Skip to main content
. 2023 Jun 15;14:3569. doi: 10.1038/s41467-023-39283-x

Table 2.

Comparison of enantioselectivity predictions between the SEMG-MIGNN model with other SOTA models

Data Splitting DRFP MFF SEMG-MIGNN
Random 90/10 0.190 ± 0.010 0.183 ± 0.010 0.180 ± 0.010
Random 70/30 0.201 ± 0.010 0.212 ± 0.020 0.189 ± 0.010
Random 50/50 0.248 ± 0.030 0.227 ± 0.030 0.205 ± 0.020
Random 30/70 0.259 ± 0.030 0.243 ± 0.030 0.240 ± 0.020
Iminea 0.227 ± 0.005 0.226 ± 0.005 0.238 ± 0.005
Thiola 0.774 ± 0.020 0.726 ± 0.020 0.300 ± 0.010
Catalysta 0.565 ± 0.020 0.464 ± 0.020 0.294 ± 0.010
Transformationa 0.235 ± 0.005 0.264 ± 0.005 0.205 ± 0.005

Note: The best performance of each task is shown in bold. aThese data splitting tasks refer to the extrapolative predictions based on the scaffold splitting of the reaction components. Details are elaborated in Supplementary Fig. 22. RMSEs are in kcal mol−1.