and find anchors between the reference and query dataset. We ran TransferData 

with weight.reduction=bmmc_ntt[[“lsi.me3”]] dims=2:50 to weight anchors using LSI 

dimensions 2 to 50 from the H3K27me3 assay. We used these unsupervised cell type 

predictions as a guide when assigning cell clusters to cell types.

Stuart et al. Page 14

Nat Biotechnol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/timoast/MPAL-hg38


Trajectory analysis: We subsetted the BMMC dataset to contain cells annotated as 

HSPC, GMP/CMP, Pre-B, B, or Plasma cells. Using the subset object, we constructed a 

new UMAP dimension reduction by running FindTopFeatures, RunTFIDF, and RunSVD 

in Signac, followed by RunUMAP in Seurat with reduction=”lsi”, for each assay. We 

then constructed a joint low-dimensional space using the WNN method by running the 

FindMultiModalNeighbors function in Seurat. We converted the Seurat object containing 

these cells to a SingleCellExperiment object using the as.cell_data_set function in 

the SeuratWrappers package (https://github.com/satijalab/seurat-wrappers). We next ran 

Monocle 3 (22) using the pre-computed UMAP dimension reduction constructed using both 

chromatin modalities by running the cluster_cells, learn_graph, and order_cells functions, 

setting the HSPC cells as the root of the trajectory. To find genomic features in each assay 

whose signal depended on pseudotime state, we quantified fragment counts for each cell 

in each 10 kb genome bin for the H3K27me3 and H3K27ac assays. To reduce the sparsity 

of the measured signal, we averaged counts for each genomic region across the cell’s 

50 nearest neighbors, defined using the H3K27me3 neighbor graph with LSI dimensions 

2 to 20, and normalized the fragment counts by the total neighbor-averaged counts per 

cell. For each genomic region we computed the Pearson correlation between the signal in 

the genomic region and the cell’s position in pseudotime. To find regions that underwent 

coordinated activation or repression we selected regions with a Pearson correlation >0.2 or 

<−0.2 and a difference in Pearson correlation between the H3K27me3 and H3K27ac assays 

greater than 0.5 (e.g., −0.25 correlation for H3K27me3 and +0.25 for H3K27ac). To display 

genomic regions in a heatmap representation we ordered cells based on their pseudotime 

rank and ordered genomic regions based on the position in pseudotime showing maximal 

H3K27me3 signal. For the purpose of visualization, we smoothed the signal for each 

genomic region by applying a rolling sum function with cells ordered based on pseudotime, 

summing the signal over 100-cell windows. This was performed using the roll_sum function 

in the RcppRoll R package (version 0.3.0).

We used the ClosestFeature function in Signac to identify the closest gene to each 

genomic region correlated with pseudotime. Genomic regions where the closest gene was 

>50,000 bp away were removed (21 genes for H3K27me3 and 7 genes for H3K27ac). 

To examine the gene expression patterns of these genes, we downloaded a previously 

integrated and annotated scRNA-seq dataset for the human bone marrow, produced as part 

of the HuBMAP consortium (https://zenodo.org/record/5521512) (20,37,38). We subset the 

scRNA-seq object to contain the same cell states that we examined in the NTT-seq data 

(HSC, LMPP, CLP, pro-B, pre-B, transitional B, naive B, mature B, plasma) and computed a 

gene module score for the active and repressed genes using the AddModuleScore function in 

Seurat.

To compare changes in scATAC-seq signal across the B cell developmental trajectory, we 

also downloaded a previously published BMMC scATAC-seq dataset (20), and subset the 

cells belonging to the B cell trajectory using the published cell type annotations provided 

by the original authors. We quantified the same set of genomic regions used in the scNTT-

seq BMMC analysis, and created a similar B cell developmental trajectory by assigning 

a numeric value to each B cell type according to its relative position along the known 
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developmental trajectory (1 = HSC, 2 = CMP/LMPP, 3 = CLP, 4 = B, 5 = Plasma), and 

computed the Pearson correlation between each genomic region and the B cell trajectory.

Extended Data

Extended Data Figure 1. Design and evaluation of nb-Tn5
A) Nanobody-Tn5 fusion protein plasmid map schematic showing position of Tn5 and 

secondary nanobody sequences.
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B) Agarose DNA gel showing size-separation of PCR-amplified DNA sequencing library 

products for different combinations of nb-Tn5 and primary IgG antibody. Rabbit Ab: 

rabbit primary IgG antibody; Mouse Ab: mouse primary IgG antibody; IgG1 Ab: mouse 

IgG subtype 1 primary antibody; IgG2a Ab: mouse IgG subtype 2a primary antibody; 

rTn5: anti-rabbit IgG secondary nanobody-Tn5 fusion; mTn5: anti-mouse IgG secondary 

nanobody-Tn5 fusion; G1T: anti-mouse IgG1 secondary nanobody-Tn5 fusion; G2aT: anti-

mouse IgG2a secondary nanobody-Tn5 fusion. Gels shows expected library amplification 

product (bands between 200 and 1,000 bp) in lanes where the nb-Tn5 fusion matches the 

primary IgG antibody (rabbit Ab + rTn5; mouse Ab + mTn5; IgG1 Ab + G1T; IgG2a Ab + 

G2aT). Replicates were not performed.

C) Scatterplots showing normalized fragment counts for H3K27me3 and H3K27ac peaks 

defined by ENCODE (17) for bulk multiplexed and non-multiplexed NTT-seq experiments 

in human PBMCs. Peaks are colored according to their chromatin modality (red: H3K27me3 

peak, yellow: H3K27ac peak). Coefficient of determination (R2) between experiments are 

shown above each scatterplot.

D) Scatterplots showing normalized fragment counts for H3K27me3, H3K27ac, and 

RNAPII peaks defined by ENCODE (17) for bulk multiplexed and non-multiplexed NTT-

seq experiments in K562 cells. Peaks are colored according to their chromatin modality (red: 

H3K27me3; yellow: H3K27ac; blue: RNAPII).
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Extended Data Figure 2. Data sensitivity comparison across multimodal chromatin profiling 
methods
A) Total reads and fragment counts per cell for multiCUT&Tag (6) and scNTT-seq. Read 

and fragment counts on y-axis are on a log10 scale. multiCUT&Tag profiled only two 

marks, H3K27ac and H3K27me3, and so do not have RNAPII counts. Box-plot lower and 

upper hinges represent first and third quartiles. Upper/lower whiskers extend to the largest/

smallest value no further than 1.5x the interquartile range. Data beyond the whiskers are 

plotted as single points.

B) Fraction of fragments falling in ENCODE peak regions for H3K27me3 and H3K27ac 

marks, for multiCUT&Tag (red) and scNTT-seq (blue). Box-plots constructed as for panel 

A.
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C) Scatterplot showing the normalized insertion counts in H3K27me3 and H3K27ac 

ENCODE peak regions for the multiCUT&Tag mESC single-cell dataset.

D) Multimodal genome browser view of a representative genomic locus, for K562 cells. Top 

three tracks show H3K27ac, H3K27me3, and RNAPII profiled simultaneously in a single-

cell experiment. Lower three tracks show H3K27ac, H3K27me3, and RNAPII profiled 

individually in bulk-cell NTT-seq experiments using K562 cells.

Extended Data Figure 3. Sensitivity and reproducibility of scNTT-seq
A) Total read and fragment counts per cell and fraction of fragments in peaks (FRiP) for 

scCUT&Tag and scNTT-seq PBMC datasets. Box-plot lower and upper hinges represent 

first and third quartiles. Upper/lower whiskers extend to the largest/smallest value no further 

than 1.5x the interquartile range. Data beyond the whiskers are plotted as single points.

B) Comparison of total unique antibody-derived tag (ADT) counts sequenced per cell for 

CUT&Tag-pro (18) and scNTT-seq.
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C) Spearman correlation between H3K27me3 counts (top) or H3K27ac counts (bottom) for 

cells profiled using multiplexed single-cell NTT-seq, or FACS-sorted bulk ChIP-seq profiled 

by ENCODE (17).

D) Two-dimensional UMAP projection and clustering for a second PBMC scNTT-seq 

replicate profiling H3K27me3 and H3K27ac. UMAP representation was constructed using 

both modalities, using the weighted nearest neighbors (WNN) method.

E) Scatterplots showing the number of fragment counts per H3K27me3 and H3K27ac 

ENCODE peak region for each assay profiled in the second PBMC scNTT-seq replicate 

dataset.

F) Total read and fragment count and FRiP distributions for H3K27me3 and H3K27ac 

assays profiled in the second PBMC scNTT-seq replicate dataset.

G) Pearson correlation between H3K27me3 and H3K27ac marks across PBMC scNTT-seq 

replicate datasets.

Extended Data Figure 4. Accuracy of scNTT-seq applied to human BMMCs.
A) Scatterplot showing the number of counts per H3K27me3 and H3K27ac peak for each 

assay, for BMMC cells profiled using single-cell multiplexed NTT-seq. Peaks are colored 

according to their assay (red: H3K27me3 peaks; yellow: H3K27ac peaks).

B) Fraction of fragments in ENCODE peaks per cell, for H3K27ac and HK27me3 marks. 

Box-plot lower and upper hinges represent first and third quartiles. Upper/lower whiskers 

extend to the largest/smallest value no further than 1.5x the interquartile range. Data beyond 

the whiskers are plotted as single points.
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Extended Data Table 1 |

Quality metrics of datasets generated in this work

Mean fragments per cell Total fragments standard deviation Mean fraction of fragments in 
ENCODE peaks

Dataset
Total 
cells H3K27me3 H3K27ac RNAPII H3K27me3 H3K27ac RNAPII H3K27me3 H3K27ac RNAPII

K562 8617 743 382 542 699 282 350 0.4 0.59 0.2

PBMC 
+ 
protein

4684 2854 412 - 2953 356 - 0.11 0.21 -

PBMC 4770 670 731 - 1243 1035 - 0.1 0.28 -

BMMC 5236 1217 326 - 1274 334 - 0.18 0.26 -

Extended Data Table 2 |

nb-Tn5 adapter and custom oligo sequences

Oligo 
name

Oligo sequence Barcode 
seque

MEDSA_1 TCGTCGGCAGCGTCGGATTGCTGCGATCGAGGACGGCAGATGTGTATAAGAGACAG GGATTGCT

MEDSA_2 TCGTCGGCAGCGTCGTAATGCAGCGATCGAGGACGGCAGATGTGTATAAGAGACAG GTAATGCA

MEDSA_3 TCGTCGGCAGCGTCGTCAAGGAGCGATCGAGGACGGCAGATGTGTATAAGAGACAG GTCAAGGA

MEDSA_4 TCGTCGGCAGCGTCGTGAGCGTGCGATCGAGGACGGCAGATGTGTATAAGAGACAG GTGAGCGT

MEDSA_5 TCGTCGGCAGCGTCGTGTGACCGCGATCGAGGACGGCAGATGTGTATAAGAGACAG GTGTGACC

MEDSA_6 TCGTCGGCAGCGTCTAAGGTGGGCGATCGAGGACGGCAGATGTGTATAAGAGACAG TAAGGTGG

MEDSB GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

Custom 
R1

GCGATCGAGGACGGCAGATGTGTATAAGAGACAG

Custom i5 CTGTCTCTTATACACATCTGCCGTCCTCGATCGC
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Figure 1. Bulk-cell NTT-seq enables simultaneous profiling of multiple chromatin marks.
A) Schematic representation of nanobody-Tn5 fusion proteins loaded with barcoded DNA 

adaptors.

B) Overview of the NTT-seq protocol. Nuclei are extracted from cells and stained with a 

mixture of IgG primary antibodies for targets of interest. Nanobody-Tn5 fusion proteins 

are then added and tagment the genomic DNA surrounding primary antibody binding sites. 

Released DNA fragments are amplified by PCR to obtain a sequencing library harboring 

barcode sequences specific for each nb-Tn5 protein used.

C) Genome browser tracks for a representative region of the human genome. NTT-seq was 

performed on PBMCs for H3K27me3 alone (light grey), H3K27ac alone (dark grey) or for 

both together in a multiplexed experiment (red/yellow). Sequencing data were normalized as 

bins per million mapped reads (BPM)

D) Heatmap displaying coverage within 33,205 H3K27ac peaks identified using MACS2, 

for multiplexed (multi) and non-multiplexed (mono) NTT-seq PBMC experiments.

E) As for D, for 67,459 H3K27me3 peaks.
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F) Fraction of reads in H3K27ac peaks for multiplexed and non-multiplexed NTT-seq 

PBMC datasets.

G) As for F, for H3K27me3 peaks.

H) Genome browser tracks for a representative region of the human genome for multiplexed 

and non-multiplexed NTT-seq K562 cell datasets. Sequencing data were normalized as bins 

per million mapped reads (BPM), as for the PBMC datasets.

I) Heatmap displaying coverage centered on H3K27ac peaks for multiplexed and non-

multiplexed NTT-seq experiments using K562 cells, for RNAPII, H3K27ac, and H3K27me3 

modalities.

J) As for I, for H3K27me3 peaks.
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Figure 2. NTT-seq provides accurate single-cell multimodal chromatin profiles
A) Schematic overview of the single-cell NTT-seq protocol. Cells are tagmented and 

processed in bulk (steps 1-3), and are encapsulated in droplets to attach cell-specific barcode 

sequenced to transposed DNA fragments (steps 4-5).

B) UMAP representations of cells profiled using multiplexed single-cell NTT-seq. Individual 

UMAP representations built using each assay are shown (left side), along with a 

visualization constructed incorporating information from all three chromatin modalities 

(WNN UMAP, right side). Cells are colored by their predicted cell type.
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C) Multimodal genome browser view of a representative genomic locus, for K562 cells. 

Fragment counts for each assay are shown, scaled to the maximal value for each assay 

within the locus. Top three tracks show H3K27ac, H3K27me3, and RNAPII profiled 

simultaneously in a single-cell experiment. Lower three tracks show H3K27ac, H3K27me3, 

and RNAPII profiled individually in bulk-cell NTT-seq experiments using K562 cells.

D) Scatterplots showing normalized fragment counts for H3K27me3, H3K27ac, and 

RNAPII peaks defined by ENCODE (17), for bulk and single-cell multiplexed NTT-seq 

experiments, for K562 cells. Peaks are colored according to their chromatin modality (red: 

H3K27me3 peak, yellow: H3K27ac peak, blue: RNAPII peak). Coefficient of determination 

(R2) between experiments are shown above each scatterplot.

E) Ternary plot showing the relative frequency of H3K27me3, H3K27ac, and RNAPII 

fragment counts within H3K27me3, H3K27ac, and RNAPII peak regions defined by 

ENCODE ChIP-seq datasets.

F) Fraction a cell’s nearest-neighbors belonging to the same predicted cell type, for neighbor 

graphs defined using a single chromatin modality or a weighted combination of modalities.
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Figure 3. Application of multiplexed single-cell NTT-seq to human tissues.
A) UMAP representation of PBMCs profiled using NTT-seq with protein expression. 

UMAPs for each assay are shown (left side), along with a multimodal UMAP constructed 

using all modalities (right side). Cells are colored and labeled by cell types.

B) Patterns of cell-surface-protein expression in PBMCs profiled using NTT-seq.

C) Pearson correlation between NTT-seq and scCUT&Tag-pro (CT-pro) signal in PBMCs 

within H3K27me3 and H3K27ac peaks.
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D) Scatterplot showing the number of counts per H3K27me3 and H3K27ac peak for each 

assay, for PBMCs profiled by NTT-seq. Peaks are colored according to their assay (red: 

H3K27me3; yellow: H3K27ac). Coefficient of determination (R2) is shown above. Axes: 

total fragment counts per million.

E) Genome browser view of the PAX5 and CD33 loci for B cells and CD14+ monocytes. 

Normalized protein expression values are shown alongside coverage tracks for each cell type 

for CD19 and CD33 protein. H3K27me3 and H3K27ac histone modification profiles are 

overlaid, with the signal for each scaled to the maximal signal within the genomic region 

shown.

F) Fraction of cells with <25% of neighbors belonging to the same cell type, for neighbor 

graphs defined using individual chromatin modalities, cell-surface protein expression, or a 

combination of chromatin modalities.

G) UMAP of BMMCs profiled using NTT-seq. Separate UMAPs for H3K27me3 and 

H3K27ac are shown (left side), and a UMAP using both H3K27me3 and H3K27ac is 

shown (right). Cells colored and labeled by their cell type. HSPC: hematopoietic stem 

and progenitor cells; GMP/CLP: granulocyte monocyte progenitor / common lymphoid 

progenitor; CD14 Mono: CD14+ monocyte; pDC: plasmacytoid dendritic cell; NK: natural 

killer cell.

H) Distribution of total fragment counts per cell for H3K27ac and H3K27me3.

I) Pseudotime trajectory for B cell development. Cells are colored by their pseudotime value 

and labeled by their annotated cell type.

J) Heatmap showing H3K27me3 and H3K27ac signal for 10 kb genomic bins correlated 

with B cell pseudotime progression. Heatmaps show the same genomic regions for both 

assays, with identical ordering of genomic regions.

K) Expression of genes close to activated (gain H3K27ac, upper plot) or repressed (gain 

H3K27me3, lower plot) genomic regions in a separate scRNA-seq BMMC dataset, for cells 

in the B cell developmental trajectory.

Stuart et al. Page 30

Nat Biotechnol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Discussion
	Conclusions
	Methods
	Cell culture
	Primary cells acquisition and processing
	Cloning of nb-Tn5 plasmid constructs
	Nanobody-Tn5 transposase production
	Transposome assembly
	Antibodies
	NTT-seq
	Antibody staining
	Fixation and permeabilization
	Tagmentation
	NTT-seq Bulk
	NTT-seq single cell encapsulation, PCR, and library construction
	Sequencing
	Bulk-cell data analysis
	Single-cell data analysis
	Cell culture dataset
	Read mapping
	Quantification, quality control, and dimension reduction
	Specificity analysis
	multi-CUT&Tag comparison

	PBMC datasets
	Read mapping
	Quantification, quality control, and dimension reduction
	ENCODE data comparison
	CUT&Tag-pro data comparison

	BMMC dataset
	Read mapping
	Quantification, quality control, and dimension reduction
	Cell annotation
	Trajectory analysis



	Extended Data
	Extended Data Figure 1.
	Extended Data Figure 2.
	Extended Data Figure 3.
	Extended Data Figure 4.
	Extended Data Table 1 |
	Extended Data Table 2 |
	References
	Figure 1.
	Figure 2.
	Figure 3.

