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Abstract

Background: In treatment planning, beam angle optimization (BAO) refers to the selection of a 

subset with a given number of beam angles from all available angles that provides the best plan 

quality. BAO is a NP-hard combinatorial problem. Although exhaustive search (ES) can exactly 

solve BAO by exploring all possible combinations, ES is very time-consuming and practically 

infeasible.

Purpose: To the best of our knowledge, (1) no optimization method has been demonstrated that 

can provide the exact solution to BAO, and (2) no study has validated an optimization method for 

solving BAO by benchmarking with the optimal BAO solution (e.g., via ES), both of which will be 

addressed by this work.

Methods: This work considers BAO for proton therapy, e.g., the selection of 2 to 4 beam angles 

for IMPT. The optimal BAO solution is obtained via ES and serves as the ground truth. A new 

BAO algorithm, namely angle generation (AG) method, is proposed, and demonstrated to provide 

nearly-exact solutions for BAO in reference to the ES solution. AG iteratively optimizes the 

angular set via group-sparsity (GS) regularization, until the planning objective does not decrease 

further.

Results: Since GS alone can also solve BAO, AG was validated and compared with GS for 

2-angle brain, 3-angle lung, and 4-angle brain cases, in reference to the optimal BAO solutions 

obtained by ES: the AG solution had the rank (1/276, 1/2024, 4/10626), while the GS solution had 

the rank (42/276, 279/2024, 4328/10626).

Conclusions: A new BAO algorithm called AG is proposed and shown to provide substantially 

improved accuracy for BAO from current methods with nearly-exact solutions to BAO, in 

reference to the ground truth of optimal BAO solution via ES.
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1. Introduction

Radiation therapy (RT) for treating cancer patients is delivered to tumor targets often with 

multiple beam angles, such as IMRT [1] and IMPT [2]. Beam angle optimization (BAO) 

refers to the optimization problem of selecting an optimal subset of beam angles from all 

available beam angles in terms of treatment plan quality [3]. Especially for proton RT, IMPT 

treatment planning often consists of a few beam angles [2], where the change of any of these 

angles may have a great impact on treatment plan quality, e.g., the avoidance of a specific 

organ-at-risk (OAR). Therefore, the selection of appropriate beam angles is important for 

proton RT. However, the BAO problem is a NP-hard problem [53], where the computational 

complexity grows exponentially with respect to the number of angles. Although exhaustive 

search (ES) can solve BAO exactly by exploring all possible combinations, ES is very 

time-consuming and practically infeasible. This motivates the development of efficient BAO 

methods, for which this work will propose a new BAO algorithm called the angle generation 

(AG) method.

Existing BAO methods can be classified into non-iterative methods [4–6], stochastic 

methods [7–10], and local-search methods [11–16]. All methods are heuristic and AG is 

a local-search method. In terms of angle update strategy, Ehrgott et al [12] starts with 

a desired number of beam angles and then iteratively replaces one angle with improved 

scoring function value. In contrast, one can also start with many angles and subsequently 

decrease to the desired number [11] or start with an empty set and subsequently add to 

the desired number [13]. In this sense, AG is similar to [12]. This choice is motivated by 

that empirical templates are often available for various tumor sites from clinical experiences 

[2], such as two lateral opposed beams (90°, 270°) for prostate, and X beam arrangement 

(45°, 135°, 225°, 315°) for head-and-neck, and these existing templates should boost the 

BAO quality if serving as initial guesses given the combinatorial nature of BAO. However, 

AG is different from [12] in three aspects: first, the initial guess does not have to be a 

set of equidistant beams, which was desirable in [12] since the candidate angle for update 

was searched around existing angles; second, there is no restriction of the search region 

for a candidate angle, which is global, i.e., to find a complementary angle to the stationary 

angles in terms of objective function values via a group-sparsity (GS) optimization with 

respect to the entire angle set; third, the scores are objective function values from IMPT 

that are consistent with the angle replacement procedure by solving GS-regularized IMPT 

(GS-IMPT).

On the other hand, GS can be used to directly solve BAO [16–18,60], e.g., the heterogeneity-

weighted GS with novel sensitivity regularization for robust optimization [60]. That is, 

with sufficiently large GS term, the number of beams decreases during iterations and 

the algorithm terminates when the number of beams reaches a desired number of beams. 

However, although GS alone works well for selecting a non-small set of angles (e.g., 10 out 

of 24), but not for selecting a small set of angles (e.g., 3 out of 24) [16]. Another problem 

with the direct GS approach is that a M1-beam BAO set is always a subset of M2-beam 

BAO set for M1≤M2 using alternating direction method of multipliers (ADMM) [31]. While 

the latter is not the case for the proximal method [54], e.g., the so-called Fast Iterative 
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Shrinkage-Thresholding Algorithm (FISTA) [47], the proximal solution is highly sensitive 

to the choice of parameters, which can be problematic in choosing the optimal solution. 

Note that ADMM and proximal methods are two commonly used optimization methods for 

nonsmooth and constrained problems, such as GS-IMPT.

Although AG is a general method, this work will focus on IMPT for proton RT, since (1) 

IMPT often consists of 2 to 4 beam angles, each of which can be significant, and (2) IMPT 

is becoming the dominant method for delivering proton RT [2]. In comparison, IMRT for 

photon RT often consists of 7–11 beam angles, and many patients are treated with VMAT 

instead of IMRT [1]. Therefore, there is a greater need of BAO for IMPT, which is the focus 

of this study.

To the best of our knowledge, (1) no optimization method has been shown that can solve 

BAO exactly, and (2) no study has validated a BAO algorithm by benchmarking with 

optimal BAO solution. This work will aim to address these two unsolved problems with the 

proposed AG method. That is, the AG method will be developed for BAO and shown to 

provide nearly-exact solutions to BAO, compared to optimal BAO solutions via ES as the 

ground truth.

2. Methods and Materials

The BAO problem is formulated in Section 2.1. The AG method for solving BAO is 

introduced in Section 2.2. The angle replacement (AR) algorithm for updating beam angles 

during AG, by solving group-sparsity-regularized IMPT (GS-IMPT) problem, is presented 

in Section 2.3. ADMM based optimization algorithm for solving GS-IMPT is developed in 

Section 2.4. The validation plan of AG is outlined in Section 2.5, using the optimal BAO 

solution via ES as the ground truth. In terms of connections between these algorithms, 

(1) AG (Algorithm 1 in Section 2.2) is the overall algorithm that solves BAO; (2) AR 

(Algorithm 2 in Section 2.3) is Step 2 of AG; (3) ADMM (Algorithm 3 in Section 2.4) 

solves the GS-IMPT problem in Step 1 of AR.

2.1. Beam Angle Optimization

Let us consider the IMPT optimization problem for a set of beam angles S={θi|i≤B}, where 

B is the number of beam angles available for optimization. The optimization is with respect 

to proton spot weights x={xi|i≤B} with xi={xij|j≤Ni}, where Ni is the number of proton spots 

for the ith angle.

The general form of total planning objective F including dose-volume constraints [19–23] is

FS x = 1
2 ∑

m = 1

C
wm ∑

k ∈ Ωm

( ∑
θi ∈ S

∑
j = 1

Ni

Dk, ijxij − dm)2

= 1
2‖ ∑

θi ∈ S
Dixi − d‖2 = 1

2 Dx − d 2
. (1)

In Eq. (1), there are C planning objectives: wm is the objective weight, dm is the dose 

constraint, Ωm is the patient volume or active volume for the mth objective. For dose-volume 
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constraints, the active volume Ωm depends on dose map within the structure corresponding 

to the mth objective, which in turn depends on x. Therefore, the optimization with dose-

volume constraints is nonconvex, for which iterative convex relaxation method [21–24] can 

handle and iteratively update Ω based on x during iterations. D is the dose influence matrix, 

Di corresponds to the ith angle and Dk,ij is the dose contribution from jth spot xij of the ith 

beam to the kth patient voxel. To simplify the notation, F is denoted formally by the last 

least-square term in Eq. (1).

In order for IMPT to be deliverable, we consider minimum-monitor-unit (MMU) 

optimization problem [25–29] on x, i.e.,

fS x∗ = min
x

FS x

s . t . x ∈ 0 ∪ Gmin, + ∞
. (2)

Here Gmin is the MMU threshold and the weight of deliverable nonzero x has to be at 

least Gmin. In Eq. (2), x* and f denote spot weights and total objective respectively after 

optimization.

Then the BAO problem is to select a subset of M angles from all available angles, with the 

best plan quality, i.e., the smallest optimization objective.

S* = argmin
S ∈ S

fS . (3)

Here Θ denotes the set of all available angles for optimization, and S is a set containing 

all possible selections of M angles from Θ, i.e., S = S ⊂ Θ # (S) = M . BAO is a NP-hard 

problem. ES can solve BAO exactly by exploring all possible combinations. Although ES 

is very time-consuming and practically infeasible. ES works for BAO problems of small 

number of angles, which will be considered in this work for the validation purpose. In the 

following, we will introduce a new method AG for solving BAO. The effectiveness of AG 

for BAO will be validated against the optimal BAO solution obtained by ES, which solves 

IMPT Eq. (2) for all possible sets S in S and thus provides the ground truth for the BAO 

problem. ADMM based optimization algorithm for solving the IMPT problem is provided in 

Appendix A.

2.2. Angle Generation Method

To solve BAO Eq. (3), i.e., by finding the best M angles with the smallest planning 

objective, the AG method starts with an initial set S0 = θi
0 i ≤ M  of M angles, and then 

iteratively updates this set, e.g., Sn = θi
n i ≤ M , until no better plan can be found. During 

each iteration of AG, a current angle called “the pivot angle” in the set Sn is substituted 

be an angle called “the replacement angle” outside of Sn. Specifically, the nth AG iteration 

consists of the following steps.

• Step 1: The angle an = θi
n ∈ Sn, i≡n(mod M) is selected as “the pivot angle”;

• Step 2: “The replacement angle” an+1 ∉Sn is identified via the AR algorithm 

(Section 2.3);
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• Step 3: Sn
′ = Sn\ an ∪ an + 1  is generated by replacing an with an+1, and Sn+1 is 

the smaller of Sn and Sn
′ in terms of IMPT optimization objective;

• Step 4: The stopping criteria is given by either n≤nmax for a given max iteration 

number nmax or Sn=Sn-M+1 that implies Sn is optimal and no better angle set than 

Sn will be found.

The AG algorithm is summarized as follows, with corresponding aforementioned steps.

2.3. Angle Replacement Algorithm

For the purpose of BAO, i.e., to select a small set of M angles from Θ of many angles, 

mathematically the GS regularization can minimize the number of angles (i.e., to sparsify 

with respect to the index i in Eq. (1)), but not the number of spots per angle (i.e., not to 

sparsify with respect to the index j in Eq. (1)). Therefore, the GS regularization has been 

utilized for solving BAO directly [17, 18, 20].

However, the GS alone is not sufficient, because (1) the optimal GS solution may not be 

optimal for BAO, owing to the nonconvexity of BAO; (2) for ADMM, although ADMM is 

insensitive to the values of GS regularization parameter λ, the optimal set of M1 angles is 

always a subset of M2 angles for M1≤M2, which is not true from the perspective of treatment 

planning; (3) while (2) is not for the proximal method (e.g., FISTA), the proximal method is 

highly sensitive to the values of λ, which makes it difficult in choosing the optimal solution 

unless going through the exhaustive searching with respect to λ.

In contrast, for AG, we will show (1) the optimal set of M1 angles does not have to be a 

subset of M2 angles for M1≤M2, which is an advantage from FISTA; (2) AG is not sensitive 

to the values of λ which is an advantage from ADMM; (3) AG can outperform GS and 

achieve nearly-optimal BAO solution, in reference to the optimal BAO solution via ES as the 

ground truth.

Although the step of replacement angle selection during AG utilizes GS, the difference is 

that the GS regularization in AG only applies to “the working set” Wn=Θ\Tn instead of 

the entire Θ, where Tn=Sn\{an} is “the fixed set” by removing the pivot angle an from the 

current set Sn. That is the fixed set Tn is not penalized by GS and thus remains to contribute 

to the plan optimized with GS regularization, regardless of what is left or removed in the 

working set Wn by GS. This is motivated by the purpose of AG, i.e., to find the replacement 

angle that is better than the pivot angle, in terms of their compatibility to the rest of angles in 
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Sn. That is, AG utilizes GS to find the best candidates for the replacement angle an+1 that are 

most complementary to the current set Sn excluding an, in terms of optimal plan quality.

Mathematically, the GS-IMPT problem is the following:

x∗ = argmin
x

FΘ x + ∑
i ∈ W

λi xi 2
p, (4)

where ||xi||2p=(∑jxij
2)p/2 is the L2, p-norm GS regularization.

In Eq. (4), the total plan objective FΘ is from all angles in Θ, while the GS regularization 

term with L2, p-norm (0<p≤1) is only with respect to the working set W, e.g., Wn during 

the nth AG iteration as explained earlier. We have compared and found negligible difference 

between p=1/2 and p=1, and therefore used p=1 that is simpler in this work. On the other 

hand, the GS parameter λi is to balance the contribution from each beam per spot [18], i.e.,

λi = λ DPTV , i1 2

Ni

p
2 , (5)

where DPTV,i is the dose influence matrix from the ith beam angle to PTV for beam angle b, 

and λ is a tuning parameter that is constant for all angles.

It is a concern that when larger λ is needed to sparsify the angles, the contribution from 

planning objective F in Eq. (4) is less and therefore the iterative process for solving Eq. (4) 

may not sufficiently account of plan quality. Therefore, we consider another formulation of 

GS-IMPT [30], where the planning objective F is constantly controlled under a small value 

ɛ, i.e.,

x∗ = argmin
x

∑
i ∈ W

λi xi 2
p

s . t . FΘ x ≤ ε
. (6)

However, we have compared and found negligible difference between Eq. (4) and Eq. (6), 

and therefore used the original formulation Eq. (4) in this work.

The AR step of AG, i.e., Step 2 in Algorithm 1, consists of the following steps:

• Step 1: x* is derived by solving the GS-IMPT problem Eq. (4) for the working 

set Wn, which is determined by an, i.e., Wn=Θ\Tn with Tn=Sn\{an};

• Step 2: A candidate angle set C = θi
n∈W n i ≤ Nc} is selected that consists of the 

largest Nc angles in the L2, p-norm value (Nc =3 in this work);

• Step 3: The IMPT problems corresponding to each angle set Qi = Tn ∪ θi
n  for 

θi
n ∈ C are solved, for which optimized objective value is denoted by fQi;

• Step 4: θi
n with the minimal fQi is selected as the replacement angle an+1.

The AR algorithm is summarized as follows, with corresponding aforementioned steps.
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2.4. Solving GS-IMPT via ADMM

This section presents the solution algorithm for GS-IMPT problem Eq. (4) using ADMM 

[31–33].

ADMM is a general optimization method for solving a variety of problems, and 

is particularly suitable for dealing with nonconvex constraints and non-differentiable 

regularization (e.g., GS) through the variable splitting. For example, we have developed 

ADMM algorithms for solving convex problems with linear data fidelity, such as image 

reconstruction in 4D CT [34], spectral CT [35], MRI [36], 4D cone-beam CT [37], mega-

voltage CT [38], CT [39], and breast CT [40, 41], and nonconvex problems with nonlinear 

data fidelity, such as image reconstruction in quantitative photoacoustic tomography [42–

44], and cine cone-beam CT [45, 46].

Note that IMPT and GS-IMPT can also be efficiently solved by the state-of-the-art proximal 

method such as FISTA [18, 47]. However, we have compared and found negligible 

difference between ADMM and FISTA for the purpose of AG. ADMM based solution 

algorithm is provided here, while FISTA based solution algorithm is provided in [18].

Eq. (4) is recapped here for the convenience of the presentation

min
x

Dx − d 2 + ∑
i ∈ W

λi xi 2
p

s . t . x ∈ 0 ∪ Gmin, + ∞
, (7)

where the GS term is only applied to the angles in the work set W.

Similar to Appendix A, a dummy variable z1 is introduced, i.e., z1=x, to decouple the MMU 

constraint. Another dummy variable z2 is introduced, i.e., z2=x, to decouple the GS term. As 

a result, the constrained problem Eq. (7) can be decoupled into an unconstrained problem of 

x with planning objectives, and two constrained problems of z1 and z2 respectively that have 

no planning objectives and thus can be solved analytically.

We start with the augmented Lagrangian function of Eq. (7)

L x, z1, u1, z2, u2 = Dx − d 2 + ∑
i ∈ W

λi z2i 2
p + μ1 x − z1 + u1 2

2 + μ2 x − z2 + u2 2
2

s . t . z ∈ 0 ∪ Gmin, + ∞
.

(8)
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Here u1 is the dual variable of z1, and μ1 is the relaxation parameter for the constraint z1=x; 

u2 is the dual variable of z2, and μ2 is the relaxation parameter for the constraint z2=x.

From Eq. (8), the ADMM solution to Eq. (7) consists of the following iterations

xn + 1 = argmin
x

L x, z1
n, z2

n, u1
n, u2

n

z1
n + 1 = argmin

z1 ∈ 0 ∪ Gmin, + ∞
L xn + 1, z1, z2

n, u1
n, u2

n

z2
n + 1 = argmin

z2

L xn + 1, z1
n + 1, z2, u1

n, u2
n

u1
n + 1 = u1

n + xn + 1 − z1
n + 1

u2
n + 1 = u2

n + xn + 1 − z2
n + 1

. (9)

In Eq. (9), the x-problem and z1-problem can be handled similarly to Eq. (A4) and (A5) 

respectively; the z2-problem is separable and has analytic solution z2
n+1=St(xn+1+u2

n) with 

t=λ/2μ2 and St given by the followings for p=1 and p=1/2 [48] respectively.

St, 1 x = x − x ⋅ min t
x 2

, 1 (10)

St, 1/2 x =
0, t x 2

−1.5 > 2 6
9

x 2
3sin 1

3 arccos 3 3
4 t x 2

−1.5 + π
2 , otherwise

(11)

Note that the GS updates Eq. (10) and (11) are group-wise instead of element-wise: that is 

the spots per beam angle are jointly updated together.

The ADMM algorithm for solving GS-IMPT is summarized as follows.

2.5. Comparative Planning Study

We considered BAO for a brain case with M=2 (“2-angle brain”) and M=4 (“4-angle brain”) 

respectively, and a lung case with M=3 (“3-angle lung”). First we consider the scenario with 

the full angular set Θ of 24 evenly-distributed coplanar beam angles. The BAO problem was 

to select the best M angles from Θ. The choice of a relatively small number B=24 is because 

it allows us to solve all possible IMPT solutions via ES to find the optimal BAO solution. 

On the other hand, as one reduces angular spacing to increase number of beam angles, the 

Shen et al. Page 8

Med Phys. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



angles get closer to each other and the incremental gain of plan quality with increasing 

number angles starts to diminish.

For the validation purpose, the optimal BAO solution was attained using ES by solving 

all possible combinations of angles, which serves as the group truth for BAO. ES 

was equivalent to solve 24×23/2=276 IMPT problems for 2-angle brain case, 24×23×22/

(3×2)=2024 IMPT problems for 3-angle lung case, 24×23×22×21/(4×3×2)=10626 IMPT 

problems for 4-angle brain case, for which the best solution was selected as the ES solution 

and also the ground truth.

In benchmark to the ES solution, the proposed angle generation method (“AG”) was 

validated in comparison with the GS method (“GS”) that directly solved BAO [16–18]. 

In terms of computational time, AG (equivalent to solving a few IMPT problems) or GS 

(equivalent to solving 1 IMPT problem) was negligible compared to ES. For optimizing plan 

quality, after GS or AG was solved for the best M angle, the IMPT problem for selected 

M angles was solved as the final solution. Thus, the solutions from GS, AG and ES were 

consistent with each other as they were from the same IMPT solution algorithm, with the 

only difference in the choice of beam angles. Moreover, all plans were normalized after 

optimization with D95=100% at PTV.

Next we also consider BAO with a relatively large number B=72. In this case, ES was not 

performed due to the size of the problem, and AG was compared with GS. To demonstrate 

the generality of AG, the solution algorithms for solving IMPT and GS-IMPT in this case 

of B=72 were based on FISTA [18, 47], which was primarily based on ADMM for B=24 
[31–33].

MatRad [49] was used to generate dose influence matrices using 5 mm lateral spacing, and 3 

mm longitudinal spacing (energy), on 3 mm-resolution dose grid. All the experiments were 

performed with i9-10900K CPU, for which AG took 7–25 minutes.

Robust optimization was also considered for the lung case with 5mm for setup uncertainty 

and 3.5% for range uncertainty via probabilistic formulation [52,21]. The plan was 

normalized with respect to the nominal case. The dose and DVH plots in Fig. 12 and 13 

were based on average dose of all uncertainty scenarios.

In the tables, the conformity index (CI) is defined as V100
2/(V×Vʹ100) (V100: PTV volume 

receiving ≥100% of prescription dose; V: PTV volume; Vʹ100: total volume receiving 

≥100% of prescription dose). The value of CI is between 0 and 1, with optimal being 1. 

S* is the set of selected angles; f is the optimized plan objective value; rank is the ranking of 

f in all ES solutions.

3. Results

3.1. AG v.s. ES: nearly-exact BAO solution via AG

ES was used to solve IMPT problems Eq. (2) for all possible combinations of angles, i.e., in 

S = S ⊂ Θ # (S) = M . IMPT planning objectives of all plans were sorted in the ascending 

order in Fig.1, for which the smaller rank corresponds to smaller objective values and thus 
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better plan quality. Since ES solved BAO Eq. (3) exactly, the optimal ES solution was the 

optimal BAO solution, which had the smallest rank (i.e., 1). As shown in Fig. 1 and Table 

1, the AG solution was ranked 1 for both 2-angle brain and 3-angle lung, and 4 for 4-angle 

lung. Therefore, AG provided the nearly-exact solution to BAO. In contrast, the GS solution 

was ranked 42/276 (i.e., 42 of 276 total plans) for 2-angle brain, 279/2024 for 3-angle lung, 

and 4328/10626 for 4-angle brain respectively.

3.2. AG v.s. GS: AG improved plan quality from GS

Compared to GS, AG improved rank and plan objective values in Fig. 1 and Table 1, which 

implies AG improved plan quality from GS. The improved plan quality via AG from GS 

was also confirmed by comparison of dosimetric parameters in Table 1, comparison of DVH 

plots in Fig. 2 and comparison of dose plots in Fig. 3–5. For example, as shown in Table 

1, compared to GS, AG improved target dose conformity quantified by CI, from 0.6 to 0.62 

for 2-angle brain, from 0.9 to 0.92 for 3-angle lung, and from 0.65 to 0.68 for 4-angle brain 

respectively.

3.3. Solution convergence of AG

By the design of AG algorithm, the solution converges with non-increasing plan objectives 

during AG iterations, which was experimentally confirmed and presented in Fig. 6. Based on 

Algorithm 1, AG found the optimal solution and terminated the optimization in 3, 5 and 14 

AG iterations respectively for 2-angle brain, 3-angle lung, and 4-angle lung respectively, as 

shown in Fig. 6.

3.4. AG was insensitive to the initial guess

To test the sensitivity of AG to the initial guess (B=24), for 2-angle brain, we ran AG with 

8 randomly-chosen initial angular set S0, i.e., (1,2), (3,9), (5,18), (2,24), (15,19), (11,13), 

(17,22) and (7,9), which all converged to (5,20) that ranked 1/276; for 3-angle lung, we 

ran AG with 8 randomly-chosen S0, i.e., (1,2,3), (1,3,9), (1,10,18), (2,17,24), (3,15,18), 

(7,11,13), (12,17,22) and (2,7,9), which all converged to (14,19,22) that ranked 1/2024; for 

4-angle brain, we ran AG with 8 randomly-chosen S0, i.e., (1,2,3,4), (1,15,19,24), (1,5,7,20), 

(1,9,10,13), (3,7,12,18), (5,8,11,14), (6,12,17,21) and (6,7,19,20), are all (5,7,12,20), which 

all converged to (5,7,12,20) that ranked 4/10626.

To test the sensitivity of AG to the initial guess (B=72), for 2-angle brain, we ran AG 

with 16 randomly-chosen initial angular set S0, i.e., (1,2), (18,55), (55,56), (9,42), (4,7), 

(2,15), (25,56), (16,30), (44,55), (38,39), (70,71), (9,44), (5,18), (33,71), (14,28) and (6,66), 

and these all converged to (13,58), i.e., (60°,285°), which is the same as the result 

with B=24; for 3-angle lung, we ran AG with 16 randomly-chosen S0, i.e., (1,25,49), 

(2,31,41), (3,21,51), (7,17,66), (7,19,29) (7,32,72), (9,36,69), (10,56,67), (10,59,65), 

(12,13,40), (12,39,60), (12,70,71), (13,23,39), (13,29,48), (13,48,49) and (14,55,57) , and 

these converged to (37,46,60), (42,51,60), (42,51,60), (42,51,60), (42,51,60), (42,51,60), 

(42,51,60), (42,51,60), (42,55,65), (42,51,60), (42,51,60), (42,51,60), (42,51,60), (37,46,60), 

(42,51,60) and (42,51,64) respectively, which are very close to the corresponding B=24 

result (14,19,22), i.e., (195°,270°,315°); for 4-angle brain, we ran AG with 16 randomly-

chosen S0, i.e., (5,14,18,31), (18,29,30,56), (14,22,40,54), (23,32,33,36), (16,22,43,45), 
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(15,17,34,61), (11,13,17,32), (19,20,30,43), (22,24,31,37), (36,42,53,67), (17,36,38,45), 

(31,57,66,69), (28,32,55,57), (19,37,51,54), (13,23,39,57) and (13,19,38,56), and these 

converged to (13,19,31,56), (13,19,30,57), (14,22,40,54), (13,19,36,56), (13,19,45,58), 

(13,19,34,58), (13,19,32,56), (13,19,30,57), (13,21,37,58), (13,19,36,56), (13,19,38,56), 

(13,19,31,56), (13,19,28,57), (13,19,37,56), (13,19,39,58) and (13,19,38,56) respectively, 

which are very close to the corresponding B=24 result (5,7,12,20), i.e., (60°,90°,165°,285°).

Therefore, the AG solution was insensitive to the initial guess S0, and the results with B=72 

were similar to those with B=24.

3.5. ADMM v.s. FISTA for GS

GS can be solved by either ADMM or FISTA. The comparison of ADMM and FISTA are 

presented in Table 2 and Fig. 7. While ADMM was insensitive to λ except for large values 

of λ, FISTA was sensitive to λ and the case-by-case tuning or ES seems to be needed to 

obtain good FISTA solutions. The sensitivity of FISTA to λ can be problematic for choosing 

the optimal solution unless using ES with respect to λ, which is however time-consuming. 

In Table 2, the FISTA results were from the best scenario via ES with respect to λ: FISTA 

was worse than ADMM for 2-angle brain, but better than ADMM for 3-angle lung and 

4-angle brain.

3.6. ADMM v.s. FISTA for AG

To investigate the algorithm dependence of AG, we ran AG with both ADMM and FISTA. 

The results summarized in Table 3 suggest that there was nearly no difference in solving AG 

by ADMM or FISTA, despite that (1) FISTA was sensitive to λ and (2) a M1-beam BAO 

set is always a subset of M2-beam BAO set for M1≤M2 when solving GS via ADMM. Note 

that although (14,19.22) was ranked 1/2024 for ADMM based ES and (15,19.22) was ranked 

1/2024 for FISTA based ES, both ADMM based AG and FISTA based AG found the optimal 

BAO solution. Moreover, the difference in plan quality between (14,19.22) and (15,19.22) 

was negligible, with both being 0.12 in two-decimal rounding.

3.7. Comparison of two GS-IMPT formulations for AG

The comparison of two GS-IMPT formulations Eq. (4) and Eq. (6) for AG was presented in 

Table 4, which suggest that Eq. (6) was not as expected to be better than, but turned out to be 

slightly worse than Eq. (4) for AG.

3.8. L2,1/2-norm v.s. L2,1-norm for AG

We compared the use of L2,1/2-norm (p=1/2) and L2,1-norm (p=1) in GS Eq. (4) for AG. 

The angular sets during iterations are summarized in Table 5, which shows that p=1/2 and 

p=1 found the same angular set, while p=1/2 had 1 fewer iteration than p=1.

3.9. AG v.s. GS with B=72

For B=72, despite of missing of ES as the ground truth, AG again improved plan quality 

from GS. For example, AG had smaller optimized plan objective values, better CI values, 

smaller OAR dosimetric parameters than GS as shown in Table 6. This improvement in plan 

quality was evident by comparing DVH plots in Fig. 8, and dose plots in Fig. 9–11.
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3.10. AG v.s. GS under robust optimization

The comparison of dosimetric parameters, DVH, and dose plots are presented in Table 7, 

Fig. 12, and 13 respectively, using robust optimization for the lung case, for which ES 

was solved as the reference for the ground truth. As shown in Table 7, the AG solution 

was ranked 2, and thus AG still provided the nearly-exact solution to BAO under robust 

optimization, in reference to the ES solution. On the other hand, the GS solution was ranked 

175 out of 2024. In comparison to GS, AG substantially improved the solution ranking, 

which was reflected in plan quality as presented in Table 7, Fig. 12, and 13, e.g., improved 

dose conformity by increasing CI from 0.63 to 0.66.

4. Discussion

While GS can directly solve BAO [16–18], the direct GS method via either ADMM or 

FISTA is imperfect considering physics perspective of treatment planning. With ADMM, 

for GS, the optimal set of M1 angles is always a subset of M2 angles for M1≤M2, while 

in practice the optimal set of M1 angles does not have to be a subset of M2 angles since 

BAO is a nonconvex problem. With FISTA, the optimal solution is highly sensitive to the 

GS regularization parameter λ and therefore is practically difficult to achieve without going 

through exhaustive searching in λ, which is time-consuming. In comparison, the AG method 

makes more sense than the direct GS method, since (1) AG is insensitive to the value of λ, 

and (2) M1-optimal angular set does not have to be a subset of M2-optimal angular set for 

AG. For example, the optimal angular set via the direct GS method was (7,19), (7,19,20), 

(6,7,19,20) for 2-angle, 3-angle, 4-angle brain respectively, while the optimal angular set via 

AG was (5,20), (6,13,20), (5,7,12,20) for 2-angle, 3-angle, 4-angle brain respectively; on the 

other hand, the rank of GS solutions was 42/276, 521/2024, 4328/10626 respectively, while 

the rank of AG solutions was 1/276, 3/2024, 4/10626 respectively.

Although AG provided nearly-exact solutions to the BAO problem, we do not claim that 

AG exactly solves BAO, because BAO is a nonconvex NP-hard problem. The experiments 

in this work were limited to BAO to select 2–4 beam angles, i.e., M=2, 3, 4, and the 

number of all angles available for optimization was limited to 24, i.e., B=24, in order to 

run ES as the ground truth for BAO. However, it is expected that AG will still outperform 

the direct GS method for larger M and larger B, e.g., the results with B=72 as shown in 

Section 3.9. For example, the angular set from the direct GS method can be used as initial 

guess for AG, and the plan objective will be non-increasing throughout the AG iterations 

as demonstrated in Fig. 6. Because of the nonconvexity of BAO, a thorough investigation 

of degree of improvement via AG from GS is to be carried out in a future work, e.g., with 

non-coplanar beams, for which however the exact BAO solution may not be available as the 

ground truth since the number of beams can be too big for ES to solve.

The AG method can be regarded as a general framework for BAO. Although in this work the 

update to the angular set is based on GS, other methods such as column generation method 

[50] or deep learning method [51] can be potentially used to update the angular set for AG. 

The integration of these methods to AG will be of interest as future works.
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In current AG method, the update to the angular set is limited to one angle per AG iteration. 

Due to the nonconvex nature of BAO, it is possible that the update of multiple angles to 

the angular set per AG iteration may further improve the optimality of AG solutions. For 

example, for BAO to select M angles, the strategy to update up to two angles to the angular 

set per AG iteration can include M updates of one angle at a time and M(M-1)/2 updates of 

two angles at a time, which however should be computationally expensive.

As presented in Table 2–4 respectively, it was found that the performance of AG was not 

sensitive to the choice of the optimization algorithm (ADMM or FISTA), the GS-IMPT 

formulation (Eq. (4) or (6)), and the p value (1/2 or 1). It was also found that the 

performance of AG was not sensitive to whether it was the MMU constraint (Gmin>0) 

or the nonnegative constraint (Gmin=0). Because the MMU constraint is nonconvex and 

the nonnegative constraint is convex, the presented results were with the MMU constraint 

instead of the nonnegative constraint to demonstrate the effectiveness of AG, even in the 

presence of nonconvex MMU constraint.

Spot-scanning arc therapy is an emerging proton modality [55] and rapidly developing [56–

59] as a viable alternative to fixed-beam IMPT that can potentially offer a combination 

of advantages in plan quality and delivery efficiency, compared to fixed beam IMPT. But 

currently fixed-beam IMPT remains to be the mainstream for proton treatments, for which 

BAO is still relevant.

5. Conclusion

We have developed a new BAO algorithm called the AG method, which was shown to 

provide substantially improved accuracy for BAO from current methods (e.g., GS or FISTA) 

with nearly-exact solutions to BAO, in reference to the ground truth of optimal BAO 

solution via ES. It was found that (1) AG is relatively insensitive to the initial guess, 

compared to GS or FISTA, (2) AG is stable with respect to the choice of optimization engine 

(e.g., GS or FISTA) for solving the GS-IMPT problem.
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Appendix A: Solving IMPT via ADMM

This section presents ADMM based solution algorithm for the IMPT problem Eq. (2). For 

the convenience of presentation, the IMPT problem is recapped here

min
x

Dx − d 2

s . t . x ∈ 0 ∪ Gmin, + ∞
. (A1)

With ADMM, a standard trick to handle the constrained optimization problem such as Eq. 

(A1) is to introduce a dummy variable z for the constraint, i.e., z=x, so that the constrained 
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problem Eq. (A1) can be decoupled into an unconstrained problem of x with planning 

objectives and a constrained problem of z that has no planning objectives and thus can be 

solved by an analytic formula, which will become clear shortly.

To derive ADMM solutions, we start with the augmented Lagrangian function of Eq. (A1)

L x, z, u = Dx − d 2 + μ x − z + u 2
2

s . t . z ∈ 0 ∪ Gmin, + ∞
, (A2)

where u is the dual variable of z, and μ is the relaxation parameter for the constraint z=x.

From Eq. (A2), the ADMM solution to Eq. (A1) consists of the following iterations

xn + 1 = argmin
x

L x, zn, un

zn + 1 = argmin
z ∈ 0 ∪ Gmin, + ∞

L xn + 1, z, un

un + 1 = un + xn + 1 − zn + 1

. (A3)

As explained in [31,32], the purpose of u-update is to relax the need of increasing μ during 

iterations to enforce z=x: a fixed value of μ instead of an increasing sequence is sufficient for 

Eq. (A3) to converge, which avoids numerical instability owing to large μ.

The x-problem of Eq. (A3) is a standard least-square problem, which has the optimal 

condition

DTD + μ xn + 1 = DTd + μ zn − un , (A4)

which is solved here by conjugate gradient (CG) method without explicit matrix inversion.

The z-problem of Eq. (A3) is separable and has point-wise analytic solution 

zn+1=S(xn+1+un) with S given by

S(x) = 0, x ≤ Gmin/2
max(Gmin, x), x > Gmin/2

(A5)

The ADMM algorithm for solving IMPT is summarized as follows.
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Figure 1. 
Comparison of planning objective values optimized with AG and GS via ADMM for B=24. 

In each plot, planning objective values for all possible combinations are solved via ES and 

plotted in the ascending order. AG is marked in red and GS is marked in black, with their 

(rank, planning objective value) in the bracket.
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Figure 2. 
Comparison of DVH plots between GS (red curves) and AG (blue curves) via ADMM with 

B=24.

Shen et al. Page 19

Med Phys. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison of dose plots for 2-angle brain via ADMM with B=24, for which the optimal 

ES solution is available as the ground truth. ES is the same as AG, as AG exactly solved 

BAO. The dose plot window is [0%, 110%]. 100% isodose line, 80% isodose line and CTV 

are highlighted in dose plots.
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Figure 4. 
Comparison of dose plots for 3-angle lung via ADMM with B=24, for which the optimal ES 

solution is available as the ground truth. ES is the same as AG, as AG exactly solved BAO. 

The dose plot window is [0%, 110%]. 100% isodose line, 80% isodose line and CTV are 

highlighted in dose plots.
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Figure 5. 
Comparison of dose plots for 4-angle brain via ADMM with B=24, for which the optimal 

ES solution is available as the ground truth. The dose plot window is [0%, 110%]. 100% 

isodose line, 80% isodose line and CTV are highlighted in dose plots.
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Figure 6. 
The planning objective values are monotonically non-increasing during AG iterations.
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Figure 7. 
Comparison of ADMM and FISTA in dependence of ranks of optimized plan quality with 

respect to the values of λ in Eq. (5). While ADMM is insensitive to λ except for large 

values of λ, FISTA is sensitive to λ, which can be problematic for choosing the optimal 

solution.
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Figure 8. 
Comparison of DVH plots between GS and AG via FISTA with B=72.
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Figure 9. 
Comparison of dose plots for 2-angle brain via FISTA with B=72, for which no ES solution 

is available as the ground truth. The dose plot window is [0%, 110%]. 100% isodose line, 

80% isodose line and CTV are highlighted in dose plots.
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Figure 10. 
Comparison of dose plots for 3-angle lung via FISTA with B=72, for which no ES solution 

is available as the ground truth. The dose plot window is [0%, 110%]. 100% isodose line, 

80% isodose line and CTV are highlighted in dose plots.
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Figure 11. 
Comparison of dose plots for 4-angle brain via FISTA with B=72, for which no ES solution 

is available as the ground truth. The dose plot window is [0%, 110%]. 100% isodose line, 

80% isodose line and CTV are highlighted in dose plots.
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Figure 12. 
Comparison of DVH plots for 3-angle lung between GS and AG via ADMM with B=24 
from robust optimization.
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Figure 13. 
Comparison of dose plots for 3-angle lung from robust optimization via ADMM with B=24, 

for which the optimal ES solution is available as the ground truth. The dose plot window is 

[0%, 110%]. 100% isodose line, 80% isodose line and CTV are highlighted in dose plots.
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Table 1.

Comparison of GS and AG in benchmark to ES via ADMM with B=24.

Case Parameters GS AG ES

2-angle brain

CI 0.60 0.62 0.62

Dmax, brainstem (Gy) 17.82 17.75 17.75

V10Gy, brainstem (cc) 3.11 2.75 2.75

S* (7,19) (5,20) (5,20)

F 1.23 1.11 1.11

Rank 42 1 1

3-angle lung

CI 0.90 0.92 0.92

Dmean, lung (Gy) 1.89 1.57 1.57

S* (13,14,22) (14,19,22) (14,19,22)

F 0.14 0.12 0.12

Rank 279 1 1

4-angle brain

CI 0.65 0.68 0.64

Dmax, brainstem (Gy) 18.05 17.29 17.13

V10Gy, brainstem (cc) 2.62 2.40 2.70

S* (6,7,19,20) (5,7,12,20) (5,7,11,20)

f 1.04 0.95 0.94

rank 4328 4 1
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Table 2.

Comparison of ADMM and FISTA for GS. The FISTA results here are from the best scenario by exhaustively 

searching the values of λ.

Case Parameters ADMM FISTA

2-angle brain

CI 0.60 0.60

Dmax, brainstem (Gy) 17.82 17.91

V10Gy, brainstem (cc) 3.11 2.73

S* (7,19) (19,21)

F 1.23 1.24

rank 42 51

3-angle lung

CI 0.90 0.90

Dmean, lung (Gy) 0.52 0.56

S* (13,14,22) (14,19,24)

F 0.14 0.13

rank 279 12

4-angle brain

CI 0.65 0.66

Dmax, brainstem (Gy) 18.05 18.11

V10Gy, brainstem (cc) 2.62 2.40

S* (6,7,19,20) (4,6,12,22)

F 1.04 1.00

rank 4328 1693
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Table 3.

Comparison of ADMM and FISTA for AG using 3-angle lung.

Parameters ADMM FISTA

CI 0.92 0.92

S* (14,19,22) (15,19,22)

f 0.12 0.12

rank 1 1

Med Phys. Author manuscript; available in PMC 2024 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shen et al. Page 34

Table 4.

Comparison of two GS-IMPT formulations Eq. (4) and (6) for AG using 3-angle lung.

Parameters Eq. (4) Eq. (6)

CI 0.92 0.90

S* (14,19,22) (14,16,19)

f 0.12 0.12

rank 1 36
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Table 5.

Comparison of p=1/2 and p=1 in GS for AG using 3-angle lung.

Iteration
p=1/2 p=1

S f rank S f rank

Initialization (1,2,3) 0.24 1963 (1,2,3) 0.24 1963

1 (1,19,3) 0.15 467 (1,13,3) 0.16 940

2 (1,19,14) 0.13 14 (1,13,21) 0.14 229

3 (22,19,14) 0.12 1 (19,13,21) 0.13 74

4 (22,19,14) 0.12 1 (19,14,22) 0.12 1

5 (22,19,14) 0.12 1 (19,14,22) 0.12 1

6 - - - (19,14,22) 0.12 1
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Table 6.

Comparison of GS and AG via FISTA with B=72.

Case Parameters GS AG

2-angle brain

CI 0.82 0.84

Dmax, brainstem (Gy) 18.15 17.80

V10Gy, brainstem (cc) 3.35 2.78

S* (36,57) (13,58)

F 1.12 1.11

3-angle lung

CI 0.92 0.92

Dmean, lung (Gy) 0.55 0.52

S* (41,55,70) (42,55,66)

F 0.13 0.12

4-angle brain

CI 0.86 0.87

Dmax, brainstem (Gy) 17.25 16.88

V10Gy, brainstem (cc) 2.92 2.48

S* (18,19,36,57) (13,36,56,63)

F 1.01 0.94
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Table 7.

Comparison of GS and AG in benchmark to ES from robust optimization via ADMM with B=24 using 3-angle 

lung.

Parameters GS AG ES

CI 0.63 0.66 0.64

Dmean, lung (Gy) 0.93 0.79 0.80

S* (13,14,24) (14,19,24) (14,20,24)

F 8.13 5.94 5.83

Rank 175 2 1
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