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Abstract

Purpose—This review aims to provide a comprehensive overview of the latest literature 

on personalized lung cancer management using different ligands and radionuclide-based tumor-

targeting agents.

Background—Lung cancer is the leading cause of cancer-related deaths worldwide. Due to 

the heterogeneity of lung cancer, advances in precision medicine may enhance the disease 

management landscape. More recently, theranostics using the same molecule labeled with 

two different radionuclides for imaging and treatment has emerged as a promising strategy 

for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and 

radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal 

therapeutic effects for lung cancer.

Methods—We summarize the latest radiotracers and radioligand therapeutic agents used in 

diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications 
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and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. 

Finally, we provide our views on the perspectives for future development in this field.

Conclusions—Radionuclide-based theranostics show great potential in tailored medical care. 

We expect that this review can provide an understanding of the latest advances in radionuclide 

therapy for lung cancer and promote the application of radioligand theranostics in personalized 

medicine.
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Introduction

Lung cancer (LC) is the second most common cancer in the world and is the leading cause 

of cancer-related deaths. LC contributes to 11.4% of all new cancer cases and 18.0% of 

all cancer-related deaths [1]. Non-small cell lung cancer (NSCLC) accounts for 85% of 

pulmonary neoplasms with several classifications, including adenocarcinoma, squamous cell 

carcinomas, and large cell carcinomas [2, 3]. The remaining 15% of neoplasms are identified 

as either limited or extensive small cell lung cancer (SCLC) [4]. Many studies have shown 

that early detection, precise classification, and personalized therapy are all key to reducing 

mortality from LC and thus improving patient outcome [5, 6].

Nowadays, molecular imaging, especially positron emission tomography (PET)/single 

photon emission computed tomography (SPECT), has become an essential imaging 

approach for oncologic detection [7]. In this context, various probes, such as 18F-FDG, 
18F-FLT, and 11C-methionine, have been developed to visualize tumors. They are critical 

in diagnosing LC and valuable in clinical staging, therapeutic monitoring, and prognostic 

assessment of LC [8]. However, the specificity and sensitivity of most probes (e.g., 18F-

FDG) are limited, hardly monitoring the changes in tumor molecular biomarkers (e.g., the 

expressing level of immune checkpoints) or portraying the tumor microenvironment (TME) 

(e.g., the level of vascular abundance and immune cell infiltration) [9, 10]. Therefore, tumor 

cell or TME target-based PET/SPECT imaging allows for further non-invasive detection of 

LC-specific biomarkers and provides multi-dimensional disease information, ranging from 

subtypes to metastases, to guide subsequent personalized therapy of pulmonary neoplasms 

[11, 12].

As for the therapy, surgery is recommended for early and resectable locally advanced 

NSCLC. For NSCLC patients with multiple metastases who cannot undergo surgical 

resection, radiotherapy, chemotherapy, or systemic combination therapy are viable 

alternatives [13, 14]. For patients with either limited or extensive SCLC, these therapies 

are more routinely used, while surgery is rarely applied [15]. However, a series of severe 

side effects and adverse reactions may occur as a result of the therapies [16–18]. Therefore, 

advanced therapeutic strategies have become the focus of clinical oncology treatment. For 

example, immunotherapy, including immune checkpoint inhibitors, cellular immunotherapy, 

and cytokine therapy, can activate the immune system to suppress and prevent tumor growth 

in the immunosuppressive microenvironment [19]. Dozens of immunotherapeutic drugs have 
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been approved and have prolonged the survival of cancer patients [20, 21]. Nevertheless, 

drug resistance invariably occurs due to tumor mutations [22]. Personalized or precision 

medicine has been proposed to overcome the inherent limitations of existing therapies. 

Radioligand theranostics (RLT) has shown enormous potential as a newly emerged approach 

for managing LC [23].

Iodine-131 was first used to treat differentiated thyroid cancer back in the 1940s, given 

the innate ability of thyroid cancer cells to take up iodine [24]. This advancement has 

shaped the field of radionuclide-based cancer therapy, and significant achievements in 

radionuclide therapy have since been made [25]. For example, RLT agents targeting 

somatostatin receptor 2 (SSTR2) have been successfully used in clinical practice, markedly 

prolonging progression-free survival (PFS) and overall survival (OS) in patients with 

neuroendocrine tumors (NETs) [26]. Nevertheless, suitable radioligands and targets have 

only been identified for a handful of cancers. In general, RLT needs specific targeting 

ligands (e.g., antibodies, proteins, peptides, and small molecules) to effectively deliver 

radionuclides to the tumor cells or TME [27]. Currently, the available radionuclides for RLT 

include three major types of particulate radiation: α-particles (e.g., 225Ac, 227Th, 213Bi, and 
211At), β-particles (e.g., 177Lu, 131I, 188Re, 186Re, 90Y, and 166Ho), and auger electrons (e.g., 
111In and 125I). Some of these radionuclides can also emit γ rays (e.g., 177Lu, 131I, and 
111In) for synchronic imaging and therapy [28, 29]. Some RLT agents have been approved 

for clinical use, such as 177Lu-DOTATATE (Lutathera), 131I-metaiodobenzylguanidine (131I-

MIBG) (Azedra), and 90Y-ibritumomab tiuxetan (Zevalin) for the treatment of NETs, 

neuroblastoma, and non-Hodgkin lymphoma, respectively [30, 31]. Furthermore, there are 

several potential RLT agents being tested in clinical trials for treating prostate cancer, 

glioblastoma, breast cancer, and pancreatic ductal adenocarcinoma [32–34]. Currently, 
177Lu-DOTATATE, which targets SSTR2, and 177Lu-FAP-2286, which targets fibroblast 

activating protein (FAP), show great therapeutic potential in pulmonary NETs and lung 

squamous cell carcinoma, respectively [35, 36]. Overall, the development of novel RLT 

agents with good safety profile, high treatment efficacy, and wide targeting capability is 

ongoing. This effort may help to better manage LC patients in the future.

In the first part of this review, we summarize the available molecular/cellular targets and 

radiotracers for PET/SPECT imaging of LC. In the later section, we discuss the recent 

applications of RLT agents in LC treatment. Lastly, we provide our advice on the selection 

of ideal targets, radiotracers, and radiotherapeutic agents for optimal molecular diagnosis 

and targeted therapy of LC.

Selection of optimal targets for theranostics of LC

Radionuclide-based tumor-targeting imaging provides diagnostic applications and a deeper 

insight into tumor biology (including tumor immune microenvironment and vascular 

abundance), which could assist in staging and restaging patients and predict treatment 

response [37]. Therefore, the identification of LC-specific targets is vital for the diagnosis 

and personalized therapy of pulmonary neoplasms (Fig. 1). As such, optimal targets would 

greatly ensure the efficacy of LC theranostics (Table 1).
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PD-L1/PD-1

The overexpression of programmed death ligand 1 (PD-L1) on tumor cells promotes 

immune escape and restricts tumor cell killing by C D8+ T cells. PD-L1 serves as a 

predictive biomarker, prognostic indicator, and therapeutic target for cancer immunotherapy 

[38, 39]. So far, five radiotracers targeting PD-L1 in NSCLC have been trialed in the clinic, 

including two monoclonal antibodies (mAbs), one peptide, one protein, and one single-

domain antibody (sdAb) (Table 1). Since atezolizumab, durvalumab, and avelumab are 

approved anti-PD-L1 mAbs [40–42], zirconium-89-labeled atezolizumab and durvalumab 

have shown encouraging results in clinical trials as immunotherapeutics. Cancer patients 

who are responsive to immune checkpoint inhibitor treatment showed higher uptake of these 

radiopharmaceuticals [43, 44]. Other mAbs (e.g., 89Zr-DFO-REGN3504, 89Zr-DFO-6E11, 

and 89Zr-C4) have generated images with strong tumor uptake and high image contrast, as 

demonstrated in several preclinical studies [45–47].

The optimal imaging timepoint for antibodies generally occurs several days after 

administration since they remain in blood circulation for a long time. Therefore, 

radionuclides, such as iodine-124 (t1/2 = 4.2 days) and zirconium-89 (t1/2 = 3.3 days), 

that have longer half-lives are commonly used for antibody-based imaging [48, 49]. 

To minimize radiation exposure to patients, imaging diagnosis using small-sized, short-

circulating ligand is preferred [50]. In particular, sdAb, especially nanobodies, has small 

sizes and short circulation half-lives, thus demonstrating easier dissolution and faster tissue 

accumulation than full-length antibodies [51–53]. For instance, 99mTc-labeled NM-01, an 

anti-PD-L1 sdAb, could highlight tumors with a tumor-to-background ratio (TBR) of 2.3 

after 2 h of patient injection [54]. Gallium-68 labeled NOTA-WL12, a peptide-based PD-

L1 imaging agent, could achieve a tumor-to-lung ratio of 4.45 ± 1.89 within an hour 

of administration, as evidenced by PET/CT imaging, thereby improving the efficiency 

of evaluation [55]. Similarly, small-sized adnectins could be rapidly delivered to target 

tissues [56]. They could provide an optimal tumor-to-background contrast at 70–90 min 

post-injection and a median maximum standardized uptake values (SUVmax) of 6.5 for 
18F-BMS-986192 in immunotherapy-responsive lesions [57]. Moreover, Truillet et al. 

successfully optimized anti-PD-L1 IgG1 complement 4 (C4)-based radioligands that possess 

shorter pharmacokinetics. As-prepared fragment antigen-binding (Fab) C4 and a double-

mutant IgG C4 (H310A/H435Q) could achieve a maximum TBR at 4 h and 24 h after 

injection, respectively. This timeframe is much shorter than C4, which achieves a maximum 

TBR 48 h after injection [47, 58]. Therefore, the optimization for mAbs is being improved 

by ensuring a high antibody affinity and lowering the ligand’s molecular weight via the 

reduction of radiopharmaceutical’s toxicity.

As an immune checkpoint molecule for cancer immunotherapies, programmed cell death 

protein-1 (PD-1) is mainly expressed on the surface of various immune cells [59]. The 

PD-1 pathway plays an important role in regulating the function of immune cells, such 

as T cell activation and exhaustion, formation and maintenance of memory T cells, and 

activation of Treg cells [60]. However, a wide range of PD-1/L1 inhibitors is recruited in 

multiple malignant tumors, including NSCLC. Thus, to provide a precise treatment regimen, 

it is critical to identify the patients who may benefit from PD-1 based immunotherapies in 
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advance [61]. For example, tumor uptake of 89Zr-pembrolizumab is higher in patients who 

respond well to pembrolizumab treatment than those who do not respond to the treatment 

(median SUVpeak, 11.4 vs. 5.7) [62]. Similarly, the uptake of 89Zr-nivolumab in tumors is 

also directly associated with treatment response (median SUVpeak 6.4 vs. 3.9) [57]. Hence, 

PD-1-PET/CT predicts response to treatment with immune checkpoint inhibitors for patients 

with NSCLC.

EGFR

Epidermal growth factor receptor (EGFR) has been recognized as a crucial molecular target 

specific for NSCLC therapy. In particular, mutated EGFR is a possible prognostic marker 

and a predictor of resistance in NSCLC [63]. EGFR tyrosine kinase inhibitors (TKIs) 

are first-line therapy for advanced NSCLC. The suitability for treatment with EGFR-TKIs 

depends on the EGFR mutation status in NSCLC patients [64]. Most advanced NSCLC 

patients would acquire resistance after treatment with the first-generation (gefitinib and 

erlotinib) or second-generation (afatinib and dacomitinib) TKIs, with the generation of 

T790M mutations as the predominant mechanism [65]. As a result, the third-generation 

EGFR TKIs (rociletinib and osimertinib) were developed to treat these patients with 

T790M mutation [66, 67]. Surprisingly, 18F-gefitinib did not have satisfactory imaging 

results in EGFR-expressing engrafted tumor mouse models [68]. With further studies, it 

was shown that the high lipophilicity of the probe is a key factor affecting the imaging 

performance of radionuclides labeled TKIs. Increasing hydrophilicity of gefitnib can 

be resolved via polyethyleneglycol (PEG) modification, such as gefitinib-based 18F-IRS 

that bind strongly to EGFR 19 exon deletion mutation [69]. Notably, dynamic PET/CT 

scans may provide additional information by analyzing the kinetics among different TKIs 

probes [70]. Dynamic 11C-erlotinib-PET/CT showed that the volume of distribution was 

significantly higher in tumors with activated mutations as opposed to those without activated 

mutations (1.76 vs. 1.06) [71]. Moreover, the most promising EGFR-TKI PET candidate 

is N-(3-chloro-4-fluorophenyl)-7-(2-(2-(2-(2–18F-fluoroethoxy) ethoxy) ethoxy) ethoxy)-6-

methoxyquinazolin-4-amine (18F-MPG), which is based on the established 11C-PD153035 

that predict survival in NSCLC treated with EGFR-TKIs [72]. Therefore, EGFR-TKIs based 

treatment benefits EGFR-mutated NSCLC patients. This type of therapy also prolongs 

the median PFS especially when 18F-MPG PET/CT indicates a SUVmax (maximum 

standardized uptake value) ≥ 2.23 [73].

SSTR2

Bronchopulmonary NETs, including SCLC, large-cell neuroendocrine carcinoma, and 

atypical and typical carcinoids, account for 25% of primary lung neoplasia [74]. The 

somatostatin receptors (SSTRs), especially the SSTR2 subtype, are overexpressed on NET 

cells. The somatostatin analogs, mainly octreotide and octreotide derivatives, have been 

developed for diagnosing and treating NETs in conjunction with various radionuclides. 

Since the 1990s, 111In-pentetreotide (111In-OctreoScan or 111In-DTPA-D-Phe1-octreotide) 

has been used to image patients with lung carcinoids, NSCLC, and SCLC [75–77]. 

However, due to the limited spatial resolution and the relatively slow localization of 
111In-pentetreotide, (68)Gallium-DOTA-D-Phe(1)-Tyr(3)-octreotide (68Ga-DOTATOC) has 

become a viable alternative for diagnosing, staging, and assisting in treatment decision-
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making. A metaanalysis demonstrates that the clinical sensitivity (92% vs. 85.7%) and 

specificity (82% vs. 50%) of 68Ga-DOTATOC were superior to those of 111In-pentetreotide 

for NETs’ diagnosis [78]. In addition, (68) Gallium-DOTA(0)-Tyr(3)-octreotate (68Ga-

DOTATATE) PET/CT imaging performs best in SSTR2-positive patients (SUV > 20) [79]. 

Moreover, 68Ga-DOTATATE outperforms 111In-pentetreotide in terms of imaging sensitivity, 

overall accuracy, radiation dosimetry, and patient convenience [80, 81]. Hence, 68Ga-

DOTATATE has essentially replaced 111In-pentetreotide imaging where available. Recently, 
68Ga-DOTA-PA1 and (124I, Mn) OCT-PEG-MNPs have achieved satisfactory imaging 

results in preclinical studies. 68Ga-DOTA-PA1 could target various subtypes of SSTRs, 

while (124I, Mn) OCT-PEG-MNPs could target SSTR2 as well as provide multimodality 

imaging [82, 83]. Overall, the approach to imaging patients with known NETs using ligands 

that target SSTRs is excellent.

CXCR4

The CXC motif chemokine receptor 4 (CXCR4) is overexpressed in different malignancies 

and is often associated with tumor metastasis and poor prognosis [84]. Wester’s group 

developed a suitable probe (68Ga-CPCR4-2, also known as 68Ga-Pentixafor) with high 

affinity to CXCR4 that displays a TBR of 16.6 in SCLC models [85]. CXCR4 PET has 

also been utilized in various clinical settings. 68Ga-Pentixafor PET/CT not only showed 

higher CXCR4 density in SCLC (SUVmax = 13.2) compared to NSCLC (SUVmax = 8.8) 

[86] but also demonstrated high image contrast in a variety of neoplasms, particularly for 

hematologic malignancies, SCLC, and adrenocortical neoplasms [87]. The specific binding 

of 125I-CPCR4-3 to tumor cell lines with different levels of CXCR4 expression is increased 

by 2.4 to 11-fold compared to 68Ga-CPCR4-2 [88], but further validation by in vivo 

imaging is still required. BL01, another potent peptide antagonist of CXCR4, accumulates 

too much in normal lung tissue and appears to be an improper radiotracer for LC [89]. 

AMD3100/plerixafor is a specific inhibitor of CXCR4. 64Cu-AMD3100 accumulates in 

CXCR4-positive tumors (%ID/g: 12.3), but with the drawback that the accumulation in the 

liver is too high (tumor-to-liver ratio < 1) [90, 91]. In conclusion, Pentixafor is currently the 

most potentially suitable ligand for CXCR4-targeted theranostics in LC.

Integrin αvβ3

As an essential component of the TME, integrin αvβ3 can promote tumor cell migration 

and angiogenesis [92]. Dozens of integrin αvβ3-targeting PET tracers have been tested 

in preclinical studies and clinical trials. Importantly, peptides containing the Arg-Gly-Asp 

(RGD) sequence have high affinity for αvβ3 integrin receptors. A review by Chen et al. 

provides an in-depth discussion of radiolabeled RGD peptides that are available in the 

clinics for imaging of integrin αvβ3 via PET. Some have found applications in the diagnosis, 

clinical staging, and treatment response monitoring of LC [93].

Although RGD peptides are excellent for evaluating tumor angiogenesis, 18F-galacto-RGD, 

the first clinical RGD PET tracer, has lower tumor uptake and image contrast than 18F-FDG 

(mean SUV: 2.7 ± 1.5 vs. 7.6 ± 4.9) and is less sensitive than 18F-FDG for tumor staging 

[94]. After that, dimeric RGD peptides were developed with higher receptor affinity, higher 

tumor uptake, and better pharmacokinetics than their monomeric analogs [95, 96]. And 
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indeed, 18F-alfatide I, a dimeric RGD peptide, has shown good contrast in αvβ3-positive 

lung tumors with a mean SUV of 2.90 ± 0.10 and a TBR of 5.87 ± 2.02. 18F-alfatide 

I can be used to distinguish between benign and malignant lesions (the cut-off value of 

SUVmax is 2.65) [97, 98]. Importantly, 18F-alfatide I may be useful when predicting the 

response in locally advanced NSCLC patients who are undergoing radiotherapy concurrently 

[99]. PET/CT imaging based on 18F-alfatide II (or the second generation) could differentiate 

between tuberculosis (SUVmax: 2.63 ± 1.34) and lung cancer (SUVmax: 4.08 ± 1.51) [100], 

as well as offer higher sensitivity than 18F-FDG-PET/CT (92% vs. 77%) in detecting bone 

metastases [101]. Additionally, 68 Ga-labeled alfatide II could detect the inter- and intra-

heterogeneity of αvβ3 integrin receptors in patients with NSCLC and SCLC [102], as well as 

outperform 18F-FDG in assessing lymph node and brain metastasis [103, 104]. Furthermore, 
99mTc-3PRGD2 has demonstrated high sensitivity (88%) and specificity (94.6%) toward the 

diagnosis of lymph node metastasis in NSCLC [105, 106]. In terms of therapeutic response 

evaluation, 68Ga-DOTA-E-[c(RGDfK)]2-PET/CT is a valuable tool for assessing therapy 

response to angiogenesis inhibitors [107]. Overall, integrin αvβ3 PET imaging is effective 

in evaluating tumor angiogenesis, detecting tumorigenesis and metastasis, and identifying 

patients who will benefit from antiangiogenesis therapy.

FAP

FAP is overexpressed in cancer-associated fibroblasts (CAFs) that are located in the tumor 

stroma. FAP plays a crucial role in tumor cell growth, invasion, and migration [108]. A 

number of quinoline-based FAP inhibitors (FAPIs), including FAPI-02, FAPI-04, FAPI-21, 

FAPI-34, FAPI-46, and FAPI-74, have been developed for clinical imaging applications 

[108, 109]. With ease of production, high contrast generation, and low radiation load, 18F 

or 68Ga-labeled FAPIs may represent a powerful radiopharmaceutical devoted to diagnostic 

imaging of LC. The clinical imaging results in LC patients are encouraging, especially with 
68Ga-FAPI-04, 18F-FAPI-74, and 68Ga-FAPI-74. These probes could be not only specifically 

taken up at very high levels at the primary tumor site, lymph nodes, and distant metastases 

(average S UVmax > 10) [110, 111] but also have a higher staging accuracy than 18F-FDG 

(94% vs. 30%) [112]. FAPIs have the property of comparatively rapid tumor clearance 

and correspondingly short tumor retention time, which is not a problem for diagnosis, 

but becomes a drawback as an effective therapeutic radiopharmaceutical for LC [109]. 

To increase tumor retention, Dirk Zboralski et al. developed the FAP-2286 compound, 

which utilizes cyclic peptides as binding motifs [113]. The results of 68Ga-FAP-2286 

and 68Ga-FAPI-46 accumulated in tumors are comparable in both preclinical and clinical 

practice [113, 114]. However, the time-integrated activity coefficient and absorbed dose of 
177Lu-FAP-2286 are 12 and 9 times higher than 177Lu-FAPI-46 in tumors [113]. In the 

future, radionuclide-labeled FAP-2286 may have more therapeutic potential than FAPIs.

TIGIT

T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain 

(TIGIT), expressed on CD4+, CD8+, and innate lymphocytes, can be a promising immune 

checkpoint for immunotherapies against cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4) and PD-L1/PD-1 [115]. TIGIT interacts with CD155 and CD122 expressed 

on tumor cells or antigen-presenting cells to inhibit innate and adaptive immunity by 
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downregulating the function of natural killer cells and T cells [116]. A novel 68Ga-labeled 

D-peptide antagonist, or 68Ga-GP12, has shown success in accessing the heterogeneity of 

TIGIT expression in primary tumors (SUVmax = 4.82) and metastatic lesions (SUVmax = 

2.80) in NSCLC patients. This finding indicates the possibility of stratifying patients suitable 

for anti-TIGIT therapies via TIGIT PET imaging [117].

Selection of RLT agents for the treatment of LC

When designing an RLT agent, the targeting ligand and radionuclide should be carefully 

considered and appropriately selected based on the histological/genetic tumor type 

and patient-bound factors such as tumor size, previous treatment responses, concurrent 

treatments, and previous medical history. Each LC subtype has certain molecular or cellular 

targets that are highly expressed. For example, NSCLC patients with high EGFR expression 

have more than 200 distinct mutations in the structural domain of tyrosine kinase [162]. On 

the other hand, SSRTs-RLT is promising for SSRTs-rich pulmonary NETs in SCLC or lung 

carcinoid patients [163]. Therefore, a detailed work-up (e.g., imaging or tissue biopsy) is 

required to determine the disease histotype and stage before initiating any treatment plans 

(Fig. 2).

Ligands used for theranostics should have the following characteristics: (1) excellent 

specificity that allows high target affinity, (2) more reasonable pharmacokinetics for 

lower toxicity, and (3) longer tumor retention time to maximize tumor-killing activity. 

The optimization of ligands should also consider these three aspects. First, the targeting 

ability of the ligand to the tumor needs to be enhanced. Although rhenium-188 labeled 

depreotide analog P2045 has entered phase I clinical trials for RLT of advanced lung 

cancer, unfortunately, no significant therapeutic responses have been recorded [164]. As we 

have summarized in the first part of this review or Table 1, octreotide and octreotate are 

currently the most widely used peptides for diagnosing and treating patients with SSTR2 

expressing lung NETs. The in vitro affinity of 68Ga-DOTATATE (octreotate) for SSTR2 is 

approximately tenfold higher than that of 68Ga-DOTATOC (octreotide) [165]. Also, both the 

sensitivity (96% vs. 93%) and specificity (100% vs. 85%) of 68Ga-DOTATATE are higher 

than 68Ga-DOTATOC [166]. According to Table 2, it is obvious that various octreotide- 

and octreotate-based beta-emitter labeled RLT agents (e.g., 90Y/177Lu-DOTATATE and 
90Y/177Lu-DOTATOC) have shown good efficacy in patients with lung NET in several 

clinical trials [167]. Furthermore, the development of bispecific antibodies or heterodimeric 

peptides can also improve targeting efficiency and image quality [69, 130, 156]. Second, 

radiation toxicity and off-target effects could be further minimized via structure optimization 

of radionuclide-labeled mAbs. Radioligands could mediate a fast tumor uptake by using 

low molecular weight sdAbs, peptides, and small molecules targeting PD-L1, CXCR4, or 

EGFR rather than full-length antibodies [54, 87, 168]. And last but not least, increasing 

ligands retention time in tumor tissues would effectively enhance therapeutic effectiveness. 

FAPIs, such as 90Y-FAPI-04, 177Lu-FAPI-46, have a very short retention time in tumors (a 

significant decrease occurs 24 h after injection). However, 177Lu-FAP-2286 has a durable 

retention time of more than 72 h in tumors [113, 169]. The latest report of 177Lu-FAP-2286 

for the treatment of metastatic NSCLC has encouraging clinical results with a significant 

reduction in lesions after 9 weeks of treatment [36].
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RLT may induce potential side effects in patients, including primary nephrotoxicity and 

hematological toxicity [29]. Hence, the selection of suitable radionuclides is of the utmost 

importance for improving the therapeutic efficacy and avoiding any toxic side effects. 

Beta-particle emitters are commonly used for RLT [170]. For instance, the maximum 

energy of the main emission (Emax) of iodine-131 is 606.3 keV, with a half-life of 8.0 

d and a maximum range of 2.9 mm in soft tissue [171]. 131I-labeled recombinant chimeric 

tumor necrosis treatment antibody (131I-chTNT) has been applied to treat patients with 

advanced lung cancer. However, it has shown limited clinical efficacy with some degree 

of immunogenicity in 8.97% of patients [172–174]. On the other hand, yttrium-90 has 

a shorter half-life (t1/2: 2.7 days) and higher energy (Emax: 2280.1 keV) compared to 

iodine-131 [24]. Nevertheless, yttrium-90 has a longer maximum range than lutetium-177 

(t1/2: 6.7 days) in soft tissue (12 mm vs. 2 mm), allowing the glomeruli of kidneys to 

be exposed to radiation. Meanwhile, 177Lu only affects renal tubuli, thus causing higher 

incidences of nephrotoxicity and anemia [171, 175]. As such, 177Lu is better suited than 
90Y for treating patients with NETs. Furthermore, 177Lu-DOTATATE has a better disease 

control rate, better objective response rate, longer PFS, lower hazard ratio for death, and 

less disease recurrence compared with 90Y-DOTATOC [35]. Recently, targeted alpha-particle 

therapy is also of great interest due to the shorter delivery range (40–100 μm) and greater 

energy (5–9 MeV) of alpha particles in contrast to beta particles [175]. The alpha particles 

induce double-strand breaks of DNA (unable for beta particles at the same radiation dose) at 

multiple sites through direct energy transfer or indirect effects of ionizing radiation. Notably, 

alpha particles are a double-edged sword. DNA breaks are closely related to the bystander 

and abscopal immune effects. Thus, alpha particles generate a stronger antitumor potency 

and can also be toxic to surrounding normal tissues [176]. After 223Ra-dichloride was 

approved for treating painful osseous metastases from prostate cancer [177], alpha-particle 

therapy is now considered an alternative to beta-particle therapy. In preclinical studies, 
225Ac radioimmunoconjugates showed a relatively low tumor growth rate compared to 
177Lu radioimmunoconjugates [178]. In clinical trials, actinium-255 labeled DOTATATE 

has successfully treated gastroenteropancreatic NET patients stable or refractory to 177Lu-

DOTATATE [179]. With the development of radiopharmaceutical therapy, alpha-particle 

therapy has played a major role in the management of brain, breast, and lung cancer among 

others [180]. For lung NETs, 255Ac-DOTATATE significantly suppressed the growth of 

H727 and H69 tumors in mice without inducing toxicity concerns [181].

Auger electrons are also suited for RLT owing to their short emission range, low energy, and 

high linear energy transfer. These physical characteristics allow for strong energy deposition 

around the decay point [182]. Iodine-125 is one of the most extensively investigated auger 

emitters [183]. Treatment with iodine-125 labeled anti–EGFR mAb 425 improved median 

survival in patients with glioblastoma. Importantly, the combined therapy of 125I-mAb 425 

and temozolomide effectively extended the maximum survival benefit [184]. Unfortunately, 

only few 125I-RLT studies have focused on LC thus far. 125I has also been limited as a 

systemically administered RLT agent since its long physical half-life is not ideal for clinical 

use (t1/2 = 60.1 days) [185]. In addition, most studies have concentrated on the dosimetry, 

pharmacokinetics, and biodistribution of auger electrons-labeled probes, thus prompting the 

need for further evaluation of their therapeutic effects [119, 186]. For instance, 125I-labeled 
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CO1686 and HuBA-1-3D showed high specificity and activity against EGFR mutations or 

delta-like 1 homolog (DLK1) in LC cell lines, but the therapeutic potential of 125I-CO1686 

and 125I-HuBA-1-3D was not assessed [187, 188]. Notably, in order to maximize efficacy 

and minimize toxicity, it is ideal to target auger electron-emitting isotopes to the tumor cell 

nuclei, even though internalization of the probe is not required for effective RLT [189–192].

Currently, only a proportion of SSTR2-targeted RLT agents developed for lung NETs are 

in clinical trials. Treatment with 177Lu-DOTATATE could result in an objective response 

rate of 39% for all bronchial and gastroenteropancreatic NET patients, with PFS and 

OS of 29 and 63 months, respectively [167]. Compared with chemotherapy or targeted 

therapy, SSTR2-targeted RLT agents had longer median PFS in the unmatched (2.5 years 

vs. 0.7 years) and matched (2.2 years vs. 0.6 years) populations [193]. Compared with 

everolimus-treated advanced pancreatic NETs, 177Lu-DOTATATE therapy had a better 

objective response rate (47% vs. 12%), disease control rate (81% vs. 73%) as well as longer 

PFS (25.7 months vs. 14.7 months), and also had a better safety profile [194]. In addition, 

the efficacy of combination of 177Lu-DOTATATE is superior to monotherapy. For example, 
177Lu-DOTATATE plus somatostatin analogs correlated with the highest probability (99.6%) 

of the longest PFS [195]. The combination of 177Lu-DOTATATE with carboplatin/etoposide 

chemotherapy prolonged survival vs. 177Lu-DOTATATE or chemotherapy alone [136]. 
177Lu-DOTATATE and capecitabine therapy lengthen median OS and PFS in advanced 

metastatic NETs [196], and 177Lu-DOTATATE plus nivolumab showed signs of antitumor 

activity in patients with relapsed/refractory extensive-stage SCLC [197]. RLT agents for 

other targets or other types of LC are still under development, with no definitive results on 

their therapeutic efficacy. Herein, we propose two recommendations to promote the use of 

RLT drugs in LC management. On the one hand, it is necessary to advance different types 

of RLT agents into preclinical and clinical studies. More specifically, the main focus should 

be the therapeutic evaluation of tumors using alpha particles- and auger electrons-emitting 

radionuclides labeled ligands. On the other hand, to combat the challenges of single-

drug therapies and drug resistance, personalized treatments that combine chemotherapy, 

radiosensitizers, small molecule kinase inhibitors, and other therapeutic agents will yield 

better patient outcome.

Conclusion and future perspectives

A critical concern in the management of LC is the difficulty of determining the patient 

characteristics that would benefit from certain treatments. At present, tissue biopsy, which 

is an invasive procedure, is the gold standard for cancer confirmation. However, due to intra-

tumor phenotypic heterogeneity, biopsy often leads to erroneous tumor status classifications. 

As a result, repeat biopsies are necessary to give more accurate diagnoses, but this approach 

puts a significant burden on patients [214]. In contrast, PET and SPECT are non-invasive in 

nature and can be used to determine the expression level of specific molecules or mutation 

status of oncogenes in tumor cells, while monitoring the immune response in the TME 

[57, 215]. Thus, nuclear medicine could be an ideal therapeutic strategy to prospectively 

identify the patient populations that may benefit from a drug prior to its administration and 

subsequently personalize the treatment by employing suited radioligands.
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The application of radioligands offers several invaluable advantages for targeted theranostics 

of LC. First, RLT agents can identify molecular targets in vivo without the need for biopsy 

and provide personalized therapeutic solutions for each individual. As we have summarized 

in Table 1, PET or SPECT imaging allows for the non-invasive detection of tumor mutation 

status as well as specific biomarkers in tumors and TME. Second, RLT can overcome the 

challenges of low vascular abundance and heterogeneous receptor expression on tumor cells. 

By changing the size and modifying the water solubility of ligands, the capability of RLT 

agents may be improved in terms of their affinity and specificity. Moreover, combined 

therapies, as opposed to single drug-targeted treatments, can improve further therapeutic 

efficacy and reduce toxic side effects [216]. Numerous combined-therapeutic strategies have 

been evaluated, including the combination of drugs that modulate immune checkpoints, 

improve tumor perfusion, upregulate target receptors, induce tumor cell DNA damage, 

and inhibit DNA damage repair [217]. Lastly, RLT can be used to estimate a patient’s 

prognosis and inform treatment decisions by tracking tumor response and progress via 

real-time longitudinal monitoring. For example, immuno-PET has been used to assess and 

predict therapeutic efficacy by examining the immune activation status of primary tumors 

and systemic lymphoid organs before and after treatment [218].

In spite of the considerable merits of RLT in oncological treatment, its limitation is still 

noticeable, namely, the problem of non-negligible toxicity. However, there are three aspects 

that we can take into account to improve the current procedures to alleviate the toxicity 

of RLT agents. The first step is to take some options to reduce the drug’s toxic effects 

depending on the patient’s health status. For example, the patient may be infused with 

nephroprotective amino acids [219]. Secondly, as discussed in the previous section, we 

should choose the optimal ligand and radionuclide to minimize toxicity. Finally, RLT 

combined with chemotherapy or immunotherapy can reduce toxicity by reducing the dosage 

of TRT drugs and achieve better therapeutic results.

In summary, RLT could provide tailored and personalized medical care for each individual 

patient. The application of RLT for targeted theranostics of LC is in its infancy, but this 

topic is gaining considerable interest and more research progress will be made in the coming 

years. Besides, the safety of radionuclide application in tumor diagnosis and treatment 

has been clinically proven for many years, and an increasing number of mAbs, peptides, 

and small molecules are increasingly entering clinical trials. Once suitable targets can be 

identified and safer and more effective ligands developed for LC treatment, we anticipate 

that RLT will provide great clinical benefits as either an adjuvant or first-line treatment for 

patients with early, advanced, relapsed, or treatment-resistant LC in the future.
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Fig. 1. 
Potential biomarkers in pulmonary tumors for PET or SPECT imaging and representative 

ligands and radionuclides for RLT. Abbreviations: PD-1/PD-L1, programmed cell death 

protein-1/ligand-1; EGFR, epidermal growth factor receptor; TIGIT, T cell immunoglobulin 

and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain; CTLA-4, cytotoxic 

T-lymphocyte-associated protein 4; FAP, fibroblast activation protein; FRα, folate receptor 

alpha; CD166, activated leukocyte cell adhesion molecule; SSTR2, somatostatin receptor 

2; NRP-2, neuropilin receptor type-2; CXCR4, CXC chemokine receptor 4; VEGFR-2, 

vascular endothelial growth factor receptor-2; c-Met, the receptor of hepatocyte growth 
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factor; TAM, tumor-associated macrophages; mAbs, monoclonal antibodies; sdAbs, single-

domain antibodies; HCAb, heavy chain-only antibody
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Fig. 2. 
Theranostic procedures for RLT
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