Skip to main content
Gut logoLink to Gut
. 1997 Jul;41(1):56–59. doi: 10.1136/gut.41.1.56

Nutrient regulation of human intestinal sugar transporter (SGLT1) expression.

J Dyer 1, K B Hosie 1, S P Shirazi-Beechey 1
PMCID: PMC1027228  PMID: 9274472

Abstract

BACKGROUND: The activity of most intestinal nutrient transporters is adaptively regulated by the type and amounts of nutrients entering the intestinal lumen. The concentration and activity of the intestinal Na+/glucose cotransporter (SGLT1) are regulated by dietary sugars in most animal species. The activity and abundance of SGLT1 in biopsy specimens removed from human jejunal regions exposed to, and having limited access to, luminal nutrients have been measured and compared. AIMS: To study the effects of luminal nutrients on the expression of SGLT1 in the human intestine. PATIENT AND METHODS: Brush border membrane vesicles (BBMV) were prepared from biopsy specimens removed from the intestine of a 50 year old man who had developed a high output jejunal fistula, and adjacent mucosal fistula, a condition present for 12 months after surgery for a strangulated hernia. BBMV prepared from intestine exposed to luminal nutrients, and from dysfunctional intestine with a limited exposure to nutrients, were used to measure Na+ dependent glucose transport and abundance of SGLT1 protein. RESULTS: The levels of SGLT1 activity and abundance in the BBMV prepared from control biopsy specimens were similar to those found in BBMV prepared from the intestine of healthy individuals. BBMV from the dysfunctional intestine, exposed to limited levels of luminal nutrients, had reduced levels of SGLT1 activity. This reduction in SGLT1 activity and abundance was above that associated with any villus atrophy, as assessed by the abundance/activity of lactase and villin concentrations. CONCLUSIONS: These data indicate that the activity and expression of SGLT1 in human intestine is maintained by the presence of luminal nutrients.

Full text

PDF
56

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretscher A., Weber K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci U S A. 1979 May;76(5):2321–2325. doi: 10.1073/pnas.76.5.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
  3. Davidson N. O., Hausman A. M., Ifkovits C. A., Buse J. B., Gould G. W., Burant C. F., Bell G. I. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol. 1992 Mar;262(3 Pt 1):C795–C800. doi: 10.1152/ajpcell.1992.262.3.C795. [DOI] [PubMed] [Google Scholar]
  4. Duluc I., Freund J. N., Leberquier C., Kedinger M. Fetal endoderm primarily holds the temporal and positional information required for mammalian intestinal development. J Cell Biol. 1994 Jul;126(1):211–221. doi: 10.1083/jcb.126.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferraris R. P., Diamond J. M. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol. 1989;51:125–141. doi: 10.1146/annurev.ph.51.030189.001013. [DOI] [PubMed] [Google Scholar]
  6. Gorvel J. P., Ferrero A., Chambraud L., Rigal A., Bonicel J., Maroux S. Expression of sucrase-isomaltase and dipeptidylpeptidase IV in human small intestine and colon. Gastroenterology. 1991 Sep;101(3):618–625. doi: 10.1016/0016-5085(91)90517-o. [DOI] [PubMed] [Google Scholar]
  7. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  8. Hediger M. A., Turk E., Wright E. M. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5748–5752. doi: 10.1073/pnas.86.15.5748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koldovský O., Asp N. G., Dahlqvist A. A method for the separate assay of "neutral" and "acid" beta-galactosidase in homogenates of rat small-intestinal mucosa. Anal Biochem. 1969 Mar;27(3):409–418. doi: 10.1016/0003-2697(69)90054-2. [DOI] [PubMed] [Google Scholar]
  10. Lescale-Matys L., Dyer J., Scott D., Freeman T. C., Wright E. M., Shirazi-Beechey S. P. Regulation of the ovine intestinal Na+/glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochem J. 1993 Apr 15;291(Pt 2):435–440. doi: 10.1042/bj2910435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maiuri L., Raia V., Potter J., Swallow D., Ho M. W., Fiocca R., Finzi G., Cornaggia M., Capella C., Quaroni A. Mosaic pattern of lactase expression by villous enterocytes in human adult-type hypolactasia. Gastroenterology. 1991 Feb;100(2):359–369. doi: 10.1016/0016-5085(91)90203-w. [DOI] [PubMed] [Google Scholar]
  12. Shirazi-Beechey S. P., Davies A. G., Tebbutt K., Dyer J., Ellis A., Taylor C. J., Fairclough P., Beechey R. B. Preparation and properties of brush-border membrane vesicles from human small intestine. Gastroenterology. 1990 Mar;98(3):676–685. doi: 10.1016/0016-5085(90)90288-c. [DOI] [PubMed] [Google Scholar]
  13. Shirazi-Beechey S. P., Dyer J., Allison G., Wood I. S. Nutrient regulation of intestinal sugar-transporter expression. Biochem Soc Trans. 1996 May;24(2):389–392. doi: 10.1042/bst0240389. [DOI] [PubMed] [Google Scholar]
  14. Shirazi-Beechey S. P., Hirayama B. A., Wang Y., Scott D., Smith M. W., Wright E. M. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol. 1991 Jun;437:699–708. doi: 10.1113/jphysiol.1991.sp018620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shirazi-Beechey S. P. Intestinal sodium-dependent D-glucose co-transporter: dietary regulation. Proc Nutr Soc. 1996 Mar;55(1B):167–178. doi: 10.1079/pns19960018. [DOI] [PubMed] [Google Scholar]
  16. Shirazi-Beechey S. P., Kemp R. B., Dyer J., Beechey R. B. Changes in the functions of the intestinal brush border membrane during the development of the ruminant habit in lambs. Comp Biochem Physiol B. 1989;94(4):801–806. doi: 10.1016/0305-0491(89)90169-7. [DOI] [PubMed] [Google Scholar]
  17. Tarpey P. S., Wood I. S., Shirazi-Beechey S. P., Beechey R. B. Amino acid sequence and the cellular location of the Na(+)-dependent D-glucose symporters (SGLT1) in the ovine enterocyte and the parotid acinar cell. Biochem J. 1995 Nov 15;312(Pt 1):293–300. doi: 10.1042/bj3120293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Turk E., Zabel B., Mundlos S., Dyer J., Wright E. M. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature. 1991 Mar 28;350(6316):354–356. doi: 10.1038/350354a0. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES