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A dorsomedial prefrontal cortex-based
dynamic functional connectivity model of
rumination

Jungwoo Kim 1,2,3,12, Jessica R. Andrews-Hanna4,5,12, Hedwig Eisenbarth 6,
Byeol Kim Lux 1,2,7, Hong Ji Kim1,2,3, Eunjin Lee 1,2,3, Martin A. Lindquist8,
Elizabeth A. Reynolds Losin9,10, Tor D. Wager 7,13 &
Choong-Wan Woo 1,2,3,11,13

Rumination is a cognitive style characterized by repetitive thoughts about
one’s negative internal states and is a common symptom of depression. Pre-
vious studies have linked trait rumination to alterations in the default mode
network, but predictive brain markers of rumination are lacking. Here, we
adopt a predictive modeling approach to develop a neuroimaging marker of
rumination based on the variance of dynamic resting-state functional con-
nectivity and test it across 5 diverse subclinical and clinical samples (total
n = 288). A whole-brain marker based on dynamic connectivity with the dor-
somedial prefrontal cortex (dmPFC) emerges as generalizable across the
subclinical datasets. A refined marker consisting of the most important fea-
tures from a virtual lesion analysis further predicts depression scores of adults
with major depressive disorder (n = 35). This study highlights the role of the
dmPFC in trait rumination and provides a dynamic functional connectivity
marker for rumination.

Individuals who ruminate are plagued by persistent negative, self-
reflective thoughts. Such thoughts are focused on the causes, con-
sequences, and symptoms of distress1, ostensibly to help people make
sense of the situations that are causing distress and formulate action
plans. However, when productive actions are not available, people can
get stuck in a cycle of rumination that can aggravate and prolong
distress2 and thus contribute to multiple psychopathologies such as
depression and anxiety3. Importantly, rumination also often emerges
as an early risk factor for depression, highlighting the need for
improved subclinical detection and intervention before the onset of

clinical episodes4. Resting-state fMRI (rsfMRI) holds great promise as a
tool for developing objective brain-based markers of rumination,
particularly as rest is a natural condition that may facilitate ruminative
thinking. Although prior studies have pointed to altered patterns of
rsfMRI connectivity in individuals who ruminate, precisely specified
models that can be applied to new individuals to capture and predict
rumination remain lacking. In other areas, whole-brain predictive
connectivity-based models that take dynamic features of rsfMRI into
account (e.g., temporal fluctuations in functional connectivity) have
produced generalizable neuromarkers for depression, pain, attention,
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and other outcomes5–8. Our goal here was to extend this approach to
rumination.

Among large-scale resting-state networks previously linked to
rumination, the brain’s default mode network (DMN) has been repor-
ted most consistently9. Theories of DMN function highlight its role in
internally oriented processes thought to be dysfunctional in rumina-
tive individuals10, spanning self-referential thought11, autobiographical
memory12, emotional experience13, and more. The DMN has also
recently been suggested as a hub for constructing representations of
the self in relation to situational contexts, integrating multimodal
information from one’s body state (via interoceptive and autonomic
pathways), memory systems, and predictions about future states into
an internal conceptual model14,15. Such hypothesized functions may
also explain the involvement of the DMN in depression and numerous
other mental health disorders linked to dysfunctional thoughts and
emotions16–18.

Critically, the DMN is thought to be heterogeneous in anatomy
and function19,20, with some hypotheses suggesting interacting sub-
systems that support the processes by which thoughts and emotions
are construed21. For example, a medial temporal system may support
mental experiences at low levels of construal—a so-called “mind’s eye,”
imbuingmental simulationswith rich spatial, temporal, andperceptual
details. In contrast, a dorsal medial system may support a “mind’s
mind” form of cognition, whereby high-level, reflective processes
allow us to consider the broader implications and significance of our
thoughts, emotions, and external stimuli21. Interpreted in this frame-
work, a dorsal medial system is the most reasonable candidate
important for the repetitive high-level appraisal that characterizes
ruminative thinking. Particularly, the dorsal medial prefrontal cortex
(dmPFC) has been suggested to be a core brain region for rumination.
It has been considered a “dorsal nexus” that serves as a core that
modulates the connectivity related to depression22, and the heigh-
tened connectivity of the dmPFC was a unique feature of major
depressive disorder (MDD) compared to other mental disorders23 (see
also refs. 24,25).We, therefore, hypothesized that dmPFC connectivity
may be important for trait rumination. However, there have also been
some inconsistent reports in the literature. For example, the static
functional connectivity strength within the dorsal medial system was
increased16 or decreased26 in individuals with MDD (see also
refs. 27,28). Collectively, thesefindings highlight the need for adopting
a predictive modeling approach, which could provide more reliable
results29. Furthermore, in addition to the dmPFC, we also tested other
brain regions across the DMN to minimize the potential bias in our
findings.

Central to the ruminative style are altered cognitive and affective
dynamics, whereby negative self-focused thoughts are difficult to let
go of and consequently persist over time30. In light of this important
feature of rumination, we hypothesized that the variance of dynamic
functional connectivity would serve as an important predictor of
rumination. Static or averaged dynamic DMN connectivities would
reflect whether the connections between regions are high or low
during the resting-state scan and have been one of the key functional
brain features for characterizing multiple clinical conditions16,22,23.
However, such static connectivitymeasures cannot capturehow stable
or variable they are over time, which we hypothesized to be a key
feature of rumination. Despite the importance of the con-
nectivity variance, only a few studies have explored the relevance of
such measures to rumination31,32. In addition, no studies of which we
are aware have developed dynamic connectivity-based predictive
models that can predict trait rumination in new individuals. Such
predictive models could provide a direct window into depression-
relevant brain processes without the filtering inherent in self report.
Additionally, an identificationof the key neuralmechanismcomprising
a seed-based predictive model may not only serve as a potential tool
for identifying individuals at risk formental illness, but itmayalso offer

guidance on how pharmacological or psychological interventions can
be applied to modulate targeted brain regions5,33.

In this work, we apply dynamic connectivity-based predictive
modeling to five independent datasets (including four subclinical
datasets and one publicly available clinical dataset) to answer the fol-
lowing questions: (1) Canwe develop a predictivemodel of rumination
generalizable across multiple studies using rsfMRI-based dynamic
functional connectivity within subclinical samples? (2) Which func-
tional connections are important contributors to the prediction of
rumination? and 3) Can the model predict the depression scores of a
clinical sample? To answer these questions, we use three independent
rsfMRI datasets from subclinical samples for model training, valida-
tion, and independent testing (n = 84, 61, and 48, respectively; Fig. 1a).
Within the Study 1 dataset (i.e., training data), we develop multiple
models predictive of the three subscales of the Ruminative Response
Scale (RRS)34—i.e., brooding, depressive rumination, and reflective
pondering.We use 20 predefinedDMN seeds35 to calculate seed-based
dynamic conditional correlations (DCC)36, which allow us to assess
dynamic connectivity between each seed and 280 brain regions.
We use the variance of the DCC values as input features to predict
RRS subscale scores, resulting in a total of 60 models
(20 seeds × 3 subscales). We then test the models on Study 2 and 3
datasets (i.e., validation and independent test datasets) to identify
predictive models that generalize across multiple datasets. From the
same datasets, we use the virtual lesion method to identify the
important features from the original full model. Finally, we test the
refined model comprised of the identified important features on a
separate clinical dataset (Study 4) consisting of 35 adults with MDD to
predict their depression scores measured with the BDI-II.

Overall, we identify the dynamic connectivity-based predictive
model of rumination involving the dmPFC that holds the potential for
evaluating rumination in subclinical and clinical populations. This
study also expands our understanding of the role of the dmPFC and
functionally connected regions in psychological processes central to
trait rumination.

Results
Model development and independent testing
As shown in Fig. 1a, we first calculated seed-based DCC values using 20
DMN subregions35 as seeds. We used the variance of seed-based DCC
values as input features (a total of 280 features) to separately predict
three subscales of RRS (i.e., brooding, depressive rumination, and
reflective pondering) with Lasso regression, resulting in 60 whole-
brain predictivemodels based on the varianceof dynamic connectivity
(20 seeds × 3 subscales). Among these 60 predictive models, we chose
models that showed significant prediction performance from leave-
one-participant-out cross-validation and tested them on an indepen-
dent validation dataset (Study 2, n = 61). Seven predictive models
showed significant prediction performance at this stage with q <0.05,
false discovery rate (FDR) corrected (p < 0.006). The selected models
included the predictivemodels for the brooding subscale based on the
ventromedial prefrontal cortex (vmPFC), left posterior cingulate cor-
tex (PCC), and left temporal pole (TempP) seed regions, for the
depressive rumination subscale based on the dmPFC seed region, and
for the reflective pondering subscale based on the right para-
hippocampal cortex (PHC), right temporoparietal junction (TPJ), and
right TempP seed regions. We then tested these models on an inde-
pendent test dataset (Study 3, n = 48) and selected the predictive
model that showed generalizable prediction performance. At this
stage of independent testing, only the dmPFC-based predictive model
of the depressive rumination subscale showed a significant general-
ization. The dmPFC-based model showed cross-validated prediction
performance of r = 0.342 (p =0.001, one-sided permutation test, 95%
confidence interval (CI) [0.139, 0.574]) in the training dataset, r = 0.240
(p = 0.037, one-sided permutation test, 95% CI [−0.013, 0.502]) in the
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validation dataset, and r = 0.288 (p =0.025, one-sided permutation
test, 95% CI [0.004, 0.589]) in the independent test dataset (Fig. 1b).
When we removed one outlier in the independent test dataset, the
dmPFC-based model still showed significant prediction performance
of r =0.276 (p =0.028, one-sided permutation test, 95% CI [−0.012,
0.579]). The overall prediction results are shown in Table 1 and Sup-
plementary Table 2.

We also trained and tested the models with static connectivity as
input features, but none of the models survived (Supplementary
Table 3), suggesting that dynamic functional connectivity is more
sensitive to individual differences in rumination than static con-
nectivity. In addition, to examine the robustness of our results, we
repeated our analysis by shuffling and combining the training, valida-
tion, and testing datasets. When we trained predictivemodels with the
Study 2 or Study 3 dataset alone, we could not replicate the results
(Supplementary Tables 4, 5). However, when we trained the models
with the combined dataset of Studies 2 and 3 (n = 109) and tested the
model on the Study 1 dataset, we were able to replicate the original
results—the dmPFC-based predictive model showed significant pre-
diction performance in both training and testing datasets, but it did so
only when the number of predictors was greater than 80 (Supple-
mentary Fig. 4). These additional analyses suggest that the successful
prediction of rumination requires at least a certain number of pre-
dictors. In addition, to further investigate the impact of the number of
features, we compared the results of using the number of features
same as the original model (i.e., nfeature = 84; Supplementary Table 6)

with the results of using the maximum possible number of features
(i.e., nfeature = 109; Supplementary Table 7). In both cases, only the
dmPFC-based predictive model of depressive rumination showed
significant predictions across training and testing datasets.

Characterizing thedmPFC-basedpredictivemodel of depressive
rumination
To better understand the model, we examined the model weights
(Fig. 2a). The dmPFC-based predictive model of depressive rumi-
nation included 84 non-zero predictive connection weights, which
consisted of 38 positive and 46 negative weights. Regions with
positive predictive weights indicate that more variable functional
connectivity (i.e., higher temporal variance) between the dmPFC and
the regions is predictive of higher depressive rumination scores,
whereas negative weights indicate that less variable (or more stable)
functional connectivity (i.e., lower temporal variance) with the
dmPFC is predictive of higher depressive rumination scores. Among
38 regions with positive weights, 8 regions were subcortical regions,
including subregions of basal ganglia, hippocampus, and thalamus.
Six regions fell within the dorsal attention network, including sub-
regions of the right inferior temporal gyrus, left inferior parietal
lobule, and bilateral superior parietal lobules. Six regions fell within
the frontoparietal network, including subregions of the right medial
frontal gyrus, right orbital gyrus, and right insula. And, finally, five
regions fell within the visual network, including subregions of the
bilateral lateral occipital complex and the leftmedioventral occipital

Fig. 1 | Analysis overview and prediction results. a For the model development,
we first predefined 20 seed regions within the DMN based on ref. 35. We then
calculated the Dynamic Conditional Correlation (DCC) between each seed region
and 280 Brainnetome-based parcels using rsfMRI data from 84 participants. Using
the varianceofDCC time-series data as input features, we trainedpredictivemodels
of the Ruminative Response Scale (RRS) subscales. The “B” stands for the brooding
subscale, “D” for the depressive rumination subscale, and “R” for the reflective
pondering subscale. We used Lasso regression with leave-one-participant-out
cross-validation.We then selected and tested only good-performingmodels on the
next independent test datasets. b Among the initial 60, we selected seven pre-
dictive models that showed significant cross-validated prediction performance

(q <0.05, false discovery rate) in the training dataset (n = 84). Among the seven
predictive models, we again selected one predictive model that showed significant
independent prediction performance at p <0.05 (one-sided permutation test) with
the validationdataset (n = 61). The selectedmodelwas the dmPFC-based predictive
model of depressive rumination. We finally tested the model on the last indepen-
dent test dataset (n = 48) to evaluate the model’s generalizability. A red-dashed
circle indicates the data point that was identified as an outlier (i.e., greater than
three standard deviations away from the mean), which did not affect the sig-
nificance after its removal (r =0.276, p =0.028, one-sided permutation test, 95% CI
[−0.012, 0.579]).
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complex. Among 46 regions with negative weights, 11 regions fell
within the visual network, including subregions of the right fusiform
gyrus, left parahippocampal gyrus, bilateral lateral occipital com-
plex, and medioventral occipital complex. Seven regions were sub-
cortical areas, including subregions of the bilateral thalamus. Five
regions fell within the default mode network, including subregions
of the left superior frontal gyrus, right posterior superior temporal
sulcus, and right precuneus. And 5 regions were the cerebellum
regions, including left cerebellar crus I, left lobule IX, bilateral VIII,
left IX, and X. These results highlight that the regions predictive of
depressive rumination are distributed across the whole brain rather
than confined to one or two specific functional brain networks. To
see if our model prediction is also related to other relevant con-
structs, such as depression and anxiety37, we examined correlations
between our model prediction, i.e., pattern expression, and other
self-report questionnaires across datasets. As shown in Fig. 2b, in the
training dataset (Study 1), the cross-validated model prediction
showed significant correlations with all other RRS subscales and
overall RRS summed across subscales, and also with depression
measured by BDI. In the validation dataset (Study 2), only the ori-
ginal target variable (i.e., the depressive rumination subscale)
showed a significant correlation (green circles in Fig. 2b). In the

second independent test dataset (Study 3), the depressive rumina-
tion subscale and the brooding subscale showed significant
correlations.

Identifying regions important for generalization
Next, to examine each region’s degree of contribution to the model
generalization, we conducted a ‘virtual lesion’ analysis on two
independent test datasets (Fig. 3). In the virtual lesion analysis, we
removed one region at a time from the model and calculated the
changes in the prediction performance between the full and reduced
models. We defined the importance of each region as the difference
between the prediction-outcome correlation of the full model ver-
sus the reducedmodel, i.e., rfull – rreduced. We iterated this procedure
for all regions included in the predictive model and for two inde-
pendent test datasets. Through this iteration, we identified 21
important regions that resulted in decreased prediction perfor-
mance in both datasets (Fig. 3a). The patterns of the differences in
the prediction performance were significantly correlated across two
datasets r = 0.628 (p = 1e-10, two-sided, 95% CI [0.520–0.956]), sug-
gesting the consistency in the virtual lesion analysis results across
datasets. Figure 3b shows the average importance across two test
datasets. The top three important regions were the left inferior

Fig. 2 | The dmPFC-based predictive model of depressive rumination and its
predictions. a The final model that showed generalizable prediction performances
across two independent datasets was the dmPFC-based predictive model of the
depressive rumination subscale of the RRS. The top panel shows the brain regions
that had positive predictive weights and their large-scale network assignments.
Positive weights mean the higher the DCC variances between the dmPFC and the
regions, the higher the depressive rumination scores. The bottom panel shows the
brain regions that had negative predictive weights and their large-scale network
assignments. Negative weights indicate the higher DCC variances between the

dmPFC and the regions, the lower the depressive rumination scores. The color bars
represent the sign andmagnitude of themodel weights. The percentage on the pie
chart indicates the proportion of region assignments to each large-scale network. A
percentage of less than 5% is not shown in the graph. b To evaluate the divergent
and convergent construct validity of our finalmodel, we examined the correlations
between the model prediction and other self-report questionnaires. The super-
script k indicates a study that used the Korean translation version for the ques-
tionnaires. The questionnaires that showed significant correlations (p <0.05, one-
sided permutation test) were marked with green circles.
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frontal gyrus (IFG), right inferior temporal gyrus (ITG), and left
cerebellar crus I.

Figure 4a presents the model only with the identified important
regions as a circos plot, in which we visualized themagnitude and sign
of predictive weights as line thickness and color, group-level averages
of DCC mean connectivity as inner circle boxes, and their large-scale
network assignments as outer circle boxes. In addition, we show the
important regions’ anatomical locations. In this context, DCC mean
connectivity represents the average DCC values across time, serving a
similar purpose as static connectivity. It indicates the extent of positive
or negative correlation, on average, between a region and the dmPFC
throughout the resting-state scan. Thus, regions such as the right IPL
that exhibit negative predictive weights (blue line in Fig. 4a) and
strongly positive mean connectivity (orange inner ring segment in
Fig. 4a) exhibited more positive and sustained correlations with the
dmPFC over the rest period in ruminative individuals. In contrast,
regions such as the left IFG (IFG_L_6_5 A44op according to the Brain-
netome nomenclature) that have positive predictive weights and
positive mean connectivity have more variability in their correlations
over time in ruminative individuals. In terms of the large-scale func-
tional networks, the 21 important regions were distributed across
multiple functional networks except for the limbic and somatomotor
networks, which contained no important regions. Rumination was
consistently associated with more variable dmPFC connectivity with
the left IFG (in the ventral attention network), right ITG, striatum, and
superior parietal regions, and less variable connectivity between the

dmPFC and the cerebellar and brainstem regions. In addition, Fig. 4b
shows that there was no apparent relationship between the predictive
weights and the DCC mean connectivity values, suggesting that the
relationship between the DCC variance and rumination scores was not
dependent on the connectivity magnitude itself. Examining the DMN
regions also supported this finding that all the DMN regions showed
positive DCC mean values with the dmPFC, but both positive and
negative predictive weights were found in these regions (Supplemen-
tary Fig. 1).

Testing the model on individuals with MDD
To see if our model could predict individual differences in depressive
symptoms of individuals clinically diagnosed with MDD, we tested our
model on a clinical dataset with 35 people diagnosed with MDD. We
tested both the full model, which included all 84 regions, and the
refined model, which included only 21 regions identified to be
important for model generalization. We found that the full model was
not predictive of the BDI-II scores of individuals with MDD (r =0.150,
p =0.391, one-sided permutation test, 95%CI [−0.195, 0.498]), whereas
the refined model consisting of 21 important regions showed a sig-
nificant prediction of theBDI-II scores of r =0.431 (p =0.010, one-sided
permutation test, 95%CI [0.115, 0.808]) as in Fig. 4c. However, it should
be noted that our model fails to generalize when applied to the addi-
tional three datasets of patients with MDD (n = 21, 57, and 22; Sup-
plementary Fig. 5). The primary distinction between the datasets in
which our model worked and those in which it did not included
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both independent test datasets. There were 21 important brain regions for the
prediction. Note that the overall patterns of the region importance were simi-
lar across two independent test datasets (r =0.628, p = 1e-10, two-sided, 95% CI
[0.520, 0.956]). b The brain map shows the 21 brain regions important for the
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the phase encoding direction and MRI manufacturer, which were the
most significant contributors to the measurement bias according
to Yamashita et al.38.

Discussion
In this study, we developed a predictive model of depressive rumina-
tion based on the temporal dynamic features of functional con-
nectivity using DMN regions as seeds. Through comprehensive tests
for model generalizability across three independent datasets (total
n = 193), we identified a generalizable predictive model of depressive
rumination based on the temporal variance of dynamic connectivity
between the dmPFC and brain regions distributed across multiple
brain systems. Through a virtual lesion analysis across two test data-
sets, we identified 21 regions important for model generalization,
including the left IFG, right ITG, right IPL, cerebellum, and others.
Finally, this 21-region model significantly predicted depression scores
in individuals (n = 35) diagnosed with MDD.

From our extensive search for generalizable predictive models of
the three RRS subscales, only the dmPFC-based predictive model for
the depressive rumination subscale showed significant prediction
performance across all three independent datasets. Considering that
ruminative thinking involves dwelling on thoughts that are often high-
level, negative, self-referential, past-focused, and verbally-
mediated30,39,40, our findings support our hypothesis that the DMN’s
dorsalmedial subsystemplays an important role in a high-level “mind’s
mind” form of imagination21. This interpretation is further supported
by our findings of other key regions within a broader dmPFC sub-
system that dynamically interact with the dmPFC in our predictive
model, including right IPL and left IFG (see below for further

discussion). Previous studies also showed distinct fMRI patterns of the
dmPFC in individuals with MDD compared to healthy controls16,22,31.
Our study builds upon these findings by developing a generalizable
predictive model, providing a deeper understanding of the role of the
dmPFC in rumination among individuals with both subclinical and
clinical depression.

Beyond the regional dynamics, the importance of network-level
dynamics in rumination has been suggested in previous studies41,42. For
example, Karapanagiotidis et al.41 showed a close relationship between
trait negative affectivity (e.g., anxiety, depression, and rumination) and
the DMN-dominant states identified by hidden Markov modeling. In
addition, Goodman et al.42 reported that the dwell time and state
transition frequency of DMN-dominant states identified with the
coactivation pattern analysis were correlated with depressive symp-
toms. Converging evidence from the studies that used different ana-
lysismethodshighlights the importanceof thedynamics of theDMN in
rumination. In addition to the DMN, our study found that some brain
regions outside of the DMN, such as the left IFG from the ventral
attention network, are also crucial for rumination. Thus, future studies
examining how across-network dynamics are related to rumination
would be required for a better understanding of neural dynamics
underlying the ruminative thinking.

Even though the predictive features of our model were largely
distributed across the whole brain, several regions stand out as parti-
cularly important for model generalization, including the left IFG
(IFG_L_6_5 according to the Brainnetome nomenclature), right ITG
(ITG_R_7_2), left cerebellar crus I, and right IPL (IPL_R_6_5), which all had
positive mean connectivity with the dmPFC. Among these, the left IFG
appeared to be the most important for generalization across two
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datasets. This region is part of the dorsal medial subsystem at rest19,43

and is known for its importance in language processing44,45, potentially
indicating that rumination predominantly has a verbal representation,
which is also associated with a mind’s mind form of cognition. This is
also consistent with Vatansever et al.46, which used the canonical cor-
relation analysis to simultaneously decompose resting-state fMRI
connectivity and behavioral components. They reported that the brain
component that comprised left IFG and a part of the dorsal medial
subsystem was related to verbal, negative, and deliberate thoughts. In
addition, both the left IFG and dmPFCwere identified to be part of the
core emotional appraisal system47, and particularly, the left IFG was
shown to play a dual role in emotion generation and regulation48. Note
that the identified left IFG showed some overlap with the salience
network, which could be relevant to a recent finding that higher sal-
ience network flexibility was linked to higher negative repetitive
thoughts49.

The right IPL is another region demonstrating positive mean
connectivity with the dmPFC, but this time with lower temporal
variability related to higher trait rumination. The region labeled “right
IPL” in the Brainnetome atlas overlaps with a region commonly refer-
red to as the right temporoparietal junction (TPJ), which has been
reported across numerous fMRI studies of mentalizing or theory of
mind50,51. As a key node of the dorsal medial subsystem, sustained
positive correlations between the dmPFC and the right IPL/TPJ at rest
may signify the presence of social inferences and evaluations asso-
ciated with rumination at rest, especially in relation to the self. In
addition, the right IPL/TPJ has also been identified as a key area for
affective appraisal52,53, and the region sits at a “convergence zone”
along the cortical hierarchy54, supporting its relevance to integrative,
high-level conceptual processing. These suggest that sustained, posi-
tive connectivity between the right IPL/TPJ and the dmPFCmay reflect
the sustained focus of one’s affective states, which is a key feature of
rumination.

On the left cerebellar crus I of our model, more than 50% of the
voxels within the region were within the frontoparietal network55.
Other important cerebral regions within the frontoparietal network
(IFG_R_6_2 and IFG_L_6_1 in Fig. 4a) also showed the same character-
istics in predictive weights and DCC mean (i.e., negative predictive
weights and positive DCCmean) as the cerebellar crus I. This suggests
a possibility that the stable between-network connectivity, particularly
between the default mode and frontoparietal networks, underlies the
ruminative cognitive process56,57. In addition, the right ITG and the left
cerebellar crus I were within one of the functional connectivity-based
clusters identified by Eickhoff et al.58, who divided the functional net-
work of the dmPFC into four clusters. The cluster relevant to our
finding was the caudal-right cluster, which was strongly connected to
the frontoparietal and dorsal attention networks. This may imply that
our right ITG and the left cerebellum findings, also with the opposite
sign of the weights, would be related to the disrupted adaptive
attention control that may be important for rumination.

Interestingly, regions within the visual cortex had negative
weights in our model, indicating that more stable connections
between the dmPFC and visual areas are predictive of a higher level of
rumination. Considering together with the fact that the visual cortex
regions showed weak mean functional connectivity with the dmPFC
(Fig. 4b), this negative predictive weight may reflect the tendency of
diverting one’s attention away from perception, also known as per-
ceptual decoupling59,60, to be predictive of rumination. This is con-
sistent with a recent study61, in which the DMN activity related to
internally oriented cognition was decoupled with the activity in visual
cortex regions at rest or during tasks. In addition, the decoupling was
enhanced when participants were engaged in autobiographical mem-
ory recall.

In addition to the RRS depressive rumination subscale, ourmodel
also showed a significant prediction for the BDI-II score inpatientswith

MDD. This finding suggests the presence of a neural pattern that
accounts for a continuum between ruminative tendencies in the
healthy population and depressive symptoms in the clinical popula-
tion. Notably, depressive rumination items in the RRS include some
similar items to the BDI-II (e.g., “think about how sad you feel” in the
RRS and “I feel sad” in the BDI-II). For this reason, the depressive
rumination subscales have been suggested to be confounded with
depression62,63. However, ourmodel did not predict the CES-D score in
healthy participants, suggesting that our brain model captures sub-
clinical ruminative tendencies but not depression in healthy partici-
pants. These findings highlight the need for future studies to
administer the same trait and symptom questionnaires to both sub-
clinical and clinical groups. Additionally, longitudinal assessments
of symptoms and brain-based measures would enable tracking of
within-person changes over time.

Our study has some limitations that should be addressed in future
studies. First, the current study aimed to balance sparsity with com-
plexity by focusing on multiple seed regions across the DMN, by per-
mitting target regions across the entire brain, and by employing Lasso
regression to build predictive models of rumination. While acknowl-
edging that restricting the search space to DMN seeds may increase
selection and confirmation bias in our findings, this approach capita-
lizes on a substantial body of research in humans and animals that
highlights the involvement of the DMN in emotion and rumina-
tion processes. Moreover, this approach facilitates the interpretation
and the integration of our findings with prior literature, which would
be challenging with models allowing for increased complexity. Our
approach, which allows for both hypothesis-driven and exploratory
findings, is also advantageous in its ability to increase power, reduce
false positives, and balance type I and type II errors. However, future
studies, especially if well-powered, could benefit from a more
exploratory approach (e.g., combining multiple models, including
more features, using less sparse models, etc.).

Second, recent studies suggest that a small amount of rsfMRI scan
data (less than 10min) could result in poor reliability of functional
connectivity measures at the individual difference level64–67. Our stu-
dies used 6–10min of rsfMRI data, and future studies should address
the reliability of our model and the potential benefits of longer scans.

Third, our prediction results showed only small effect sizes, and
our sample sizes were small for predicting individual differences68,
suggesting a possibility of type I errors in this study. To further test the
generalizability of our model, we tested our model on an additional
subclinical independent dataset (n = 60; see captions of Supplemen-
tary Fig. 6 for the details of this dataset) that we finished collecting
during revision. This Supplementary dataset had an interesting
experimental design feature: we administered two 14-min resting-state
runs both before and after participants viewed a short emotional
movie lasting approximately 10mins. This movie was about a mother
meeting her daughter who passed away through virtual reality, and we
selected this movie to enhance internally oriented cognitive and
emotional states. As shown in Supplementary Fig. 6, our model
showed a significant prediction of depressive rumination only with the
post-movie resting-state data (r = 0.228, p =0.040, one-sided permu-
tation test, 95% CI [−0.028, 0.492]). With the pre-movie resting-state
data, our model showed a non-significant prediction (r = −0.038,
p =0.613, one-sided permutation test, 95% CI [−0.298, 0.222]). Again,
the results showed a small effect size and one negative result, which
could still suggest a possibility of type I error. However, this also
provides an interesting hypothesis that inducing a ruminative cogni-
tive state would increase the prediction performance of our model,
which shouldbe examined in future studies.Overall, thoughwe cannot
provide definitive evidence that our findings are not false positives in
the current study,weput ourbest effort into further testingourmodel,
and here we provide one positive and one negative result, with an
interesting hypothesis for future study.
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Fourth, it is important to note that high temporal variance implies
large fluctuations over time, but it does notmeasure how ‘frequent’ or
how ‘fast’ connectivity changes. Thus, our model might not be fully
utilizing the temporal dynamic information, and future studies may
benefit from characterizing the temporal frequencies and using more
fine-grained temporal information for predictive modeling of rumi-
nation, such as frequency42 and coherence measures69. In addition,
larger sample sizes and signals with higher temporal precision (e.g.,
magnetoencephalography) may be necessary for adequate inference
for specific frequency bands.

Fifth, our study focused onpredicting trait rumination rather than
state rumination. The RRS scores used in our study, therefore, do not
necessarily capture individuals’ rumination during the actual period of
scanning, although individuals with high trait ruminationmay bemore
likely to experience thoughts characteristic of state ruminative think-
ing at rest30,70. Future studies should target both types of rumination,
whichmay be characterized by different neural mechanisms71 or show
different patterns of connectivity72.

Sixth, the model’s generalizability was affected by which datasets
were used in the training procedure (Supplementary Tables 4, 5). Our
additional analyses suggested that it could be due to (1) differences in
the distribution of the outcome variables across datasets (Supple-
mentary Fig. 3) or (2) the minimum number of input features required
for the generalizable prediction of rumination (Supplementary Fig. 4,
Supplementary Tables 6, 7). However, it is difficult to know whether
there is a specific number of features required for successful predic-
tion. Also, it is possible that multiple modeling options, such as input
features (e.g., connectivity vs. activity), resolution (e.g., voxel-level vs.
region-level), etc., interact with the required number of features.
Future studies should examine these influences in more detail.

Seventh, our study includedonly a small sample size of individuals
with MDD (n = 35), and therefore, our model performance in predict-
ing depression in populations with MDD should be further validated.
We also showed that our model does not generalize to the clinical
datasets with different scan parameters, such as phase encoding
direction and MRI manufacturer38. In addition, we have not con-
sider specific details regarding depression status (e.g., first episode
depression or recurrent depression) nor medication status (e.g., drug-
naive or not), which could potentially lead to distinct connectivity
profiles within DMN73. Also, we could not directly test our model to
predict rumination in patients with MDD because the clinical datasets
did not have the RRS scores, making it difficult to know what exactly
ourmodel predicted in the clinical sample. Thus, future studies should
investigate the boundary conditions under which our model works or
does not work.

Lastly, our study cannot pinpoint which cognitive functions are
supported by the dmPFC due to the limitation of resting-state fMRI
and our lack of measurement of concurrent thought processes. In
future studies, researchers should use task-based fMRI to specify
which types or contents of ongoing thoughts are linked to the region’s
dynamics. Turnbull et al.,74 provides a relevant example, in which they
demonstrated that the left dorsolateral prefrontal cortex prioritizes
individuals’ internal thoughts when a situation is non-demanding by
showing the region’s different connectivity profiles with DMN when
the task requires high or low demands. Such specification of the single
region will be important for enhancing our understanding of cognitive
processes related to rumination.

Despite these limitations, the study providesmeaningful progress
beyond previous literature by developing an integrated, predictive
brain model of rumination that generalizes across multiple samples,
including a clinical population,without any readjustmentof themodel.
Recent work suggests that suchmodels havemuch larger effect sizes75

and reliability76 than isolated features. In addition, notably, the model
was based on dynamic connectivity features, suggesting that mean-
ingful information is contained in the variability of brain connectivity

over time. Our findings will facilitate future directions aiming at a
mechanistic understanding of how thedmPFCand its interactionswith
other regions increase or decrease rumination, helping develop new
therapeutic strategies for depression and anxiety.

Methods
Participants
Study 1 consisted of 110 healthy adults recruited across the greater
Denver area and from existing subject databases assembled by the
University of Colorado Boulder Institute for Behavioral Genetics. The
sample was designed to oversample non-Hispanic Black American and
HispanicWhite American participants, to include equal proportions of
non-Hispanic African American, Hispanic White American, and Non-
Hispanic White American participants. We excluded data from 26
participants due tomissing data in either rumination scores or rsfMRI,
resulting in a final sample size of n = 84 (age = 28.0 ± 4.9 [mean± SD],
41 male; see Supplementary Table 1 for the demographic and self-
report summary information). The final sample included 34 Non-
Hispanic White Americans (19 female), 30 Hispanic White Americans
(15 female), and 20 Non-Hispanic African American participants (9
female). Most participants also underwent a separate, unrelated
experiment77. We excluded participants with MR-related contra-
indications, psychoactive or pain medications, current or recent (past
6 months) neurological or psychiatric diagnoses, or pain-related
medical conditions. The institutional review board of the University of
Colorado Boulder approved the study. All participants provided writ-
ten informed consent and were compensated in cash for their
participation.

Studies 2, 3 (validation and independent test datasets), and the
Supplementary dataset included 61 (age = 22.9 ± 2.5 [mean ± SD], 31
males), 48 (age = 22.8 ± 2.4, 28 males), and 60 healthy participants
(age = 23.35 ± 1.91, 30 males), respectively. We recruited the partici-
pants from Suwon, South Korea. The institutional review board of
Sungkyunkwan University approved the studies. All participants pro-
videdwritten informed consent andwere compensated in cash for their
participation. The preliminary eligibility of participants was determined
through an online survey. Participants with psychiatric, neurological, or
systemic disorders and MRI contraindications were excluded.

Study 4 (an independent clinical test dataset) included 35 indivi-
duals diagnosed with MDD who had both rsfMRI data and BDI-II score
(age = 44.08 ± 12.1, 18 male). We obtained these clinical data from a
publicly available database, the Strategic Research Program of Brain
Sciences (SRPBS)Multi-disorderMRI Database38,78. This SRPBS database
included rsfMRI data of people diagnosed with multiple psychiatric
disorders collected from 11 sites. All experimental protocols in the
datasets were approved by the institutional review boards of the prin-
cipal investigators’ respective institutions (Advanced Telecommunica-
tions Research Institute International (ATR), Hiroshima University,
Kyoto Prefectural University of Medicine, Showa University, and the
University of Tokyo). All participants in the studies provided written
informed consent. We only used data collected from the Center of
Innovation atHiroshimaUniversity because it had the largest number of
individuals with MDD (n = 71). Among them, we excluded participants
who were left-handed (n = 2) and showed mean frame-wise displace-
ment over 0.25 (n = 34), resulting in a total of n = 35.

No statistical method was used to predetermine the sample size.
Reported sex and/or genderwerebasedon self-reports of participants,
and the ratio was made as evenly as possible to make a generalizable
prediction across sex and/or gender.

Self-report questionnaires
Ruminative response scale (RRS34). The RRS is a self-report measure
of how much individuals repetitively, and persistently dwell on their
own internal states. It consists of 22 items rated from 1 (never) to 4
(always) and subdivided into three subscales—brooding, reflective
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pondering, and depressive rumination34,79. There have been some
debates on which factors comprise a reliable construct of
rumination80–82. Here, we used the sum of each subscale of RRS sug-
gested in ref. 79 as ameasure of each subscale construct. Treynor et al.
argued that the depressive rumination subscale might be confounded
with depression itself, while the other two are unconfounded with
depression and each reflects adaptive (reflective pondering) and
maladaptive (brooding) aspects of rumination. We used the subscale
scores as dependent variables in our model development (Fig. 1).
Studies 2–3 used the Korean version of RRS83, which included only 19
items (Item numbers 2, 14, and 15 from the original scale were exclu-
ded) and had a slightly different factor structure compared to the
original scale. The brooding subscale was comprised of 6 items (Item
numbers 5, 9, 10, 13, 16, and 18), reflective ponderingwas comprised of
six items (Item numbers 7, 11, 12, 20, 21, and 22), and depressive
rumination was comprised of seven items (Item numbers 1, 3, 4, 6, 8,
17, and 19).

Beck Depression Inventory (BDI84,85). The BDI is a 21-item self-report
questionnaire that assesses individuals’ depression severity84. Each
item rating ranges from 0 to 3 with increasing severity of depressive
symptoms. BDI-II is a revised version of the BDI85. BDI-II was adminis-
tered in Study 1 and Study 4.

Center for Epidemiological Studies-Depression (CES-D86). The CES-
D is a 20-item self-report questionnaire that assesses individuals’
depression severity. Each item ranges from 0 (Rarely or none) to 3
(Most or almost all the time). We used the sum score after reverse-
scoring positively keyed items (Item numbers 4, 8, 12, 16). We admi-
nistered the Korean translation of CES-D in Studies 2 and 3.

State-Trait Anxiety Inventory-X form (STAI-X87). STAI-X is a self-
report questionnaire that assesses the levels of state and trait anxiety
of the individuals. It consists of 20 state anxiety items (STAI-X1) and 20
trait anxiety items (STAI-X2). Both types of items range from 1 (not at
all or never) to 4 (very much so or always). We used the sum score of
STAI-X1 and STAI-X2 after reverse-scoring positively keyed items (Item
number 1, 2, 5, 8, 10, 11, 15, 16, 19, 20 for STAI-X1; 1, 6, 7, 10, 13, 16, 19 for
STAI-X2). We administered the Korean translation of STAI-X items in
Studies 2 and 3. See Supplementary Fig. 2 for the correlations among
the self-report questionnaires.

Resting-state fMRI Paradigm
Study 1 (Training dataset). Participants in Study 1 were asked to stare
at a centrally positioned fixation crosshair for 7min and let their
thoughts flow naturally. This resting-state paradigm was followed by
additional tasks relevant to other studies (e.g., ref. 77). Note that the
Study 1 resting-state data were collected from the sameparticipants as
in ref. 77, which did not use the resting-state data.

Study 2 and 3 (Validation and testing datasets). Resting-state runs in
Studies 2 and 3 were also part of larger studies. Six minutes of resting-
state data were acquired while participants fixated on a central point
displayed in the center of the screen. Psychtoolbox (version 3.0, http://
psychtoolbox.org) was used to display the fixation cross. In Study 3,
during the resting scan, we intermittently asked participants to report
their momentary thought content using a word or phrase. We con-
ducted this thought sampling 5 times during the run while the interval
between questions was around 1min. We regressed out thought
sampling-related fMRI signal (for details on the nuisance regression,
see the next section).

Study 4 (Independent clinical test dataset). Study 4 acquired 10min
of resting-state fMRI data while participants were asked to look at a
fixation point on the screen. More details are in ref. 38.

fMRI data acquisition and preprocessing
Study 1 data were acquired on a 3 Tesla Siemens Trio MRI scanner
located in the Center for Innovation and Creativity at the University
of Colorado Boulder. High-resolution T1-weighted magnetization-
prepared rapid gradient echo (MPRAGE) images were acquired with
TR = 2530ms, TE = 1.64ms, flip angle = 7°, inversion time (Tl):
1200ms, field of view (FoV) read: 256mm, echo spacing: 12.2ms,
bandwidth: 651 Hz Px–1, time: 6:03 for normalization. For functional
EPI images, a multi-band sequence was used with TR = 460ms,
TE = 29ms, slices = 56, multi-band factor = 8, flip angle = 44°, FoV
read = 248mm, echo spacing = 0.51ms, bandwidth = 2772 Hz Px–1,
time = 10:15. Then, T1-weighted MPRAGE images were co-registered
to the mean functional image and normalized to the MNI-152 tem-
plate using SPM8. For functional EPI images, the initial images of
every functional scan were removed for image-intensity stabiliza-
tion. The remaining images were realigned to the first image to
correct for head motion using SPM8, warped to the MNI-152 tem-
plate using warping parameter from co-registration of the T1-
weighted image, interpolated to 2 × 2 × 2mm3, and finally smoothed
with an 8mm FWHM Gaussian kernel. Then, temporal data were
band-pass filtered to include temporal frequencies between
0.008 Hz and 0.1 Hz. Nuisance covariates included image-intensity
outliers (i.e., “spikes”), 24 head motion parameters (six movement
parameters including x, y, z, roll, pitch, and yaw, their mean-
centered squares, their derivatives, and squared derivative), and the
top five component scores from each of the white and cerebrospinal
fluid (CSF) masks. To remove intermittent gradient and severe
motion-related artefacts present to some degree in all fMRI data88,
spikes were identified by computing the Mahalanobis distances for
the matrix of slice-wise mean and standard deviation values by
functional volumes, and also by calculating root-mean-squared
successive differences across images.

Studies 2 and 3 were acquired on a 3 T Siemens Prisma scanner
located in the Center for Neuroscience Imaging Research at Sung-
kyunkwan University. High-resolution T1-weighted structural images
were acquired. Functional EPI images were acquired with TR = 460ms,
TE = 27.2ms, field of view = 220mm, 82 × 82matrix, 2.7 × 2.7 × 2.7mm3

voxels, 56 interleaved slices, 2608 volumes. Preprocessing of struc-
tural and functional images was performed with SPM12 (Wellcome
Trust Centre for Neuroimaging, London, UK) and FSL. For structural
T1-weighted images, magnetic field bias was corrected, and non-brain
tissues were removed (skull-stripping). Then, the images were nor-
malized to MNI space. For functional EPI images, initial volumes (20
images) of fMRI images were removed to allow for image-intensity
stabilization. Then, the images were distortion-corrected, motion-
corrected (realigned), co-registered with T1-weighted images, nor-
malized to MNI with the interpolation to 2 × 2 × 2mm3 voxels, and
smoothed with a 5mm FWHM Gaussian kernel. The remaining pre-
processing techniques, including band-pass filtering and regressing
out of nuisance covariates were the same procedures as outlined in
Study 1. The Study 3 dataset included additional nuisance covariates
corresponding to visual cues asking for words, and reporting time to
regress out cue and speaking effects.

Study 4 data were acquired through a 3 T Siemens Magnetom
Verio scanner. High-resolution T1-weighted structural images were
acquired. Functional EPI images were acquired with TR= 2500ms,
TE = 30ms, field of view = 212mm, 64 × 64 matrix, 3.3 × 3.3 × 3.2mm3

voxels, and 40 ascending slices. All the preprocessing steps were the
same as in Studies 2 and 3 except that therewas additional slice timing
correction using SPM12 and no distortion correction.

Developing a dynamic connectivity marker for rumination
We used the variance of seed-based dynamic conditional corre-
lations (DCC)36 as an input feature for developing predictive brain
models of rumination. The DCC is a model-based dynamic
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correlation estimation method using a combination of general-
ized autoregressive conditional heteroscedastic (GARCH) and
exponential weighted moving average (EWMA) models. We chose
to use the DCC based on results from ref. 36, which tested mul-
tiple dynamic functional connectivity methods, including the
sliding-time windows method with various window sizes and
reported that the DCC showed a good balance between the sen-
sitivity and specificity in estimating the variance of dynamic
functional connectivity. In addition, the DCC is known to have a
higher level of test-retest reliability in estimating the variance89

and does not require any additional arbitrary hyperparameters.
As seed regions, we used 20 DMN subregions from ref. 35,
including the left and right hemispheres separately, except for
the medial regions (i.e., the dorsal and ventral medial prefrontal
cortex regions). For the whole-brain data, we used a modified
version of the Brainnetome parcellation90, which included the
original 246 Brainnetome parcels and 34 additional parcels for
midbrain, brainstem, and cerebellar regions91,92, resulting in a
total of 280 regions. As outcome variables, we used participants’
scores from the three subscales of the RRS—depressive rumina-
tion, brooding, and reflective pondering.

Using the Study 1 dataset (n = 84), we trained a total of 60
models, i.e., 20 seed-based features (DCC variance) × 3 outcome
variables (RRS subscales), with the least absolute shrinkage and
selection operator (Lasso) regression. Using Lasso regularization,
we selected the maximum number of features, i.e., the sample size,
n = 84. We chose to select themaximum number of features to avoid
additional hyper-parameter searches, which could cause overfitting.
The significance of the model performance was evaluated with the
correlation between predicted outcomes and actual RRS subscale
scores using leave-one-participant-out cross-validation. We used
one-sided permutation tests for the model significance testing as
our null hypothesis is that the predicted score from the model is not
predictive of the actual score, resulting in a correlation similar to or
below zero. In addition, permutation tests are non-parametric and
only require an assumption of exchangeable variables (across sub-
jects in our case), which fits our case of individual trait prediction.
We conducted permutation tests by shuffling participant labels for
the actual and predicted RRS scores with 10,000 iterations. We used
Pearson correlation as a measure of model performance, instead of
squared error-based metrics (e.g., R-squared or mean squared
error)93, because the scales of both the fMRI and behavioral data
were different across studies and the correlation-based measures
are insensitive to the scale difference. All values noted as r in the
manuscript indicate Pearson correlations. We selected models that
showed significant prediction performance at the false discovery
rate q < 0.05 and tested them on Study 2 data. From this validation
process, we further narrowed our selection by selecting the model
that showed significant prediction performance on the Study 2
dataset and testing the selected model on additional independent
test data (Study 3). Our decision to use Study 1 as the training dataset
was made a priori because it had the largest sample size (n = 84), the
most racial-ethnic diversity (see “Participants” section.), and the
largest variance in trait rumination scores across participants
(Supplementary Fig. 3), all of which can help improve the general-
izability of our model.

Model weight assignments to functional resting-state networks
For functional interpretation of themodel, we assignedmodel weights
to ten functional groups, including seven networks from ref. 43, sub-
cortical regions90, brainstem92, and cerebellum91. (Fig. 2a, right). The
assignment of cortical regions to seven networks by Yeo et al. was
based on network information from each parcellation provided by the
Brainnetome Atlas (http://atlas.brainnetome.org/).

Virtual lesion analysis
Toexamine the importanceof each feature in the prediction,we tested
the model performance by removing one feature at a time (i.e., virtual
lesion) during independent tests and compared the model perfor-
mance for the full model versus the reduced model94,95.

Δcorr = rfull � rreduced

If the prediction performance decreased after removing a feature
(i.e., if Δcorr was positive), we considered the feature to be important
for prediction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from Studies 1–3 and the Supplementary dataset to generate the
main results and Supplementary information of the study is provided
at the following link (https://github.com/cocoanlab/rumination;
https://doi.org/10.5281/zenodo.7923949). Raw data for Studies 1–3
and the Supplementary dataset are available upon request. This is
because some participants agreed to share their data only for the
limited purpose of scientific research. Any identified research group
can request andutilize the shareddata for research. Tomake a request,
please send an email to either didch1789@gmail.com (J.K.) or wani-
woo@g.skku.edu (C.-W.W.). We will respond to the requests within a
week. The data for Study 4 are available at https://bicr-resource.atr.jp/
srpbs1600/ (ref. 38).

Code availability
The codes and data to generate the main figures and results are pro-
vided at https://github.com/cocoanlab/rumination and https://doi.
org/10.5281/zenodo.7923949. In-house Matlab codes for fMRI data
analyses are available at https://github.com/canlab/CanlabCore and
https://github.com/cocoanlab/cocoanCORE.
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