Skip to main content
. 2023 Jun 15;14:3569. doi: 10.1038/s41467-023-39283-x

Table 1.

Comparison of yield predictions between the SEMG-MIGNN model with other SOTA models

Data splitting Yield-BERT DRFP MFF SEMG-MIGNN
Random 90/10 5.20 ± 0.500 5.09 ± 0.500 6.34 ± 0.500 4.79 ± 0.500
Random 70/30 5.82 ± 0.400 6.28 ± 0.300 6.77 ± 0.300 4.81 ± 0.400
Random 50/50 7.62 ± 0.500 7.36 ± 0.300 8.55 ± 0.300 6.83 ± 0.500
Random 30/70 9.41 ± 0.500 8.67 ± 0.500 10.09 ± 0.500 8.79 ± 0.700
Aryl Halidea 26.04 ± 0.300 26.19 ± 0.200 22.04 ± 0.200 19.34 ± 0.400
Additivea 21.29 ± 0.200 22.43 ± 0.200 21.66 ± 0.200 10.36 ± 0.200
Liganda 20.04 ± 0.200 18.35 ± 0.200 18.85 ± 0.200 11.02 ± 0.200
Basea 19.40 ± 0.200 19.90 ± 0.200 20.66 ± 0.200 14.52 ± 0.200

Note: The best performance of each task is shown in bold. aThese data splitting tasks refer to the extrapolative predictions based on the scaffold splitting of the reaction components. Details are elaborated in Supplementary Fig. 20. RMSEs are in %.